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Abstract: Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for
the success of precision N management (PNM). Several active canopy sensors (ACS) with two or
three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new
integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to
measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate
this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays
L.) N status across different soil drainage and tillage systems under variable N supply conditions.
The four plant metrics used to approximate in-season N status consist of aboveground biomass
(AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field
experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with
a split-split plot design replicated four times with soil drainage (drained and undrained) as main
block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in
45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive
whole plant samples were collected at V8 +/−1 growth stage. Proximal sensor metrics were used to
construct regression models to estimate N status indicators using simple regression (SR) and eXtreme
Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference
vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll
content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll
content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air
temperature difference (∆Temp). Management practices such as drainage, tillage, and PPN rate were
also included to determine the potential improvement in corn N status diagnosis. Three of the four
replicated drained and undrained blocks were randomly selected as training data, and the remaining
drained and undrained blocks were used as testing data. The results indicated that SR modeling
using NDVI would be sufficient for estimating AGB compared to more complex machine learning
methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple
inputs. Among different approaches of XGB modeling, combining management information and
Crop Circle Phenom measurements together increased model performance for predicting each of the
four plant N metrics compared with solely using sensing data. The PPN rate was the most important
management metric for all models compared to drainage and tillage information. Combining Crop
Circle Phenom sensor parameters and management information is a promising strategy for in-season
diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing
system under diverse on-farm conditions and to test other machine learning models.

Keywords: precision nitrogen management; active canopy sensing; integrated sensing system;
machine learning; nitrogen nutrition index
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1. Introduction

Agricultural nutrient management has been historically guided using grower knowl-
edge of cultivated land and soil supply of essential nutrients such as nitrogen (N), phospho-
rous, and potassium. Over the past forty years, the development of precision agriculture
has offered an alternative method of guiding nutrient management leveraged on using
proximal and remote sensing, data analysis, and smart machinery to optimize fertilizer
application timing and rate to match nutrient supply with crop demand [1]. Within com-
mercial crop production, N is frequently the primary limiting nutrient for plant growth [2].
Limiting conditions are often attributable to N mobility within the soil horizon and sus-
ceptibility for losses through leaching, denitrification, and volatilization processes [3,4].
Improving N management is critical to protection of water resources and reduction of at-
mospheric greenhouse gas levels [5]. Centered on matching N supply with crop N demand
in both space and time, precision N management (PNM) has the potential to increase N
use efficiency by reducing N losses while maintaining crop yields [6,7].

For corn (Zea mays L.) production, N fertilizer timing and rate are critical aspects
to mitigating N loss [8]. Physiologically, corn plant N concentration (PNC) is highest
earlier in its vegetative growth and decreases until plant senescence; however, plant
N demand is greatest midway through the growing season when the plant is rapidly
increasing in biomass. Historically, N fertilizer is applied in full around the time of
planting with the expectation that sufficient N will persist throughout the season to facilitate
optimal plant growth. This practice is viable for growing seasons with low early season
N loss and ideal weather conditions. However, it is not conductive for field seasons
with high N loss potential from heavy or frequent rain events. For this reason, optimal
in-season N management must develop tools which determine plant N status accurately
and non-destructively [9]. Corn plants predominantly exhibit N deficiency symptoms
of stunting due to decreased cell division and leaf chlorosis of older leaves [10]. Plénet
and Lemaire [11] established an empirical allometric critical N dilution curve, which
calculates the minimum PNC needed to optimally grow as “critical” N concentration
(Nc) depending on aboveground biomass (AGB). Corn N status can be determined by
calculating N nutrition index (NNI), which is defined as the ratio of actual PNC to Nc. Since
the development of corn NNI, subsequent studies have evaluated its efficacy and utilized it
as a tool to improve corn N status diagnosis and to guide side-dress N application [12–15].

To apply NNI in commercial agriculture, there are several methods to determine corn
AGB and PNC. Traditional destructive sampling and analysis is not only time consuming
and expensive but also cannot adequately capture spatial or temporal variability because it
is a snapshot of crop health at a specific location and day of year [16,17]. As a result, proxi-
mal and remote sensing technologies have been developed for real-time non-destructive N
status estimation. Canopy sensors are more efficient than destructive sampling because
they can be quickly collected and return instantaneous estimations of plant health. Addi-
tionally, active instruments are superior and more repeatable compared to passive sensors
because their measurements are independent of environmental light conditions.

Three of the most frequently utilized active canopy sensors (ACS) for corn N man-
agement are the two-band GreenSeeker (Trimble Inc., Sunnyvale, CA, USA), the three-
band Crop Circle ACS-430 (Holland Scientific, Lincoln, NE, USA), and the three-band
RapidScan CS-45 (Holland Scientific, Lincoln, NE, USA). Researchers have developed
empirical techniques to estimate in-season N status through correlating multispectral
band reflectance measurements or calculated vegetative indices (VIs) with crop N sta-
tus indicators. Xia et al. [13] used a GreenSeeker sensor to predict corn NNI and found
the sensor derived VIs could moderately predict NNI directly (R2 between 0.56–0.65) at
V7–V10 growth stage when used with N-rich plots as reference to calculate response in-
dex. However, the GreenSeeker sensor did not perform well when solely using VIs to
predict NNI (R2 between 0.33–0.55) without using N rich plots. Paiao et al. [18] evaluated
GreenSeeker and RapidSCAN sensors for corn plant N status estimation from V4 to R1 in
Minnesota. The study found that optimum N rates did not correlate well with proximal
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sensor measurements prior to V12 stage, which could limit their values for determining
side-dress N needs around V8–V9 stages.

The Crop Circle Phenom is a new integrated multi-parameter ACS, which measures
spectral reflectance of red, red-edge, and near-infrared wavelengths to calculate normal-
ized difference vegetation index (NDVI) [19] and the normalized difference red edge
(NDRE) [20] as well as to provide several other variables, including estimated canopy
chlorophyll content (eCCC), estimated leaf area index (eLAI), atmospheric pressure, rel-
ative humidity, reflected and incoming photosynthetically active radiation (PAR), and
canopy and air temperatures. These additional metrics can be used to calculate physiologi-
cal metrics such as fractional PAR (fPAR) and canopy-air temperature difference (∆Temp).
Previous research indicated that PAR [21] and canopy temperature [22] could be used to
estimate biomass and crop N stress. Therefore, through measuring spectral, estimated
structural characteristics, and climatic variables, the Crop Circle Phenom sensor system
is hypothesized to be able to improve corn N status estimation and diagnosis compared
to only using vegetation indices such as NDVI and NDRE. To date, no study has been
reported for the evaluation of this new integrated sensor system for in-season corn N status
estimation. Therefore, the objective of this research was to evaluate the potential of the
Crop Circle Phenom sensor system for in-season diagnosis of corn N status across different
drainage and tillage systems under variable N supply conditions.

2. Materials and Methods
2.1. Study Site

The study was conducted in southcentral Minnesota near Wells, MN (43◦51′15.7′′ N
93◦43′47.2′′ W) in the 2018 and the 2019 growing seasons. The predominant soil types at
the site are Marna silty clay loam (fine, smectitic, mesic Vertic Endoaquolls) and Nicollet
silty-clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls). The experiment
was conducted in a randomized complete-block design with a split-splitplot arrangement
and four replications in a corn-soybean (Glycine max L.) rotation where both crops are
present every year. The main plot was set up in 2011 with subsurface tile drainage where
half of the blocks are fully closed (undrained) and the other half are fully open (drained).
For more details, see Fernández et al. [23]. The sub-plot includes three tillage treatments
established in 2017: no-tillage (NT), strip-tillage (ST), and conventional-tillage (CT). The
sub-sub-plot is six pre-plant N (PPN) rate treatments (0, 45, 90, 135, 180, 225 kg-N ha−1)
initiated in 2017 (Figure 1). The trials are part of a larger experiment with N timing also
being evaluated at various early growth stages, but only the PPN treatments were used for
this project. Each treatment plot was composed of four planted rows approximately nine
meters in length with 76 cm row spacing and approximately 83,000 plants ha−1 density.
Nitrogen was applied as urea+Agrotain (46-0-0) (urea with N-(n-butyl) thiophosphoric
triamide (NBPT)) (Koch Fertilizer LLC, Wichita, KS, USA) in mid-May within a week of
planting the crop. The Pioneer hybrid P9929AMXT was used in this study.

2.2. Proximal Sensor Collection

Proximal sensing data were collected around V8 growth stages in the 2018 and the 2019
growing seasons using a Crop Circle Phenom canopy sensor (Holland Scientific, Lincoln,
NE, USA). This sensor fuses the instrument capabilities of a Crop Circle ACS-430 and a
Crop Circle DAS43X sensor using a GeoScout X controller, which simultaneously geotags
and timestamps each unique measurement (Figure 2). Analogous to prior studies which
have utilized the Crop Circle ACS-430, the Phenom sensor collects reflectance data in red
(670 nm), red-edge (RE, 730 nm), and near-infrared (NIR, 780 nm) wavelengths as well as
automatically calculated NDVI and NDRE. Furthermore, the Crop Circle Phenom sensor
system also calculates eLAI and eCCC using empirical relationships with spectral bands.
In addition to spectral data, this sensor system collects environmental information from
a DAS43X sensor that measures atmospheric pressure, relative humidity, incoming and
reflected PAR, canopy temperature, and air temperature. Supplemental vegetation indices
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were selected based on their previously published ability to approximate plant N metrics,
including canopy chlorophyll content index (CCCI) and ratio vegetation index (RVI). Canopy
and air temperature difference (∆Temp) and fPAR were also calculated (Table 1).
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Figure 1. Wells research site experimental design with four replicates of block resolution drainage
treatments and sub-plot tillage and sub-sub plot pre-plant N treatments. Green plots signify pre-plant
N treatments while purple plots are timing treatments outside the realm of this study. NT, ST, and CT
stand for no-till, strip-tillage, and conventional-tillage, respectively. The numbers for the pre-plant N
treatment plots indicate the N rates (kg ha−1).

Table 1. List of sensor parameters calculated using the Crop Circle Phenom.

Vegetation Index Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI (NIR−RED)

(NIR+RED)
[19]

Normalized Difference Red
Edge NDRE (NIR−RE)

(NIR+RE)
[20]

Estimated Canopy Chlorophyll
Content eCCC

(a∗NIR−b∗RE)
(c∗RE−d∗R)

where a, b, c, d are scaling
constants

[24]

Estimated Leaf Area Index eLAI k∗ ln(1−NDVI)
where k is a scaling constant [25]

Ratio Vegetation Index RVI NIR
R [26]

Canopy Chlorophyll Content
Index CCCI (NDRE)

(NDVI)
[27]

Delta Temperature ∆Temp Canopy Temp (C)—Air
Temp (C) [28]

Fractional Photosynthetically
Active Radiation fPAR Re f lected PAR

Incoming PAR [28]
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The Crop Circle Phenom system was fitted to a custom mount and handle to enable
the user to hold the sensor level at nadir approximately 30 cm above the canopy and
approximately a meter ahead of the operator to avoid casting a shadow on the area of
interest. Two measurements were collected in each plot from the center two treatment
rows, and the readings were averaged to represent each plot. The sensor metadata provide
estimated distance between sensor and canopy derived from the spectral band observations
and the inverse square law. The estimated distance to canopy occasionally varied within
plot, and rapidly changing sensor readings (>50 cm) were removed.
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DAS43X sensor components.

2.3. Plant Sampling and Analysis

Following sensor measurements, six whole plant samples were collected at V8 growth
stage, oven-dried at 60 ◦C to a constant weight, weighed for AGB determination, ground,
and analyzed for total N by combustion [29]. Stand count measurements were collected
from each plot around V8 growth stage from 12.2 m of crop rows from the two center rows.
Total dried AGB was calculated using plot stand counts and average dried biomass weight
per plant for each plot. Furthermore, PNU (kg ha−1) was calculated using AGB and PNC.
Plant N status was evaluated by calculating Nc and NNI using the critical N dilution curve
developed by Plénet and Lemaire [11] (Equations (1) and (2)). The allometric function
estimates Nc at different dried AGB weight (W). The authors observed the relationship
was best utilized between 1 Mg ha−1 and 22 Mg ha−1 but recommend a constant Nc of
3.4% be applied under 1 Mg ha−1 dried AGB.

Nc = 3.4 ∗ W−0.37 (1)

NNI =
PNC

Nc
(2)

2.4. Data Analysis

The dataset consisted of 275 unique plot observations representing the 2018 and the
2019 growing seasons across drainage, tillage, and PPN treatment variables. A handful
of plots (n = 13) were accidentally not collected or were removed due to irregular sensor
readings, which reduced the measurement count from the overall 288 unique plots. Training
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and testing datasets were produced by randomly selecting three of the four drained and
undrained experimental blocks as a training dataset (n = 208) and using the remaining
block data as a testing dataset (n = 67). This methodology was selected to maintain an
approximately equal distribution of drainage, tillage, and PPN treatments in both the
training and the testing datasets. Using Crop Circle Phenom derived spectral and climatic
parameters and destructively sampled corn N indicators, simple regression (SR) and
eXtreme Gradient Boosting (XGB) machine learning-based approaches were investigated
to predict AGB, PNC, PNU, and NNI. The training dataset was used to fit each of the SR
and the XGR regression models, while the testing dataset was solely utilized to validate
the final performance of each of the models.

Each of the selected Crop Circle Phenom measured parameters was individually
evaluated for predicting AGB, PNC, PNU, and NNI using the SciPy curve_fit Python
function [30]. In addition to fitting linear models, exponential, power, and quadratic
models were also evaluated and compared to create best fit for each sensor metric. The
model with the lowest training mean absolute error (MAE) and root mean square error
(RMSE) calculated using scikit-learn package [31] was selected as the optimal model.

To evaluate the benefit of fusing multiple sensor parameters alongside management
data, XGB regression models were constructed and compared to SR. Drainage and tillage
treatments were hypothesized to influence in-season N status, yet neither could be easily
included in SR modeling. The XGB machine learning package was examined to allow
categorical variables to be evaluated in conjunction with the quantitative proximal sensor
data. Three distinct levels of input variables were investigated for XGB modeling, which
consisted of (1) default vegetation indices of NDVI and NDRE automatically calculated by
the Crop Circle Phenom sensor system, (2) NDVI and NDRE plus additional Crop Circle
Phenom collected variables, and (3) Crop Circle Phenom sensor data plus management
information (drainage, tillage, and PPN).

The XGB regression model was adopted as a machine learning strategy to improve plant
N status prediction due to its ease of use and ability to be tuned towards small datasets to
avoid overfitting through altering the hyperparameter inputs [32]. This valuable characteristic
is primarily due to its ability to be tuned for learning rate and size of decision trees.

Machine learning models to predict N status variables were constructed using the
Python package XGBoost Regressor [32]. Tuning the machine learning hyperparameters
was performed using the XGBoost built-in cross-validation function, which was only
utilized within the training dataset. To perform cross-validation for each plant growth
parameter, a Python function was constructed, which utilized three k-folds within the
training dataset to test various max depth, minimum child weights, and learning rates.
Hyperparameter tuning is critical to machine learning model performance because they
together govern the performance of the model through minimizing overall loss versus
risk of model overfitting [33]. Since a tree based XGBoost model is used, max depth and
minimum child weight decide depth of tree and number of samples per node, respec-
tively, whereas learning rate controls how successive trees weigh input features (Figure 3).
To avoid overfitting training data during tuning, an early stopping parameter was used to
halt subsequent boosting rounds after five iterations where MAE did not improve. The
parameter set that returned the lowest MAE was used as the starting parameters for the
XGB regression model.

The model performance was evaluated using mean absolute error (MAE) and root
mean squared error (RMSE) (Equations (3) and (4)) alongside coefficient of determination
(R2). Both error metrics calculate the average difference between predicted and observed
variables where n is the number of measurements, yi is the i-th observed measurement,
and ŷi is the corresponding predicted measurement.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)
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of conditional statements that test each observation with successive branches and leaf nodes deciding
the predicted split value of a target variable.

2.5. Corn N Status Diagnosis

The NNI values were used to diagnose corn N status using the following threshold
values: NNI < 0.95, 0.95 ≤ NNI ≤ 1.05, NNI > 1.05 for deficient, optimum, and surplus
N status, respectively [13,34]. Using measured and predicted NNI values by SR and XGB
models from the test dataset, the accuracy of corn N status diagnosis was evaluated using
areal agreement and kappa statistics [13,35]. The areal agreement is the percentage of
predicted and measured diagnostic results sharing a common classification, while kappa
statistics is a more robust indicator of the agreement of the two diagnostic results that is
adjusted for random chance classification [36]. The kappa statistics values < 0.4, 0.4–0.6,
and > 0.6 indicate weak, moderate, and strong agreement [37].

3. Results
3.1. Corn N Status Indicator Variability

Across the experiment treatments and two site years, PNU demonstrated the greatest
amount of variability (coefficient of variation (CV) around 40%) with a range of 3.95 to
101.68 kg ha−1 (Table 2). NNI fluctuated comparably less between 0.34 and 1.40 with
a CV around 30%. The PNC and the AGB statistics show similar variability, with CV
of 26–27%. Random selection of three of the four drainage replicates into training data
and one drainage replicate block into testing data resulted in comparable statistics to
construct and validate N status models. The large variabilities in N status indicators
(CV = 25.96–40.11%) indicated the suitability of the datasets for evaluating the Crop Circle
Phenom sensor system.

Table 2. Descriptive statistics of aboveground biomass (AGB), plant N concentration (PNC), plant N
uptake (PNU), and N nutrition index (NNI) at V7–V8 growth stage for training and testing datasets
across drainage, tillage, N treatments, and site years.

Training Set (n = 208) Testing Set (n = 67)
Max Min Mean CV(%) Max Min Mean CV(%)

AGB (Mg ha−1) 3.27 0.59 2.03 26.89 2.95 0.85 1.88 25.96
PNC (g kg−1) 3.86 0.95 2.48 26.54 3.68 1.14 2.45 27.04

PNU (kg ha−1) 101.68 3.95 51.79 39.27 86.98 7.79 46.82 40.11
NNI 1.38 0.28 0.95 29.34 1.40 0.34 0.91 30.22

3.2. Crop Circle Phenom Sensor Inter-Parameter Correlation

Several of the Crop Circle Phenom sensor parameter combinations were strongly
related (Figure 4). One such example of a strongly correlated parameter paring was eCCC
and eLAI with a nearly linear relationship (R2 = 1) (Figure 4). Overall correlations between
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spectral sensor metrics were moderate to strong (R2 = 0.70–0.98), whereas environmental
temperature and PAR metrics were less correlated (R2 = 0.12–0.46).
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3.3. Simple Regression Analysis

Simple regression models showed significant variation in prediction ability between
the Crop Circle Phenom parameters and the four plant N status indicators (Table 3). Across
the sensor parameters, NDVI (MAE = 0.23 Mg ha−1), NDRE (MAE = 0.24 Mg ha−1), and
RVI (MAE = 0.24 Mg ha−1) performed the best for predicting AGB. Conversely, CCCI
outperformed the other sensor metrics for predicting PNC (MAE = 0.41 g N 100g DM−1)
and NNI (MAE = 0.16 g N 100g DM−1). The eCCC parameter was the best performing
sensor parameter for predicting PNU (MAE = 11.12 kg ha−1). PNU was overall the most
difficult N status indicator for the sensor parameters to predict (MAE range 11.21 to
14.24 kg ha−1). Compared to spectral parameters, fPAR and ∆Temp both performed poorly
for all N status indicators. In several instances, a suitable model could not be fit for all
sensor metrics, and, therefore, SR results were not reported.

The best performing metric for each testing SR model was plotted in Figure 5. Training
models suggested that AGB, PNU, and NNI were best fit using a non-linear model because
their MAE and RMSE decreased compared to linear models.
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Table 3. The performance of simple regression (SR) models using Crop Circle Phenom sensor parame-
ters for predicting corn N status indicators across years and treatments. NDVI: normalized difference
vegetation index; NDRE: normalized difference red edge; eCCC: estimated canopy chlorophyll
content; eLAI: estimated leaf area index; RVI: ratio vegetation index; CCCI: canopy chlorophyll
content index; fPAR: fractional photosynthetically active radiation; MAE: mean absolute error; RMSE:
root mean squared error.

Parameter Regression Model
Training Testing

R2 MAE RMSE R2 MAE RMSE

Aboveground Biomass (AGB)
NDVI y = 20.56x2 − 24.76x + 8.29 0.46 0.31 0.40 0.66 0.23 0.28
NDRE y = 0.35e4.43x 0.45 0.30 0.40 0.60 0.24 0.31
eLAI y = 0.44x + 0.76 0.45 0.30 0.40 0.58 0.25 0.32
eCCC y = 0.39x + 0.72 0.45 0.30 0.40 0.58 0.25 0.31
RVI y = 0.13x + 0.44 0.45 0.31 0.40 0.65 0.24 0.29

CCCI y = 24.07x2 − 12.40x + 2.53 0.34 0.33 0.44 0.36 0.31 0.39
fPAR y = 8.09x + 0.42 0.15 0.40 0.50 0.16 0.34 0.44

∆Temp y = −0.18x + 1.96 0.25 0.37 0.47 0.26 0.32 0.42

Plant Nitrogen Concentration (PNC)
NDRE y = 5.88x + 0.16 0.16 0.49 0.60 0.23 0.48 0.58
eLAI y = −0.25x2 + 1.64x − 0.05 0.21 0.48 0.58 0.27 0.47 0.56
eCCC y = −0.18x2 + 1.40x − 0.01 0.23 0.47 0.58 0.29 0.47 0.55
CCCI y = 9.58x− 2.00 0.27 0.45 0.56 0.41 0.41 0.50

Plant Nitrogen Uptake (PNU)
NDVI y = 106.79x4.21 0.26 14.42 17.46 0.26 13.85 16.09
NDRE y = 276.23x− 56.97 0.38 12.48 15.95 0.48 11.51 13.48
eLAI y = −4.07x2 + 37.35x− 19.11 0.38 12.44 15.99 0.49 11.21 13.29
eCCC y = −2.68x2 + 30.05x− 16.11 0.39 12.36 15.91 0.50 11.12 13.22
RVI y = 3.52x + 8.33 0.24 14.69 17.68 0.23 14.24 16.35

CCCI y = 353.23x2 + 34.6x− 42.08 0.38 12.30 16.01 0.46 11.25 13.76

Nitrogen Nutrition Index (NNI)
NDVI y = 0.13e2.34x 0.12 0.22 0.26 0.10 0.22 0.26
NDRE y = 3.32x− 0.36 0.30 0.19 0.23 0.41 0.18 0.21
eLAI y = 0.17x + 0.46 0.25 0.20 0.24 0.34 0.19 0.22
eCCC y = 0.16x + 0.43 0.27 0.20 0.24 0.37 0.19 0.22
RVI y = 0.03x + 0.57 0.10 0.23 0.26 0.08 0.23 0.26

CCCI y = 6.16x2.48 0.38 0.18 0.22 0.53 0.16 0.19
fPAR y = 3.36x + 0.28 0.10 0.22 0.26 0.08 0.23 0.26

3.4. Machine Learning Modeling Using eXtreme Gradient Boosted (XGB) Regression

The XGB regression models with NDVI and NDRE performed relatively well. Al-
though adding additional sensor variables as inputs improved the model performance with
training dataset for all the four N status indicators, the testing results were not improved
(Table 4). The XGB models with all Crop Circle Phenom metrics combined with manage-
ment information performed the best with both training and testing datasets, except AGB
for training.

Validation models using testing dataset observations resulted in N status indicator
estimation with model accuracy of R2 > 0.6 and RMSE < 0.40 for all AGB, PNC, and
PNU, but lower model accuracy was present for PNU (Figure 6). Model performance
for the training and the testing datasets suggested a considerable difference between
including traditional vegetation indices compared to using all sensor and management
information. Comparing the performance of models using NDVI and NDRE verses models
which utilized all Crop Circle Phenom parameters, the NDVI and the NDRE-based models
matched or outperformed the full parameter models for all four N status indicators when
validated using the testing dataset (Table 4).
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Table 4. eXtreme gradient boosted (XGB) model performance using different levels of Crop Circle Phe-
nom sensor and management variables for predicting aboveground biomass, plant N concentration,
plant N uptake, and N nutrition index.

Plant Variables Input Variables
Training Testing

R2 MAE RMSE R2 MAE RMSE

Aboveground
Biomass(Mg ha−1)

NDRE + NDVI 0.61 0.26 0.34 0.54 0.26 0.33
All Phenom Sensor Metrics 0.83 0.17 0.23 0.50 0.28 0.34

Phenom Metrics +
Management 0.70 0.23 0.30 0.60 0.24 0.30

Plant N
Concentration

NDRE + NDVI 0.64 0.32 0.40 0.59 0.33 0.42
All Phenom Sensor Metrics 0.82 0.21 0.28 0.50 0.38 0.46

Phenom Metrics +
Management 0.88 0.18 0.23 0.66 0.27 0.38

Plant N Uptake
NDRE + NDVI 0.51 11.13 14.18 0.43 11.80 14.10

All Phenom Sensor Metrics 0.61 9.76 12.59 0.35 12.18 15.01
Phenom Metrics +

Management 0.80 7.08 9.05 0.44 10.83 14.00

N Nutrition Index

NDRE + NDVI 0.65 0.13 0.16 0.55 0.15 0.18
All Phenom Sensor Metrics 0.85 0.08 0.11 0.52 0.15 0.19

Phenom Metrics +
Management 0.96 0.04 0.06 0.65 0.13 0.16

Note: Management data included drainage, tillage, and pre-plant N rate.

Since the Crop Circle Phenom is a new sensor system, only two site years of data are
available. This limitation was mitigated through hyperparameter tuning of max depth,
minimum child weight, and learning rate. No overall patterns of greater max depth, min
child weight, or learning rate were observed by adding additional sensor or management
parameters (Table 5). Cross-validation models using three k-folds were also employed
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to tune the hyperparameters using the training dataset. In the case of PNU, manual
tuning was instead performed because the cross-validation model did not converge on
suitable parameters.
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Table 5. XGB cross-validation hyperparameters. Mean absolute error was minimized for ABG, PNC,
and NNI using built-in function and was manually tuned for PNU.

Plant Variables Input Variables
Hyperparameter Parameters

Max
Depth

Min Child
Weight

Learning
Rate

Aboveground
Biomass

NDRE + NDVI 2 5 0.10
Phenom Sensor Metrics 4 5 0.05

Sensor Metrics + Management 4 2 0.05

Plant N
Concentration

NDRE + NDVI 3 1 0.10
All Phenom Sensor Metrics 2 4 0.15

All Sensor Metrics + Management 3 3 0.05

Plant N Uptake
NDRE + NDVI 2 3 0.05

All Phenom Sensor Metrics 2 3 0.05
All Sensor Metrics + Management 2 3 0.10

N Nutrition Index

NDRE + NDVI 4 1 0.05
All Phenom Sensor Metrics 4 5 0.05

All Sensor Metrics + Management 3 3 0.15
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3.5. Relative Importance of Input Variables

The importance values were calculated for each N status prediction model to indicate
relative worth of sensing and management parameters using the XGB plot_importance
tool. Average gain value per model split was selected as the parameter used to measure
a feature’s F score. This metric computed the average split value that each Crop Circle
Phenom or management parameter was selected in and averaged their value for each N
status indicator. The resulting model suggests PPN was the most important input variable
for predicting PNC, PNU, and NNI (Figure 7b–d). However, sensing parameters NDRE,
RVI, and NDVI were the most important parameters for predicting AGB (Figure 7a). CCCI
was the most important sensor parameter to be included for estimating PNC, PNU or NNI,
however, it was one of the lower importance sensor metrics for AGB prediction.

Tillage and drainage variables were not rated highly for predicting PNC, PNU, or NNI.
An exception was that no-till (NT) was the fourth highest ranked metric for predicting AGB,
although its F score was significantly lower compared to the top sensor metrics (Figure 7a).
Drainage was predicted to have a high importance for predicting plant N status indicators
due to its correlation with N loss processes, however, it consistently had a lower feature
importance compared to sensing parameters and PPN.
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3.6. Diagnosis of In-Season N Status Using NNI

The areal agreement and the kappa coefficient statistics for evaluating the efficacy
of each sensor modeling technique to diagnose corn N status (NNI < 0.95 = deficient,
0.95 < NNI < 1.05 = optimum, NNI > 1.05 surplus) are given in Table 6. Among the
67 measurements, 37 plots were deficient, 4 were optimum, and 26 were surplus. Using
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the best performing NDRE and CCCI single sensor parameters to estimate corn N status
demonstrated acceptable diagnostic accuracy for deficient conditions based on testing data
(62–70%), however, both parameters performed poorly when diagnosing surplus corn
N condition (<42%). Comparing XGB modeling techniques, only the model combining
Crop Circle Phenom sensor parameters with management data achieved kappa statistics
of over 0.4, with the overall areal agreement of 72%. Although the XGB models using
NDVI and NDRE or all Crop Circle Phenom sensor data both improved overall corn N
status diagnostic accuracy compared with SR models using NDRE or CCCI, neither of
them achieved moderate agreement based on kappa statistics (0.4–0.6).

Table 6. Corn N status diagnosis accuracy based on NNI prediction using SR and XGB regression
results. Model precision was assessed using areal agreement (%) and kappa statistics (NNI < 0.95 =
deficient, 0.95 < NNI < 1.05 = optimum, NNI > 1.05 surplus).

Areal Agreement (%)
Kappa

StatisticsDeficient
(n = 37)

Optimum
(n = 4)

Surplus
(n = 26)

Overall
(n = 67)

NDRE 70 25 23 49 0.22
CCCI 62 50 42 54 0.26

XGB NDVI+NDRE 70 0 50 58 0.31
XGB All Phenom Metrics 68 25 46 57 0.29

XGB Phenom +
Management 68 50 81 72 0.54

4. Discussion
4.1. Crop Circle Phenom Comparison to Similar Proximal Active Canopy Sensors

This research was conducted to evaluate the potential of the new multi-parameter
Crop Circle Phenom sensor system, which has traditional spectral band reflectance and
vegetation indices as well as climatic and physiological metrics. Compared with the com-
monly used three-band Crop Circle ACS 430 or RapidSCAN CS-45 sensors that calculate
NDVI and NDRE, the Crop Circle Phenom system also provides eLAI and eCCC. These
additional estimated parameters proved beneficial for estimating PNC and PNU in SR
models, as both outperformed NDVI and NDRE. Regarding AGB estimation, eLAI and
eCCC performed similarly to NDVI and NDRE. This is not a surprise, as NDVI has been
extensively used for AGB estimation [38,39]. Similarly, the commonly used three band
active canopy sensors and the Crop Circle Phenom sensor system would have comparable
performance estimating NNI or PNU, since NNI was best predicted using CCCI, and
PNU was estimated similarly well using eCCC, eLAI, NDRE, or CCCI, which can all be
calculated by all these sensors.

Aside from the estimated LAI and CCC metrics, the key potential advantage of the
Crop Circle Phenom sensor system is the derivation of ∆Temp and fPAR. The ∆Temp
parameter has been commonly used to identify crop water stress [40,41], however, limited
research has been conducted to investigate how crop N status influences canopy temper-
ature. Yan et al. [42] found that rice canopy temperature responded to N rate, with N
stress causing higher temperatures. Similarly, Alzaben, Fraser, and Swanton [22] used
thermal imagery to investigate the relation between canopy temperature and N status. The
study observed that both corn leaf and whirl temperatures statistically responded to N
treatment, with optimal N corresponding to lower canopy temperature. For this study,
∆Temp calculated from the sensor’s air and canopy temperature readings showed a poor
relationship with all four plant N metrics using SR. This result contrasts with previous
research but could be explained by the inability of the proximal sensor to separate soil and
plant signals. Alzaben, Fraser, and Swanton [22] were able to separate plants from soil
background using a segmentation algorithm, which they indicated considerably changed
their measured plot temperatures.
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As with ∆Temp, fPAR has not been thoroughly studied in crop nutrient management.
Although PAR information can be used as a component to estimate crop biomass, yield,
and primary productivity [21], no published article has used it as a metric to estimate
plant N status. For this reason, fPAR was investigated in this study and compared with
traditional vegetative indices. The results of this study indicated that fPAR was marginally
related to other sensor metrics (R = 0.17–0.28) and was not as important as vegetation
indices for predicting corn N status based on SR analysis, including AGB.

Although fPAR did not perform well using SR, it showed more potential when used
in XGB regression models as it was ranked as one of the most important variables for
predicting NNI. This result indicated that fPAR was not an important predictor of N
status individually but could provide important information complementary to spectral
vegetation indices. However, ∆Temp did not rank highly in any of the N indicator models.
The ∆Temp information may be beneficial to help differentiate different stress factors since
it has already been shown to detect water stress, as demonstrated by Jensen et al. [43] and
DeJonge et al. [41].

4.2. Modelling Strategies for In-Season Corn N Status Prediction and Diagnosis

The SR modeling was evaluated as a simplistic approach to model N nutrition met-
rics; however, limitations were discovered when including categorical field management
variables. Additionally, determining the correct model fit for each sensor metric is difficult
since most relationships are non-linear. Therefore, machine learning methods that can
include categorical variables may be a better approach to model non-linear relationships.

The XGB regression was investigated as a machine learning method to predict in-
season N metrics using three distinct levels: NDVI and NDRE, all selected Crop Circle
Phenom sensor parameters, and all sensor parameters as well as drainage, tillage, and PPN
management information. The results indicated that corn N status indicators were best
predicted when sensor data and management information were utilized together. The PPN
rate information was highly important for predicting PNC, PNU, and NNI, however, it was
not as important for predicting AGB. Compared to PPN, drainage and tillage information
did not contribute as strongly to the prediction of any of the plant N metrics since their F
scores were significantly lower than most sensor metrics. This low feature importance was
unexpected since both drainage and tillage were found to be significant factors for grain
yield (data not shown).

Models using all Crop Circle parameters overall performed better than models only
using NDVI and NDRE using the training dataset, although this did not translate into
improved performance of the testing dataset that was at best comparable to using only
NDVI and NDRE. Comparing the importance of each sensor metric, CCCI was the most
informative sensor index for PNC, PNU, and NNI. This supports previous studies [44–46].
It should be noted that the CCCI used in this study is a simplified index calculated as
NDRE/NDVI, while the original CCCI was based on the theory of two-dimensional planar
domain involving both NDRE and NDVI [47,48]. More studies are needed to further
evaluate the simplified and the original CCCI for applications in crop N status prediction
and diagnosis.

The N status diagnosis results also indicated that XGB models using two or more
variables outperformed SR models using one variable. The XGB models using NDVI and
NDRE or all selected Crop Circle Phenom sensor derived variables performed similarly,
with the same areal agreement (57%) and slight difference in kappa statistics (0.32 vs. 0.36).
Adding management information further improved the N status diagnostic accuracy, with
areal agreement of 72% and kappa statistics of 0.54. This result highlighted the importance
of combining management information with crop sensor data.

Few previous studies have attempted to combine sensor data with soil and climate
data to improve in-season N recommendations [49–51], however, limited studies have
been reported to combine management practice information with crop sensor data for
in-season N status prediction and diagnosis. Countless machine learning models have
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been used for predicting crop N status indicators [52–55], however, XGB regression was
selected for this project because it includes self-contained cross validation modules to
perform hyperparameter tuning and the ability to define an early stopping parameter
to mitigate overfitting. Specifically, the ability to tune for learning rate was important
within our limited dataset because it further mitigated the risk of overfitting our training
models. Nevertheless, the results in this study indicated that overfitting was still a problem.
More studies are needed to broaden the dataset and evaluate different machine learning
methods [51,54].

4.3. Implications for On-Farm Applications

Proximal sensing systems are beneficial for on-farm use because they require minimal
training to collect data and fewer processing resources than aerial or satellite imagery.
The Crop Circle Phenom sensor system is designed to be mounted on a vehicle or tractor,
which makes it more difficult to be carried by hand for small plot research. To deploy
it in small plot experiments, a custom pole was constructed to mount the two sensors
and the GeoScout data logger. Another difference compared to similar proximal sensors
is the Phenom requires an external 12 volt battery to power its active sensor light for
calculating reflectance. Although the Crop Circle Phenom requires modifications for small
plot research, adapting the sensor system for commercial field applications would be much
easier because the mounting hardware and the electrical wiring were designed for use
on a field implement. This ease of use for commercial applications is also due to its GPS
connectivity and ability to quickly swap out the sensor across a range of field implements
from sprayers to fertilizer spreaders, which enables whole field resolution readings to be
collected throughout the growing season.

Another way in which the Crop Circle Phenom can set itself apart as a proximal
sensing system is through its multi-parameter spectral, environmental, and physiological
metrics. Utilizing biophysical relationships between spectral features and temperature, the
Crop Circle Phenom can be used to estimate ∆Temp and fPAR. Although utilized in this
study to investigate N status, these metrics have the potential to differentiate various stress
factors such as water status and pathological issues. However, both these management
considerations were outside the scope of this research and should be investigated in
the future.

The PPN information was an important factor to use with crop sensor data for in-
season N status prediction and diagnosis. Such data can be easily obtained from as-applied
maps and should be included in in-season N status diagnosis, especially when variable
rate PPN is applied.

5. Conclusions

The Crop Circle Phenom sensing system possesses multi-parameter indices that can be
used to measure crop canopy reflectance, eLAI, eCCC, and calculate ∆Temp and fPAR. The
eLAI and eCCC indices performed slightly better than NDVI and NDRE for predicting PNC
and PNU using SR models. As a result, these indices warrant inclusion in future sensor-
based diagnosis methods alongside traditional vegetation indices. In contrast, SR models
using ∆Temp or fPAR did not perform well for predicting plant N status indicators. This
poorer model performance could be due to inability to segment soil from plant reflectance,
as is possible with imagery or potted plant experiments. Nonetheless, both ∆Temp and
fPAR parameters were useful for N status prediction when used alongside reflectance
parameters with machine learning models, such as XGB regression. The CCCI parameter
was found to be an important vegetation index for predicting PNC, PNU, and NNI in both
SR and XGB modeling. This improvement over NDVI and NDRE indicates CCCI should
be included in future sensor guided management research.

The Crop Circle Phenom sensor system shows promise as a tool for in-season corn
N status prediction and diagnosis across different drainage, tillage, N supply, and site
year conditions. Combining management information, especially PPN, with Crop Circle
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Phenom sensor data using machine learning can improve corn N status prediction and
diagnosis compared to only using sensor data. Additional studies are needed to further
evaluate this new multi-parameter Crop Circle Phenom sensing system with more site year
data using additional tree based supervised models.
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