Topical Collection "Feature Papers in Plant Ecology"

A topical collection in Plants (ISSN 2223-7747). This collection belongs to the section "Plant Ecology".

Editors

Prof. Dr. Ismael Aranda
E-Mail
Collection Editor
INIA, Ctr Invest Forestales CIFOR, Carretera Coruna Km 7,5, 28040 Madrid, Spain
Prof. Dr. Fernando Henrique Reboredo
E-Mail Website
Collection Editor
Department of Earth Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
Interests: agrifood production and sustainability; climate change; agriculture
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Roberta Masin
E-Mail Website
Collection Editor
Department of Agronomy, Food, Natural Resources, Animals & Environment, Università di Padova, Legnaro, PD, Italy
Interests: seed biology; seed germination; seed dormancy; soil seedbank; seed persistence; seedling emergence and early growth; plant phenology
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

As follows from the title, this Topical Collection “Feature Papers in Plant Ecology” aims to collect high quality research articles, short communications, and review articles in all the fields of Plant Ecology.

In particular (but not exclusively), this Collection invites contributions that report on:

  • Plant ecophysiology
  • Plant population ecology
  • Community ecology
  • Ecosystem ecology
  • Landscape ecology and biosphere ecology
  • Conservation ecology
  • Evolutionary ecology
  • Theoretical ecology
  • Terrestrial ecology
  • Applied ecology
  • Biodiversity

Dr. Ismael Aranda
Prof. Fernando Henrique Reboredo
Prof. Dr. Roberta Masin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

2021

Communication
Alien, Naturalized and Invasive Plants in China
Plants 2021, 10(11), 2241; https://doi.org/10.3390/plants10112241 - 20 Oct 2021
Viewed by 341
Abstract
Invasive species are a subset of naturalized species, and naturalized species are a subset of alien species. Determining the relationship among these three assemblages would be helpful in predicting and preventing biological invasion. Here, we reviewed the families, lifeforms, origins, introduction pathways and [...] Read more.
Invasive species are a subset of naturalized species, and naturalized species are a subset of alien species. Determining the relationship among these three assemblages would be helpful in predicting and preventing biological invasion. Here, we reviewed the families, lifeforms, origins, introduction pathways and phylogenetic diversity of alien, naturalized and invasive vascular plants in China. The results show that species in the Asteraceae, Fabaceae and Poaceae families had a high dominance among alien, naturalized and invasive species. Moreover, almost all alien species in the Amaranthaceae, Solanaceae, Convolvulaceae and Euphorbiaceae families became naturalized species, and about 26.7% of the naturalized species became invasive species. Perennial herbs comprised a higher proportion of alien species than did annual herbs, though annual herbs were more suited to becoming invasive than perennial herbs. A considerable proportion (57.8%) of invasive species were introduced from America. More than half (56.5%) of alien species were introduced for their ornamental value, and half of these have become naturalized in China. Moreover, about half (55.2%) of all invasive species were introduced for their economic value (including ornamental, foraging and medicinal purposes). Invasive species were phylogenetically clustered and phylogenetically distant from alien and naturalized species, which indicates that phylogenetic differences could be helpful in becoming invasive. There is no doubt that human activity plays a significant role in biological invasion. This study suggests that when introducing alien species to a region, decision-makers should certainly consider the species’ phylogeny, beyond just its fundamental characteristics. Full article
Show Figures

Figure 1

Communication
Phylogenetic Diversity of Wetland Plants across China
Plants 2021, 10(9), 1850; https://doi.org/10.3390/plants10091850 - 06 Sep 2021
Viewed by 525
Abstract
Accelerating and severe wetland loss has made wetland restoration increasingly important. Current wetland restorations do not take into consideration the ecological adaptability of wetland plants at large scales, which likely affects their long-term restoration success. We explored the ecological adaptability, including plant life [...] Read more.
Accelerating and severe wetland loss has made wetland restoration increasingly important. Current wetland restorations do not take into consideration the ecological adaptability of wetland plants at large scales, which likely affects their long-term restoration success. We explored the ecological adaptability, including plant life forms and phylogenetic diversity, of plants across 28 wetlands in China. We found that perennial herbs were more common than annual herbs, with the proportion of perennial herbs accounting for 40–50%, 45–65%, 45–70%, 50–60%, and 60–80% of species in coastal wetlands, human-made wetlands, lake wetlands, river wetlands, and marsh wetlands, respectively. A ranking of phylogenetic diversity indices (PDIs) showed an order of marsh < river < coastal < lake < human-made, meaning that human-made wetlands had the highest phylogenetic diversity and marsh wetlands had the lowest phylogenetic diversity. The nearest taxon index (NTI) was positive in 23 out of 28 wetlands, indicating that species were phylogenetically clustered in wetland habitats. Dominant species tended to be distantly related to non-dominant species, as were alien invasive species and native species. Our study indicated that annual herbs and perennial herbs were found in different proportions in different types of wetlands and that species were phylogenetically clustered in wetland habitats. To improve wetland restoration, we suggest screening for native annual herbs and perennial herbs in proportions that occur naturally and the consideration of the phylogenetic similarity to dominant native species. Full article
Show Figures

Figure 1

Article
The Chemical Element Composition of Turmeric Grown in Soil–Climate Conditions of Tashkent Region, Uzbekistan
Plants 2021, 10(7), 1426; https://doi.org/10.3390/plants10071426 - 12 Jul 2021
Cited by 3 | Viewed by 845
Abstract
A mineral fertiliser has positive effects in improving turmeric nutrients, soil enzymes and soil properties. The aim of this research was to study the effect of mineral fertilisers on the content of mineral elements in turmeric rhizome, soil enzymes activity and soil properties [...] Read more.
A mineral fertiliser has positive effects in improving turmeric nutrients, soil enzymes and soil properties. The aim of this research was to study the effect of mineral fertilisers on the content of mineral elements in turmeric rhizome, soil enzymes activity and soil properties in the Tashkent Region, Uzbekistan. For the first time in Uzbekistan, the turmeric rhizome was cultivated to study the mineral elements present in the rhizome. A microplot experiment was conducted with four treatments including T1 (Control), T2 (N75P50K50 kg/ha), T3 (N125P100K100 kg/ha) and T4 (N100P75K75 + B3Zn6Fe6 kg/ha) and turmeric rhizome, which were collected for observation along with the soil samples. The analyses indicated that the NPK + BZnFe (100:75:75:3:6:6 kg/ha) treatment significantly improved minerals such as K, Ca, P, Mg and Na contents rhizome as compared to the control without fertiliser. Likewise, the maximum quantity of micronutrient content viz., Fe, Mn, Zn, Cu, Cr and Si was also recorded in turmeric rhizome treated with NPK + BZnFe (125:100:100:3:6:6 kg/ha). It showed an increase in these micronutrients in the rhizome compared to the control, followed by a low rate of NPK (75:50:50 kg/ha). The highest content in terms of total N, P, K content, humus, active phosphorus, potassium, and enzymes activity was also observed in soil with the treatment of mineral fertiliser viz., NPK + BznFe (100:75:75:3:6:6 kg/ha), which enhanced soil nutrient and enzyme activity. The NPK + BznFe (100:75:75:3:6:6 kg/ha) treatment significantly increased the active N content by 40%, total P content by 38% and total K content by 22% in comparison to the control without mineral fertiliser. Overall, it was found that NPK + BznFe (100:75:75:3:6:6 kg/ha) was significantly valuable for enhancing the total nitrogen, phosphorus, and potassium levels in the soil compared to control, which is useful for improving soil health in terms of soil enzyme and soil nutrients. Additionally, the micronutrients in turmeric rhizome were significantly enhanced when using this combination of fertiliser applications [NPK + BznFe (100:75:75:3:6:6 kg/ha)]. Therefore, this present study revealed that the NPK+BznFe (100:75:75:3:6:6 kg/ha) could produce the most significant yield of high-quality turmeric plants and improve soil properties in Uzbek soil–climate conditions. Full article
Show Figures

Figure 1

Article
The Tolerance of Eucalyptus globulus to Soil Contamination with Arsenic
Plants 2021, 10(4), 627; https://doi.org/10.3390/plants10040627 - 25 Mar 2021
Cited by 2 | Viewed by 672
Abstract
The contamination of abandoned mining areas is a problem worldwide that needs urgent attention. Phytoremediation emerges as a successful method to extract different contaminants from the soil. In this context, Eucalyptus globulus plants growing in soils artificial contaminated with arsenic (As) were used [...] Read more.
The contamination of abandoned mining areas is a problem worldwide that needs urgent attention. Phytoremediation emerges as a successful method to extract different contaminants from the soil. In this context, Eucalyptus globulus plants growing in soils artificial contaminated with arsenic (As) were used to access its phytoremediation capabilities. The effects of As on photosynthetic performance were monitored through different physiological parameters, whereas the uptake and translocation of As and the putative effects on calcium, iron, potassium, and zinc levels on plants were evaluated by X-ray fluorescence analysis. Root system is the major accumulator organ, while the translocation to the above-ground organs is poor. In the end of the experiment, the root biomass of plants treated with 200 μg As mL−1 is 27% and 49.7% lower than equivalent biomass from plants treated with 100 μg As mL−1 and control plants, respectively. Each plant can accumulate 8.19 and 8.91 mg As after a 6-month period, when submitted to 100 As and 200 As, respectively. It seems to exist an antagonistic effect of As on Zn root uptake by E. globulus. In general, the tested concentrations do not influence negatively plant metabolism, indicating that this species is suitable for plantation in contaminated areas. Full article
Show Figures

Figure 1

Back to TopTop