Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession
Abstract
:1. Introduction
2. Results
2.1. Variation in Soil and Litter Properties Under Succession Stage
2.2. Variation in Bacterial Community Composition Under Succession Stages
2.3. Organic Matter Carbon-Associated Soil Bacterial Taxa and Pathways Affecting SOM_C
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experiment Design and Soil Sampling
4.3. Soil Sample Assay
4.4. DNA Extraction, PCR Amplification, and MiSeq Sequencing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Abandoned farmland |
SMC | Soil water content |
BD | Soil bulk density |
TN | Total nitrogen |
TP | Total phosphorus |
GS | Grassland stage |
SS | Shrub-land stage |
FS | Forest stage |
TOM_C | Total organic matter carbon |
SOM_C | Soil organic matter carbon |
LOM_C | Labile organic matter carbon |
ROM_C | Recalcitrant organic matter carbon |
DOM_C | Dissolved organic matter carbon |
MBC | Microbial biomass carbon |
References
- Liu, H.; Liang, Y.; Fang, J.; Liu, Y.; Wang, X.; Zhang, Q.; Liu, W.; Yang, G.; Ren, C.; Han, X. Regulation of photosynthetic carbon fate by plant diversity and nutrients in abandoned farmland on the Loess Plateau. Catena 2024, 245, 108329. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, X.; Shu, X.; Liu, Y.; Zhang, Q. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 2018, 431, 19–36. [Google Scholar] [CrossRef]
- Liu, B.; Song, W.; Sun, Q. Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16007. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
- Li, L.; Wang, D.; Liu, X.; Zhang, B.; Liu, Y.; Xie, T.; Du, Y.; Pan, G. Soil organic carbon fractions and microbial community and functions under changes in vegetation: A case of vegetation succession in karst forest. Environ. Earth Sci. 2013, 71, 3727–3735. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Dong, L.; Li, J.; Wang, X.; Shangguan, Z.; Qu, B.; Deng, L. Dynamics of litter decomposition rate and soil organic carbon sequestration following vegetation succession on the Loess Plateau, China. Catena 2023, 229, 107225. [Google Scholar] [CrossRef]
- Luo, Y.X.; Li, Y.X.; Liu, S.W.; Yu, P.J. Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China. Environ. Monit. Assess. 2022, 194, 562. [Google Scholar] [CrossRef]
- Shi, J.; Song, M.; Yang, L.; Zhao, F.; Wu, J.; Li, J.; Yu, Z.; Li, A.; Shangguan, Z.; Deng, L. Recalcitrant organic carbon plays a key role in soil carbon sequestration along a long-term vegetation succession on the Loess Plateau. Catena 2023, 233, 107528. [Google Scholar] [CrossRef]
- Huang, R.; Lan, T.; Song, X.; Li, J.; Ling, J.; Deng, O.P.; Wang, C.Q.; Gao, X.S.; Li, Q.Q.; Tang, X.Y.; et al. Soil labile organic carbon impacts C:N:P stoichiometry in urban park green spaces depending on vegetation types and time after planting. Appl. Soil Ecol. 2021, 163, 103926. [Google Scholar] [CrossRef]
- Hu, P.; Liu, S.; Ye, Y.; Zhang, W.; He, X.; Su, Y.; Wang, K. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region. Appl. Soil Ecol. 2018, 132, 169–178. [Google Scholar] [CrossRef]
- Jílková, V.; Devetter, M.; Bryndová, M.; Hájek, T.; Kotas, P.; Luláková, P.; Meador, T.; Navrátilová, D.; Saccone, P.; Macek, P. Carbon Sequestration Related to Soil Physical and Chemical Properties in the High Arctic. Glob. Biogeochem. Cycles 2021, 35, e2020GB006877. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Wang, X.; Wang, Y.; Zhang, Y.; Zhang, X. Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China. J. Soils Sediments 2018, 19, 1427–1440. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Yan, G.; Wang, M.; Jiang, S.; Wang, X.; Xue, J.; Xu, M.; Xing, Y.; Wang, Q. Soil enzyme activities and microbial nutrient limitation during the secondary succession of boreal forests. Catena 2023, 230, 107268. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Xiao, Y.; Cheng, A.; Shen, T.; Zhu, M.; Yu, L. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena 2021, 204, 105418. [Google Scholar] [CrossRef]
- Ling, L.; Fu, Y.; Jeewani, P.H.; Tang, C.; Pan, S.; Reid, B.J.; Gunina, A.; Li, Y.; Li, Y.; Cai, Y.; et al. Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils. Soil Biol. Biochem. 2021, 160, 108311. [Google Scholar] [CrossRef]
- Yang, W.; Cai, X.; Wang, Y.; Diao, L.; Xia, L.; An, S.; Luo, Y.; Cheng, X. Increased Soil Bacterial Abundance but Decreased Bacterial Diversity and Shifted Bacterial Community Composition Following Secondary Succession of Old-Field. Forests 2022, 13, 1628. [Google Scholar] [CrossRef]
- Ciccazzo, S.; Esposito, A.; Borruso, L.; Brusetti, L. Microbial communities and primary succession in high altitude mountain environments. Ann. Microbiol. 2015, 66, 43–60. [Google Scholar] [CrossRef]
- Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Lin, X.; Feng, Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021, 9, 84. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Carbon Sequestration and Climate Change Mitigation. In An Introduction to Agroforestry: Four Decades of Scientific Developments; Springer: Cham, Switzerland, 2021; pp. 487–537. [Google Scholar]
- Yang, B.; Zhang, W.H.; Lu, Y.L.; Zhang, W.W.; Wang, Y.A. Carbon Storage Dynamics of Secondary Forest Succession in the Central Loess Plateau of China. Forests 2019, 10, 342. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Sci. Total Environ. 2018, 633, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.F.; Zhang, Y.; Liang, Y.J.; Fu, R.; Sun, L.; Yu, Z.C.; Shi, J.Y.; Sailike, A.; Hao, H.J.; Zhang, W. Differential response of soil bacteria and fungi to carbon and respiration components in abandoned grasslands on the Loess Plateau, China. Plant Soil 2024, 504, 1–19. [Google Scholar] [CrossRef]
- Li, J.W.; Li, M.; Zhao, L.Y.; Sun, X.Q.; Gao, M.H.; Sheng, L.X.; Bian, H.F. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. Sci. Total Environ. 2022, 839, 156242. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.I.; Wang, J.; Li, P.; Pathan, S.I.; Sial, T.A.; Datta, R.; Mokhtar, A.; Ali, E.F.; Rinklebe, J.; Shaheen, S.M.; et al. Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China. Int. Soil Water Conserv. Res. 2023, 11, 561–571. [Google Scholar] [CrossRef]
- Tang, S.M.; Guo, J.X.; Li, S.C.; Li, J.H.; Xie, S.; Zhai, X.J.; Wang, C.J.; Zhang, Y.J.; Wang, K.F. Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil Tillage Res. 2019, 185, 29–35. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.R.; Ravi, S.; Dukes, D.; Gonzales, H.B.; Sankey, J.B. Post-fire Redistribution of Soil Carbon and Nitrogen at a Grassland-Shrubland Ecotone. Ecosystems 2019, 22, 174–188. [Google Scholar] [CrossRef]
- Liao, Y.C.; Fan, H.B.; Wei, X.H.; Wu, J.P.; Duan, H.L.; Fu, X.L.; Liu, W.F.; Wang, H.M.; Zhan, X.W.; Tang, P.; et al. Competition increased fine root biomass in Chinese fir plantations in Subtropical China. Forest Ecol. Manag. 2019, 435, 151–157. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhu, G.Y.; Hai, X.Y.; Li, J.W.; Shangguan, Z.P.; Peng, C.H.; Deng, L. Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecol. Eng. 2020, 142, 105631. [Google Scholar] [CrossRef]
- Liu, M.Y.; Li, P.; Liu, M.M.; Wang, J.; Chang, Q.R. The trend of soil organic carbon fractions related to the successions of different vegetation types on the tableland of the Loess Plateau of China. J. Soil Sediments 2021, 21, 203–214. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Hu, Y.X.; Wang, R.; Guo, S.L.; Du, L.L.; Zhao, M.; Yao, Z.H. Soil organic carbon on the fragmented Chinese Loess Plateau: Combining effects of vegetation types and topographic positions. Soil Tillage Res. 2017, 174, 1–5. [Google Scholar] [CrossRef]
- Yan, B.S.; Sun, L.P.; Li, J.J.; Liang, C.Q.; Wei, F.R.; Xue, S.; Wang, G.L. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotwigensis forests of the Loess Plateau, western China. Geoderma 2020, 364, 114199. [Google Scholar] [CrossRef]
- Qian, Z.Z.; Tang, L.Z.; Hu, Y.P.; Zhou, X.; Zheng, X.; Ding, H.; Ge, X.M. Soil bacterial community structure and co-occurrence networks in response to the succession of secondary forests in subtropical regions. Land Degrad. Dev. 2024, 35, 3090–3101. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.G.; Jiang, Z.H.; Sun, P.; Xiao, H.L.; Wu, Y.X.; Chen, J.G. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 2019, 651, 2281–2291. [Google Scholar] [CrossRef]
- McKee, L.S.; La Rosa, S.L.; Westereng, B.; Eijsink, V.G.; Pope, P.B.; Larsbrink, J. Polysaccharide degradation by the Bacteroidetes: Mechanisms and nomenclature. Environ. Microbiol. Rep. 2021, 13, 559–581. [Google Scholar] [CrossRef]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, Y.; Auwal, M.; Singh, B.P.; Van Zwieten, L.; Xu, J. Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biol. Fertil. Soils 2022, 58, 565–577. [Google Scholar] [CrossRef]
- Kramer, C.; Gleixner, G. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 2008, 40, 425–433. [Google Scholar] [CrossRef]
- Balmonte, J.P.; Buckley, A.; Hoarfrost, A.; Ghobrial, S.; Ziervogel, K.; Teske, A.; Arnosti, C. Community structural differences shape microbial responses to high molecular weight organic matter. Environ. Microbiol. 2019, 21, 557–571. [Google Scholar] [CrossRef]
- Yan, W.H.; Zhou, Q.W.; Peng, D.W.; Luo, Y.Z.; Chen, M.; Lu, Y. Response of surface-soil quality to secondary succession in karst areas in Southwest China: Case study on a limestone slope. Ecol. Eng. 2022, 178, 106581. [Google Scholar] [CrossRef]
- Yu, M.J.; Meng, J.; Yu, L.; Su, W.Q.; Afzal, M.; Li, Y.; Brookes, P.C.; Redmile-Gordon, M.; Luo, Y.; Xu, J.M. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci. Total. Environ. 2019, 650, 626–632. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Fan, X.D.; Ren, C.J.; Zhang, L.; Han, X.H.; Yang, G.H.; Wang, J.; Doughty, R. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. Catena 2018, 171, 622–631. [Google Scholar] [CrossRef]
- Zhu, H.H.; He, X.Y.; Wang, K.L.; Su, Y.R.; Wu, J.S. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. Eur. J. Soil. Biol. 2012, 51, 1–7. [Google Scholar] [CrossRef]
- Company, J.; Valiente, N.; Fortesa, J.; Ortega, R.; Miralles, I.; Estrany, J.; Garcia-Comendador, J.; Lucas-Borja, M.E. Secondary succession and parent material drive soil bacterial community composition in terraced abandoned olive groves from a Mediterranean hyper-humid mountainous area. Agric. Ecosyst. Environ. 2022, 332, 107932. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; van Elsas, J.D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil Ecol. 2018, 129, 112–120. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.J.; Liu, G.C.; Hu, C.Y.; Wang, X.C.; Yan, G.Y.; Wang, Q.G. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Liu, S.; Behm, J.E.; Wan, S.; Yan, J.; Fu, S. Effects of canopy nitrogen addition on soil fauna and litter decomposition rate in a temperate forest and a subtropical forest. Geoderma 2021, 382, 114703. [Google Scholar] [CrossRef]
- Yan, H.B.; Han, Y.Z.; Yang, X.Q.; Le, L. Spatial relevance between natural regeneration of Picea and heterogeneity of soil available nitrogen in Guandi Mountain. Ying Yong Sheng Tai Xue Bao 2010, 21, 533–540. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1982, 9, 539–579. [Google Scholar]
- Blair, G.; Lefroy, R.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 393–406. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Lu, R.K. Soil and Agro-Chemistry Analytical Methods; Chinese Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. India Sect. B 2010, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
Soil and Litter Properties | Successional Stage (Mean ± SD) | p | |||
---|---|---|---|---|---|
AF | GS | SS | FS | ||
SMC | 21.49 ± 0.94 d | 24.64 ± 0.84 c | 27.87 ± 1.00 b | 32.90 ± 0.98 a | <0.01 |
BD | 1.33 ± 0.05 a | 1.24 ± 0.05 a | 1.22 ± 0.07 ab | 1.12 ± 0.06 b | <0.05 |
TN | 1.09 ± 0.03 c | 1.10 ± 0.05 c | 1.38 ± 0.07 b | 1.57 ± 0.10 a | <0.01 |
TP | 0.31 ± 0.01 c | 0.32 ± 0.01 bc | 0.33 ± 0.01 b | 0.36 ± 0.02 a | <0.01 |
TOM_C | 7.10 ± 0.35 c | 17.15 ± 0.39 b | 17.36 ± 0.79 b | 23.87 ± 1.75 a | <0.01 |
LOM_C | 1.02 ± 0.07 d | 2.53 ± 0.03 c | 2.97 ± 0.12 b | 4.13 ± 0.04 a | <0.01 |
DOM_C | 0.03 ± 0.00 d | 0.06 ± 0.00 c | 0.10 ± 0.01 b | 0.33 ± 0.00 a | <0.01 |
MBC | 0.01 ± 0.00 d | 0.04 ± 0.002 c | 0.07 ± 0.00 b | 0.14 ± 0.01 a | <0.01 |
Litter biomass | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 2.38 ± 0.08 b | 3.14 ± 0.09 a | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zhai, J.; He, M.; Ma, R.; Li, Y.; Zhang, H.; Guo, J.; Hu, Z.; Zhang, W.; Bai, J. Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession. Plants 2025, 14, 937. https://doi.org/10.3390/plants14060937
Yang B, Zhai J, He M, Ma R, Li Y, Zhang H, Guo J, Hu Z, Zhang W, Bai J. Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession. Plants. 2025; 14(6):937. https://doi.org/10.3390/plants14060937
Chicago/Turabian StyleYang, Bin, Jie Zhai, Mengjie He, Ruihao Ma, Yusong Li, Hanyu Zhang, Jiachang Guo, Zhenhua Hu, Wenhui Zhang, and Jinhua Bai. 2025. "Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession" Plants 14, no. 6: 937. https://doi.org/10.3390/plants14060937
APA StyleYang, B., Zhai, J., He, M., Ma, R., Li, Y., Zhang, H., Guo, J., Hu, Z., Zhang, W., & Bai, J. (2025). Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession. Plants, 14(6), 937. https://doi.org/10.3390/plants14060937