Effects of Nanoparticles on Plant Growth and Development under Biotic and Abiotic Stress

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (17 November 2023) | Viewed by 22771

Special Issue Editors

Department of Nanomaterials Chemistry, Centro de Investigación en Química Aplicada, 25294 Saltillo, Mexico
Interests: synthesis of metallic nanoparticles; synthesis of nanoparticle–polymer composites; surface modification of nanoparticles; electrically conductive polymer composites; thermal conductive polymer composites; antimicrobial polymers; photocatalyst/polymer composites; polymer–carbon composites; polymer composites for water treatment
Special Issues, Collections and Topics in MDPI journals
Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
Interests: research interests are directed towards plant biostimulation, plant nutrition, and stress tolerance induction and seed priming using nanometric or bulk species of essential and beneficial elements, biopolymers, and UV radiation; research focuses on the relationships between plant biostimulation, plant nutrition, tolerance to stress, and the nutritional quality and biofortification of vegetables and fruits
Special Issues, Collections and Topics in MDPI journals
Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coah., México
Interests: plant physiology; plant ecophysiology; biotic and abiotic stress; crop production; biostimulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The growth of the world population is the main force that governs global environmental change, since it causes a need to occupy spaces destined for agriculture, increases the consumption of food, water and energy, and generates a strong emission of greenhouse gases, causing drastic climate changes. Environmental changes limit agricultural production, and reduce the yield and quality of products, due to biotic and abiotic environmental stress. In addition, various environmental stress conditions such as drought, heat, salinity, cold or pathogenic infections are detrimental to plant growth and development.

Different technologies are used to reduce the effects on agricultural crops caused by biotic and abiotic stresses. Recently, nanotechnology has attracted much attention and has been used to combat stress in plants and reduce negative effects on agricultural production, avoiding large economic losses. Various nanoparticles and nanomaterials have been used, and positive and negative biological effects have been found.

Nanotechnology is an important tool for sustainable crop production, reducing nutrient loss, suppressing disease by pathogens and thus improving yields. The idea of using nanotechnology for the sustainable production of safe food is explored from a number of perspectives, including those related to the toxicity of food and the environment.

This special issue includes articles related to the use of nanoparticles and nanomaterials to combat biotic and abiotic stress in crop production.

Dr. Gregorio Cadenas-Pliego
Prof. Dr. Adalberto Benavides-Mendoza
Prof. Dr. Antonio Juárez Maldonado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • biotic stress
  • nanoparticles
  • agricultural crops
  • drought
  • salinity
  • nanomaterials
  • environmental stresses
  • climate change

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 3515 KiB  
Article
Integrating Chlorophyll a Fluorescence and Enzymatic Profiling to Reveal the Wheat Responses to Nano-ZnO Stress
by Shengdong Li, Yujia Liu, Zongshuai Wang, Tianhao Liu, Xiangnan Li and Peng Zhang
Plants 2023, 12(22), 3808; https://doi.org/10.3390/plants12223808 - 09 Nov 2023
Viewed by 713
Abstract
It has been shown that increased concentrations of zinc oxide nanoparticles (nano-ZnO) in the soil are harmful to plant growth. However, the sensitivity of different wheat cultivars to nano-ZnO stress is still unclear. To detect the physiological response process of wheat varieties with [...] Read more.
It has been shown that increased concentrations of zinc oxide nanoparticles (nano-ZnO) in the soil are harmful to plant growth. However, the sensitivity of different wheat cultivars to nano-ZnO stress is still unclear. To detect the physiological response process of wheat varieties with different tolerance to nano-ZnO stress, four wheat cultivars (viz., cv. TS1, ZM18, JM22, and LM6) with different responses to nano-ZnO stress were selected, depending on previous nano-ZnO stress trials with 120 wheat cultivars in China. The results found that nano-ZnO exposure reduced chlorophyll concentrations and photosynthetic electron transport efficiency, along with the depressed carbohydrate metabolism enzyme activities, and limited plant growth. Meanwhile, the genotypic variation in photosynthetic carbon assimilation under nano-ZnO stress was found in wheat plants. Wheat cv. JM22 and LM6 possessed relatively lower Zn concentrations and higher leaf nitrogen per area, less reductions in their net photosynthetic rate, a maximum quantum yield of the PS II (Fv/Fm), electron transport flux per cross-section (ETo/CSm), trapped energy flux per cross-section (TRo/CSm), and total soluble sugar and sucrose concentrations under nano-ZnO stress, showing a better tolerance to nano-ZnO stress than wheat cv. TS1 and ZM18. In addition, the chlorophyll a fluorescence parameters Fv/Fm, ETo/CSm, and TRo/CSm could be used to rapidly screen wheat varieties resistant to nano-ZnO stress. The results here provide a new approach for solving the issues of crop yield decline in regions polluted by heavy metal nanoparticles and promoting the sustainable utilization of farmland with heavy metal pollution. Full article
Show Figures

Graphical abstract

23 pages, 4467 KiB  
Article
Efficacy of Carbon Nanodots and Manganese Ferrite (MnFe2O4) Nanoparticles in Stimulating Growth and Antioxidant Activity in Drought-Stressed Maize Inbred Lines
by Muhammad Zahaib Ilyas, Hyeon Park, Young Sun Baek, Kyu Jin Sa, Myong Jo Kim and Ju Kyong Lee
Plants 2023, 12(16), 2922; https://doi.org/10.3390/plants12162922 - 11 Aug 2023
Cited by 2 | Viewed by 956
Abstract
Despite being the third most-consumed crop, maize (Zea mays L.) is highly vulnerable to drought stress. The predominant secondary metabolite in plants is phenolic acids, which scavenge reactive oxygen species to minimize oxidative stress under drought stress. Herein, the effect of carbon [...] Read more.
Despite being the third most-consumed crop, maize (Zea mays L.) is highly vulnerable to drought stress. The predominant secondary metabolite in plants is phenolic acids, which scavenge reactive oxygen species to minimize oxidative stress under drought stress. Herein, the effect of carbon nanodots (CND) and manganese ferrite (MnFe2O4) nanoparticles (NP) on the drought stress tolerance of maize has been studied. The experimental results revealed that the highest leaf blade length (54.0 cm) and width (3.9 cm), root length (45.2 cm), stem diameter (11.1 mm), root fresh weight (7.0 g), leaf relative water content (84.8%) and chlorogenic (8.7 µg/mL), caffeic (3.0 µg/mL) and syringic acid (1.0 µg/mL) contents were demonstrated by CND-treated (10 mg L−1) inbred lines (GP5, HW19, HCW2, 17YS6032, HCW3, HCW4, HW7, HCW2, and 16S8068-9, respectively). However, the highest shoot length (71.5 cm), leaf moisture content (83.9%), shoot fresh weight (12.5 g), chlorophyll content (47.3), and DPPH free radical scavenging activity (34.1%) were observed in MnFe2O4 NP-treated (300 mg L−1) HF12, HW15, 11BS8016-7, HW15, HW12, and KW7 lines, respectively. The results indicate that CND and MnFe2O4 NP can mitigate drought stress effects on different accessions of the given population, as corroborated by improvements in growth and physio-biochemical traits among several inbred lines of maize. Full article
Show Figures

Figure 1

22 pages, 3935 KiB  
Article
Productivity and Phytochemicals of Asclepias curassavica in Response to Compost and Silver Nanoparticles Application: HPLC Analysis and Antibacterial Activity of Extracts
by Mervat El-Hefny, Abeer A. Mohamed, Ahmed Abdelkhalek and Mohamed Z. M. Salem
Plants 2023, 12(12), 2274; https://doi.org/10.3390/plants12122274 - 11 Jun 2023
Cited by 4 | Viewed by 1305
Abstract
The application of compost and metallic nanoparticles has a significant impact on the productivity and chemical composition of horticulture plants. In two subsequent growing seasons, 2020 and 2021, the productivity of Asclepias curassavica L. plants treated with various concentrations of silver nanoparticles (AgNPs) [...] Read more.
The application of compost and metallic nanoparticles has a significant impact on the productivity and chemical composition of horticulture plants. In two subsequent growing seasons, 2020 and 2021, the productivity of Asclepias curassavica L. plants treated with various concentrations of silver nanoparticles (AgNPs) and compost was assessed. In the pot experiments, the soil was amended with 25% or 50% compost, and the plants were sprayed with 10, 20, and 30 mg/L of AgNPs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and dynamic light scattering (DLS) were used to characterize AgNPs. The TEM measurements of AgNPs showed that the particles had spherical forms and ranged in size from roughly 5 to 16 nm. Leaf methanol extracts (LMEs) were prepared from the treated plants and assayed against the growth of two soft rot bacteria, Dickeya solani and Pectobacterium atrosepticum. The maximum plant height, diameter, number of branches/plant, total fresh weight (g), total dry weight (g), and leaf area (cm2) was recorded when levels of 25% compost + AgNPs 20 mg/L, 25% compost, or 50% + AgNPs 20 mg/L, 25% compost + AgNPs 30 mg/L or 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 30 or 20 mg/L, and 25% compost + AgNPs 30 mg/L, respectively, were applied. The plants treated with 25% or 50% compost + 30 mg/L AgNPs showed a high chlorophyll content, while the plants treated with 50% compost + AgNPs 30 mg/L or 20 mg/L showed the highest extract percentages. The highest inhibition zones (IZs), 2.43 and 2.2 cm, against the growth of D. solani were observed in the LMEs (4000 mg/L) extracted from the plants treated with compost (v/v) + AgNPs (mg/L) at the levels of 50% + 30 and 25% + 30, respectively. The highest IZs, 2.76 and 2.73 cm, against the growth of P. atrosepticum were observed in the LMEs (4000 mg/L) extracted from the plants treated at the levels of 50% + 30 and 25% + 30, respectively. Several phenolic compounds such as syringic acid, p-coumaric acid, chlorogenic acid, cinnamic acid, ellagic acid, caffeic acid, benzoic acid, gallic acid, ferulic acid, salicylic acid, pyrogallol, and catechol, as well as flavonoid compounds such as 7-hydroxyflavone, naringin, rutin, apigenin, quercetin, kaempferol, luteolin, hesperidin, catechin, and chrysoeriol, were identified in the LMEs as analyzed by HPLC with different concentrations according to the treatment of compost + AgNPs used for the plants. In conclusion, the specific criteria that were utilized to measure the growth of A. curassavica revealed the novelty of compost and AgNPs combination treatments, particularly at a concentration of 50% compost + AgNPs 30 mg/L or 20 mg/L, which is better for the growth and phytochemical production of A. curassavica in the field. Full article
Show Figures

Graphical abstract

15 pages, 2862 KiB  
Article
A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
by Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong and Karima F. Abdelgawad
Plants 2023, 12(10), 1978; https://doi.org/10.3390/plants12101978 - 15 May 2023
Cited by 4 | Viewed by 2145
Abstract
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop [...] Read more.
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist.In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer. Full article
Show Figures

Figure 1

24 pages, 2775 KiB  
Article
Seed Priming with the Selenium Nanoparticles Maintains the Redox Status in the Water Stressed Tomato Plants by Modulating the Antioxidant Defense Enzymes
by Muhammad Ishtiaq, Muhammad Waqas Mazhar, Mehwish Maqbool, Tanveer Hussain, Syed Atiq Hussain, Ryan Casini, Ahmed M. Abd-ElGawad and Hosam O. Elansary
Plants 2023, 12(7), 1556; https://doi.org/10.3390/plants12071556 - 04 Apr 2023
Cited by 6 | Viewed by 2107
Abstract
In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, [...] Read more.
In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands. Full article
Show Figures

Figure 1

23 pages, 51792 KiB  
Article
Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress
by Nzumbululo Ndou, Tessia Rakgotho, Mulisa Nkuna, Ibrahima Zan Doumbia, Takalani Mulaudzi and Rachel Fanelwa Ajayi
Plants 2023, 12(7), 1425; https://doi.org/10.3390/plants12071425 - 23 Mar 2023
Cited by 8 | Viewed by 3019
Abstract
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due [...] Read more.
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due to their environmental friendliness and affordability while serving as potential biofertilizers. This study investigates the role of hematite (αFe2O3) NPs, synthesized from Aspalathus linearis (rooibos), to improve Sorghum bicolor growth under drought stress. About 18 nm, spherical, and highly agglomerated hematite (αFe2O3) NPs were obtained. Sorghum seeds were primed with 5, 10, and 15 mg/L αFe2O3 NPs, and, after seven days of germination, the seedlings were transferred into potting soil, cultivated for fourteen days, and were subsequently water deprived (WD) for a further seven days. A reduction in plant height (78%), fresh (FW; 35%) and dry (DW; 36%) weights, and chlorophyll (chl) content ((total chl (81%), chla (135%), and chlb (1827%)) was observed in WD plants, and this correlated with low nutrients (Mg, Si, P, and K) and alteration in the anatomic structure (epidermis and vascular bundle tissues). Oxidative damage was observed as deep blue (O2●−) and brown (H2O2) spots on the leaves of WD plants, in addition to a 25% and 40% increase in oxidative stress markers (H2O2 and MDA) and osmolytes (proline and total soluble sugars), respectively. Seed priming with 10 mg/L αFe2O3 NPs improved plant height (70%), FW (56%), DW (34%), total Chl (104%), chla (160%) and chlb (1936%), anatomic structure, and nutrient distribution. Priming with 10 mg/L αFe2O3 NPs also protected sorghum plants from drought-induced oxidative damage by reducing ROS formation and osmolytes accumulation and prevented biomolecule degradation. The study concludes that green synthesized hematite NPs positively influenced sorghum growth and prevented oxidative damage of biomolecules by improving nutrient uptake and osmoregulation under drought stress. Full article
Show Figures

Figure 1

22 pages, 960 KiB  
Article
How Carbon Nanoparticles, Arbuscular Mycorrhiza, and Compost Mitigate Drought Stress in Maize Plant: A Growth and Biochemical Study
by Emad A. Alsherif, Omar Almaghrabi, Ahmed M. Elazzazy, Mohamed Abdel-Mawgoud, Gerrit T. S. Beemster, Renato Lustosa Sobrinho and Hamada AbdElgawad
Plants 2022, 11(23), 3324; https://doi.org/10.3390/plants11233324 - 01 Dec 2022
Cited by 2 | Viewed by 2299
Abstract
Drought negatively affects crop growth and development, so it is crucial to develop practical ways to reduce these consequences of water scarcity. The effect of the interactive potential of compost (Comp), mycorrhizal fungi (AMF), and carbon nanoparticles (CNPS) on plant growth, photosynthesis rate, [...] Read more.
Drought negatively affects crop growth and development, so it is crucial to develop practical ways to reduce these consequences of water scarcity. The effect of the interactive potential of compost (Comp), mycorrhizal fungi (AMF), and carbon nanoparticles (CNPS) on plant growth, photosynthesis rate, primary metabolism, and secondary metabolism was studied as a novel approach to mitigating drought stress in maize plants. Drought stress significantly reduced maize growth and photosynthesis and altered metabolism. Here, the combined treatments Com-AMF or Com-AMF-CNPs mitigated drought-induced reductions in fresh and dry weights. The treatments with AMF or CNPS significantly increased photosynthesis (by 10%) in comparison to the control plants. Results show that soluble sugars were accumulated to maintain the osmotic status of the maize plant under drought stress. The level and metabolism of sucrose, an osmo-protectant, were increased in plants treated with Com (by 30%), which was further increased under the triple effect of Com-AMF-CNPs (40%), compared to untreated plants. This was inconsistent with increased sucrose-phosphate synthase and sucrose-P-synthase activity. The combined treatment Com-AMF-CNPs increased the levels of oxalic and succinic acids (by 100%) and has been reflected in the enhanced levels of amino acids such as the antioxidant and omso-protectant proline. Higher increases in fatty acids by treatment with CNPS were also recorded. Com-AMF-CNPs enhanced many of the detected fatty acids such as myristic, palmitic, arachidic, docosanoic, and pentacosanoic (110%, 30%, 100%, and 130%, respectively), compared to untreated plants. At the secondary metabolism level, sugar and amino acids provide a route for polyamine biosynthesis, where Com-AMF-CNPs increased spermine and spermidine synthases, ornithine decarboxylase, and adenosyl methionine decarboxylase in treated maize. Overall, our research revealed for the first time how Cmo, AMF, and/or CNPS alleviated drought stress in maize plants. Full article
Show Figures

Figure 1

24 pages, 6579 KiB  
Article
Seed Priming with Carbon Nanomaterials Improves the Bioactive Compounds of Tomato Plants under Saline Stress
by Yolanda González-García, Elsy Rubisela López-Vargas, Marissa Pérez-Álvarez, Gregorio Cadenas-Pliego, Adalberto Benavides-Mendoza, Jesús Valdés-Reyna, Fabián Pérez-Labrada and Antonio Juárez-Maldonado
Plants 2022, 11(15), 1984; https://doi.org/10.3390/plants11151984 - 30 Jul 2022
Cited by 11 | Viewed by 2608
Abstract
The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity [...] Read more.
The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity of this crop. Recent studies have shown that seed priming can mitigate or alleviate the negative effects caused by this type of stress. However, the use of carbon nanomaterials (CNMs) in this technique has not been tested for this purpose. In the present study, the effects of tomato seed priming with carbon nanotubes (CNTs) and graphene (GP) (50, 250, and 500 mg L−1) and two controls (not sonicated and sonicated) were evaluated based on the content of photosynthetic pigments in the leaves; the physicochemical parameters of the fruits; and the presence of enzymatic and non-enzymatic antioxidant compounds, carotenoids, and stress biomarkers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves and fruits of tomato plants without saline stress and with saline stress (50 mM NaCl). The results show that saline stress in combination with CNTs and GP increased the content of chlorophylls (9.1–21.7%), ascorbic acid (19.5%), glutathione (≈13%), proteins (9.9–11.9%), and phenols (14.2%) on the leaves. The addition of CNTs and GP increased the activity of enzymes (CAT, APX, GPX, and PAL). Likewise, there was also a slight increase in the content of H2O2 (by 20.5%) and MDA (3.7%) in the leaves. Salinity affected the quality of tomato fruits. The physico-chemical parameters and bioactive compounds in both the stressed and non-stressed tomato plants were modified with the addition of CNTs and GP. Higher contents of total soluble solids (25.9%), phenols (up to 144.85%), flavonoids (up to 37.63%), ascorbic acid (≈28%), and lycopene (12.4–36.2%) were observed. The addition of carbon nanomaterials by seed priming in tomato plants subjected to saline stress modifies the content of bioactive compounds in tomato fruits and improves the antioxidant defense system, suggesting possible protection of the plant from the negative impacts of stress by salinity. However, analysis of the mechanism of action of CNMs through seed priming, in greater depth is suggested, perhaps with the use of omics sciences. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 1640 KiB  
Review
The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels
by Jameel Mohammed Al-Khayri, Ramakrishnan Rashmi, Rutwick Surya Ulhas, Wudali N. Sudheer, Akshatha Banadka, Praveen Nagella, Mohammed Ibrahim Aldaej, Adel Abdel-Sabour Rezk, Wael Fathi Shehata and Mustafa Ibrahim Almaghasla
Plants 2023, 12(2), 292; https://doi.org/10.3390/plants12020292 - 07 Jan 2023
Cited by 31 | Viewed by 5812
Abstract
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the [...] Read more.
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in improving the qualitative and quantitative aspects of crop production under various biotic and abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible and highlights the importance of the application of nanoparticles in combating abiotic stress, in addition to the major physiological, biochemical and molecular-induced changes that can help plants tolerate stress conditions. It also addresses the potential environmental and health impacts as a result of the extensive use of nanoparticles. Full article
Show Figures

Figure 1

Back to TopTop