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Abstract: The application of compost and metallic nanoparticles has a significant impact on the
productivity and chemical composition of horticulture plants. In two subsequent growing seasons,
2020 and 2021, the productivity of Asclepias curassavica L. plants treated with various concentrations
of silver nanoparticles (AgNPs) and compost was assessed. In the pot experiments, the soil was
amended with 25% or 50% compost, and the plants were sprayed with 10, 20, and 30 mg/L of AgNPs.
Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction
analysis (XRD), and dynamic light scattering (DLS) were used to characterize AgNPs. The TEM
measurements of AgNPs showed that the particles had spherical forms and ranged in size from
roughly 5 to 16 nm. Leaf methanol extracts (LMEs) were prepared from the treated plants and
assayed against the growth of two soft rot bacteria, Dickeya solani and Pectobacterium atrosepticum. The
maximum plant height, diameter, number of branches/plant, total fresh weight (g), total dry weight
(g), and leaf area (cm2) was recorded when levels of 25% compost + AgNPs 20 mg/L, 25% compost,
or 50% + AgNPs 20 mg/L, 25% compost + AgNPs 30 mg/L or 50% compost + AgNPs 20 mg/L,
50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 30 or 20 mg/L, and 25% compost + AgNPs
30 mg/L, respectively, were applied. The plants treated with 25% or 50% compost + 30 mg/L AgNPs
showed a high chlorophyll content, while the plants treated with 50% compost + AgNPs 30 mg/L or
20 mg/L showed the highest extract percentages. The highest inhibition zones (IZs), 2.43 and 2.2 cm,
against the growth of D. solani were observed in the LMEs (4000 mg/L) extracted from the plants
treated with compost (v/v) + AgNPs (mg/L) at the levels of 50% + 30 and 25% + 30, respectively.
The highest IZs, 2.76 and 2.73 cm, against the growth of P. atrosepticum were observed in the LMEs
(4000 mg/L) extracted from the plants treated at the levels of 50% + 30 and 25% + 30, respectively.
Several phenolic compounds such as syringic acid, p-coumaric acid, chlorogenic acid, cinnamic acid,
ellagic acid, caffeic acid, benzoic acid, gallic acid, ferulic acid, salicylic acid, pyrogallol, and catechol,
as well as flavonoid compounds such as 7-hydroxyflavone, naringin, rutin, apigenin, quercetin,
kaempferol, luteolin, hesperidin, catechin, and chrysoeriol, were identified in the LMEs as analyzed
by HPLC with different concentrations according to the treatment of compost + AgNPs used for the
plants. In conclusion, the specific criteria that were utilized to measure the growth of A. curassavica
revealed the novelty of compost and AgNPs combination treatments, particularly at a concentration
of 50% compost + AgNPs 30 mg/L or 20 mg/L, which is better for the growth and phytochemical
production of A. curassavica in the field.

Keywords: Asclepias curassavica; nanosilver; compost; methanolic extract; antibacterial activity;
phenolic; flavonoids
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1. Introduction

Asclepias curassavica L. (Tropical milkweed), “Silky Gold” (Golden Butterfly weed),
is an erect, evergreen subshrub belonging to the subfamily Asclepiadoideae, family
Apocynaceae [1]. A. curassavica can reach a height of 1 m. Plants in the Apocynaceae family
are generally the source of cardiac glycosides and have valuable therapeutic components.
The isolation of several glycosides, including cardiac glycosides, phenols, saponins, steroids,
tannins, terpenoids, and protein/amino acids, has been reported [2–4].

In South America, the plant’s root extracts are widely used as emetics and laxatives.
When used for abdominal tumors and hemorrhages, milkweed is anti-ovulatory, astringent,
and cardiotonic. The plant also contains a highly esterified polyhydroxypregnane glycoside
that has antitumor and anticancer characteristics. It is used to treat lung diseases, bruises,
wounds, skin ulcers, chronic cough, and headaches as well as diarrhea, dysentery, and
chronic rheumatism [2,5].

The application of nanotechnology could increase agricultural productivity by im-
proving the management of plant and animal production. The most researched and used
nanoparticles for biosystems are silver nanoparticles (AgNPs) [6]. Compared to bulk silver,
AgNPs have a high surface area and high antimicrobial activity [7]. Additionally, AgNPs’
antioxidant, antibacterial, antifungal, and antiviral activities play a part in agricultural crop
protection [8–11]. They have been linked to improved harvests and increased crop yield in
agriculture by regulating optimum nutrition for plants and promoting seed germination
and plant growth [12–16].

When Trigonella foenum-graecum seeds were exposed to AgNPs at a concentration
of 10 µg/mL, maximum seed germination, speed of germination, root length, root fresh
weight, and root dry weight were observed [17,18]. A foliar spray of AgNPs at a concentra-
tion of 50 ppm in cowpea caused growth promotion and increased root nodulation [19].
This concentration of AgNPs also has a positive effect on fresh weight, shoot and root
length, and the strength index of Brassica juncea seedlings [18].

Compost is commonly used as a soil amendment in horticultural and agricultural prac-
tices, and its effects on soil quality and plant growth include improved nutrient availability
and uptake, increased competitiveness, decreased weed emergence, and reduced levels of
heavy metals that are available to plants [20–23]. Compost is typically used as an efficient
way to change soil properties, particularly to increase water-holding capacity and soil
organic matter, improve soil structure, and increase infiltration and permeability [24–28].

Essential oils and natural extracts derived from plants have been used to control the
growth of bacterial pathogens in potatoes (Solanum tuberosum L.) [11,29]. Pectobacterium and
Dickeya cause soft rot diseases in potatoes and other horticultural crops [30]. Pectobacterium
and Dickeya solani cause soft rot in tubers and top wilt in growing potato plants. As the
soft rot spreads from the infected tuber to the plant through the vascular system, the wilt
may occur quickly. Wilting may occur in some varieties even when there is no visible
blackleg. A lower inoculum level as an infection threshold is thought to make D. solani
more powerful than the Pectobacterium species [31,32]. The milkweed plant secretes thick,
white, or milky latex that is rich in bioactive phytochemicals such as flavonoids, glyco-
sides, simple phenols, tannins, and other substances [33]. The ethanolic extracts from
A. curassavica produced the maximum mortality of the colonies within 7 days against the
leaf-cutting ant Atta sexdens rubropilosa among extracts from A. curassavica, Rosmarinus
officinalis, and Equisetum spp. [34]. As determined by DPPH, nitric oxide, and superoxide
anion radicals, the hydroalcoholic extract of the aerial component of A. curassavica exhibited
scavenging antioxidant activities [35]. Trichomonas vaginalis was resistant to the ethanol
extract from the aerial parts of A. curassavica; however, it was effective against pain [36].
Using GC-MS, glycerol-3TMS ether, myristamide, L-(−)-arabitol, pentakis(3TMS) ether,
D-(-)-fructopyranose, pentakis(3TMS), β-D-glucopyranose, TMS, myoinositol-TMS, glu-
cosamine per-TMS, oleamide, N-3TMS, aucubin, hexakis(3TMS) ether, D-(+)-turanose, oc-
takis(3TMS) ether, and sucrose, octakis(3TMS) ether was identified in the silylated alcoholic
extract of A. curassavica leaves [37]. Cardenolides, which were isolated from A. curassavica,
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and their derivatives covenosigenin, glucopyranoside, and acospectoside play a significant
role as termite antifeedants [38,39]. The extract included total polyphenols and flavonoids
presenting 58.75 µg/mL and 150.1 µg/mL, respectively, and showed promise in the control
of Spodoptera frugiperda J.E.Smith [40].

To the best of our knowledge, the Asclepias curassavica plant has not received much
attention from researchers despite the fact that it has a variety of purposes in both orna-
mental gardening and medical bioactivity. AgNPs and compost are being applied to this
plant for the first time.

Therefore, the aim of this experiment was to investigate the effect of compost and
silver nanoparticles at various concentrations on Asclepias curassavica growth, and the
phytochemical as well as biological activity of these substances against Dickeya solani and
Pectobacterium atrosepticum, two bacteria that cause soft rot.

2. Results
2.1. UV-Vis and X-ray Diffraction (XRD) Analyses

The UV-Vis absorption spectra of the produced AgNPs were examined between
200 and 1000 nm (Figure 1A). The majority of AgNPs contain a surface plasmon resonance
(SPR) band between 420 and 550 nm [41–43], which is caused by the excitation of free
electrons. AgNPs were found to have an SPR value of 446 nm, which is consistent with
results from several other studies [44–46].
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Figure 1. UV-VIS spectral analysis (A); X-ray diffraction (XRD) spectrum (B) of synthesized AgNPs.

The crystal structure and phase of nanoparticles, including AgNPs, are typically
examined using XRD [47]. Figure 1B shows the XRD pattern of the synthesized AgNPs.
The primary peaks, which correspond to the 111, 200, 220, and 311 planes, are located at
(2θ) 37.51◦, 42.81◦, 66.44◦, and 79.29◦, respectively. These peaks confirm the formation
of AgNPs.

The results are in agreement and demonstrate that most AgNPs have a face-centered
cubic material (fcc) structure and are consistent with JCPDS card number 89 3722 [48]. The
XRD properties are detailed in Table 1. Information collected from XRD measurements,
including the prominent peak, the d-spacing, and the predicted 2θ value for AgNPs, are
presented in Table 2. The findings, taken as a whole, provide evidence that the naturally
occurring structure of the synthesized AgNPs is crystalline.
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Table 1. The X-ray parameters of AgNPs.

Diffraction Angles
(2θ) Degree I/Io d (Å) (h k l) Type Structure Full Width at Half

Maximum (FWHM) D (nm)

37.51◦ 100 2.449 (111) Ag Fcc* 0.24020◦ 0.3911
42.81◦ 52 2.03 (200) Ag fcc 0.34080◦ 21.777
66.44◦ 39 1.488 (220) Ag fcc 0.32722◦ 28.910
79.29◦ 17 1.255 (311) Ag fcc 0.29033◦ 27.230

* fcc: face-centered cubic material.

Table 2. XRD three characteristic peaks calculated, d-spacing, and the expected 2θ positions.

2θ Measured d-Spacing Corresponding Value Expected 2θ Positions

37.51◦ 0.2355 36.35◦

42.81◦ 0.1972 41.44◦

66.44◦ 0.1412 62.70◦

79.29◦ 0.1205 72.72◦

2.2. Particle Size Distribution and Morphological Characterization of the Synthesized AgNPs

A common technique for determining how the sizes of particles are dispersed in
a colloidal fluid is dynamic light scattering (DLS) [49]. The DLS analysis in the current
study revealed that the particle size distribution of the biosynthesized AgNPs in the
aqueous medium was broad; however, there was a single peak distribution corresponding
to the average particle size, which was found to be 57.3 nm at 11.1◦ (Figure 2). AgNPs had
an average diameter of 87.6 nm at 90.0◦.
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Figure 2. Particle size distribution using dynamic light scattering technique of the synthesized AgNPs.

One of the most effective methods for determining the appearance of the sur-
face is scanning electron microscopy (SEM), which allows us to directly observe the
nanoparticles [50]. The SEM investigation revealed that the powders with a lower degree
of miscibility are composed of spherical-appearing pure AgNPs (Figure 3A). The SEM
images demonstrated how the AgNPs combined to form lager particles. This effect could
be explained by the existence of free static charges on the surface of the AgNPs [47,51].

According to the TEM findings, spherical AgNPs with a size range of roughly 5 to
16 nm were formed (Figure 3B). The particle size distribution graph using TEM analysis is
presented in Figure 3C. The majority of the AgNPs were found to be spread out, and only
a few were found to be clumped together in groups of different sizes. The difference in
size between the DLS and TEM methods is acceptable because, unlike in TEM [52,53], the
diameter of the particles in DLS is determined with a layer of solvent in the scattered phase.
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2.3. FTIR Analysis

As illustrated in Figure 4, the FTIR spectrum reveals numerous functional groups
in various locations. The peaks in the 3443 cm−1 and 2924 cm−1 were attributed to the
aldehyde-C-H- and O-H-stretching of alcohol compounds [54,55]. The existence of C=O
groups (aldehydes and ketones) in the produced AgNPs was confirmed by the peak at
2362 cm−1 [40]. Furthermore, the peak found at 1633 cm−1 demonstrated the carbonyl
group’s (C=O) stretching vibration and the amine group’s N-H bending [55]. The spectral
bands observed at the 1107 and 1049 wavenumbers were assigned to the stretching vibra-
tions of the C-O bond, as reported in previous studies [56,57]. Furthermore, it is plausible
that the peak observed at 595 cm−1 may be attributed to the stretching of C-N bonds in
amine functional groups, as suggested by previous research [58]. This investigation demon-
strates the contradictory behavior of molecules that may be involved in the stabilization
and reduction of silver nanoparticles [59].
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2.4. Effect of Compost and AgNPs on Vegetative Growth of A. curassavica

According to the findings in Table 3, compost and AgNPs have a positive impact
on the vegetative parameters of A. curassavica plants including plant height (cm), plant
diameter (cm), branch number/plant, leaf fresh weight (g), leaf dry weight (g), and leaf
area (cm2), which gradually increased as the concentration increased in comparison to
untreated plants. In contrast, the higher plant height was obtained by treating plants with
50% compost + AgNPs 20 mg/L (58.05 cm) in the first season and 25% compost + AgNPs
20 mg/L in the second season (61.66 cm), while the lower plant height was obtained by
treating plants with 0% compost + 10 mg/L AgNPs in both seasons (36.61 and 41.89 cm,
respectively). In the first and second seasons, respectively, the application of the 50% com-
post + AgNPs 20 and 50% compost +30 mg/L treatments revealed the highest diameter
values of A. curassavica plants with 43.69 cm and 45 cm, respectively.

Table 3. Vegetative parameters of A. curassavica plants as affected by the treatments of compost and
AgNPs in two seasons.

Treatment Height (cm) Diameter (cm) No. Branches/Plant Leaf Area (cm2) Total F.W. (g) Total D.W. (g)

Compost
v/v

AgNPs
mg/L

1st
(ns)

2nd
(ns) 1st 2nd

(ns)
1st
(ns) 2nd 1st

(ns) 2nd 1st 2nd 1st
(ns) 2nd

0

0 37.83 ±
2.08

43 ±
3.46

37.16 ±
3.05 f

38.83 ±
3.05

3.36 ±
0.41

3.63 ±
0.70 g

7.26 ±
1.11

8.45 ±
0.40 h

37.37 ±
2.59f

39.20 ±
1.89 f

12.27 ±
1.58

13.31 ±
1.10 fg

10 36.61 ±
2.79

41.89±
2.41

37.75 ±
2.17 def

39 ±
2.64

4.43 ±
1.02

4.43 ±
1.02 g

8.63 ±
2.10

9.35 ±
1.01 gh

40.21 ±
2.75 f

39.33 ±
1.42 f

12.98 ±
1.90

12.63 ±
1.30 g

20 39.66 ±
2.08

45.16 ±
1.45

39.91 ±
0.28 cd

42 ±
3.60 5 ± 1.2 6.21 ±

2.0 f
10.32 ±

2.76
9.69 ±
1.74 fgh

44.59 ±
2.19 e

44.33 ±
3.54 e

14.04 ±
0.77

14.01 ±
1.11 fg

30 42.72 ±
4.98

46.55 ±
2.14

42.58 ±
2.92 ab

41.33±
3.21 6.3 ± 0.6 8.2 ±

1.70 bcd
11.02 ±

2.10
10.54 ±
1.46 efg

46.83
± 2.6 de

48.2 ±
4.50 d

15.68 ±
1.42

14.53 ±
1.51 ef

25%

0 48.33 ±
5.85

49.66 ±
6.35

37.58 ±
1.25 ef

42.92 ±
3.81

6.33 ±
2.51

7.66 ±
2.88 cde

9.21 ±
2.26

11.09 ±
1.74 def

50.71 ±
1.72 cd

50.16 ±
1.95 cd

16.79 ±
0.66

15.84 ±
3.13 df

10 48.16 ±
5.50

51.33 ±
12.89

36.66 ±
3.81 f

40.83 ±
2.88

6.83 ±
3.51

6.66 ±
1.15 ef

13.51 ±
1.77

13.42 ±
0.98 b

53.043 ±
9.92 c

54.99 ±
2.34 b

16.51 ±
2.52

17.31 ±
1.081 cd

20 55 ±
7.93

61.66 ±
13.77

40.83 ±
3.81 bc

44.61 ±
7.89

6.55 ±
2.14

8.55 ±
1.53 abc

15.12 ±
2.14

13.36 ±
2.05 bc

52.189 ±
3.74 c

56.55 ±
3.03 b

17.38 ±
1.32

18.90 ±
0.47 bc

30 52 ±
2

60.44 ±
7.72

40 ±
1 cd

44.61 ±
2.27

9.44 ±
1.01

9.22 ±
0.77 ab

16.21 ±
2.45

16.21 ±
3.38 a

58.45 ±
8.44 b

61.63 ±
3.32 a

19.21 ±
1.52

20.03 ±
0.38 b

50%

0 48.55 ±
3.35

58.16 ±
3.51

39.776 ±
1.83 cde

42.44 ±
50

6.78 ±
0.38

7.05 ±
2.83 def

10.59 ±
0.30

11.92 ±
1.78 cde

50.09 ±
7.34 cd

51.41 ±
1.76 c

15.90 ±
1.36

19.03 ±
1.11 b

10 54.16 ±
4.72

55.16 ±
6.02

40.41 ±
1.44 bc

42.92 ±
6.29

5.55 ±
1.01

6.33 ±
2.30 f

11.44 ±
2.28

12.22 ±
1.25 bcd

59.97 ±
7.56 ab

55.31 ±
2.89 b

17.79 ±
2.08

19.09 ±
1.15 b

20 58.05 ±
18.58

59.44 ±
2.34

43.69 ±
4.79 a

42.36 ±
4.10

9.16 ±
4.16

9.66 ±
2.08 a

13.03 ±
0.96

13.61 ±
1.61 b

62.73 ±
5.88 a

62.82 ±
4.53 a

19.43 ±
1.44

22.91 ±
2.57 a

30 53.55 ±
1.38

59.77 ±
13.08

40.52 ±
1.29 bc

45 ±
5.56

8.83 ±
2.08 9 ± 1 ab 14.40 ±

2.81
13.66 ±
1.19 b

59.33 ±
5.67 ab

63.67 ±
5.70 a

19.51 ±
2.13

24.10 ±
2.69 a

Values are means ± 2SD. The means with the same letter/s within the same column have no significant difference
according to LSD0.05. ns: Not significant.

The plants that were treated with 25% compost + AgNPs 30 mg/L in the first season
and 50% compost + AgNPs 20 mg/L in the second season produced the highest number
of branches/plant. The highest total fresh weight (g) was produced by the application of
50% compost + AgNPs 20 mg/L (62.73 g) followed by 50% compost + AgNPs 10 mg/L
(59.97 g) in the first season, and 50% compost + AgNPs 30 mg/L (63.67 g) followed by
50% compost + AgNPs 20 mg/L (62.81 g) in the second season.

In both seasons, 50% compost + AgNPs 30 or 20 mg/L produced the greatest results
for the total dry weight (g). In the first season, this result was 19.51 and 19.43 g, respectively,
but in the second season, it was 24.10 and 22.91 g. Additionally, 25% compost + AgNPs
30 mg/L (16.2 and 16.2 cm2) had the greatest impact on leaf area (cm2) compared to the
control (7.26 and 8.45 cm2) for both seasons.

2.5. Effect of AgNPs on Biochemical Constituent of A. curassavica

Results in Table 4 show that the compost and AgNPs significantly affected the chemical
components of A. curassavica plants, including chlorophyll content (measured in SPAD
units) and leaf methanol extract (LME%) (Table 4). The plants treated with 25% or 50%
compost + 30 mg/L AgNPs had the best results for chlorophyll content, with values of
62.64 and 62.44 SPAD unit, respectively; however, there was no significant difference in the
second season. The treated plants with 50% compost + AgNPs 20 mg/L for the first season
and 50% compost + AgNPs 30 mg/L for the second season had the greatest percentages of
LMEs (8.31% for the first season and 8.34% for the second season).
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Table 4. Effect of compost and AgNP treatments on the biochemical components of A. curassavica
plants throughout two seasons.

Treatment Chlorophyll (SPAD Unit) Extract Yield (%)
Compost (v/v) AgNPs (mg/L) 1st (ns) 2nd 1st 2nd (ns)

0 0 41.1 ± 2.02 44.04 ± 3.18 e 5.55 ± 0.56 cdef 4.82 ± 0.92
0 10 40.68 ± 3.16 43.76 ± 1.83 e 4.84 ± 1.01 ef 5.15 ± 1.39
0 20 45.40 ± 3.25 45.72 ± 3.69 de 5.80 ± 0.58 cde 5.25 ± 0.70
0 30 48.96 ± 1.80 47.05 ± 1.17 de 6.62 ± 0.64 bc 5.92 ± 0.25

25% 0 48.24 ± 2.97 46.37 ± 7 de 5.45 ± 1.35 def 5.13 ± 1.62
25% 10 54.92 ± 6.28 53.03 ± 12.08 bc 5.94 ± 1.67 cde 5.87 ± 0.69
25% 20 61.83 ± 6.65 60.89 ± 15.03 a 6.50 ± 1.97 bcd 6.58 ± 1.79
25% 30 62.64± 8.01 58.81 ± 7.09 a 8.03 ± 2.18 a 6.96 ± 1.05
50% 0 43.73 ± 8.04 46.44 ± 7.09 de 4.55 ± 1.39 f 5.75 ± 0.78
50% 10 49.50 ± 9.09 48.55 ± 13.41 cd 7.25 ± 2.03 ab 6.11 ± 1.83
50% 20 55.09 ± 6.86 57.02 ± 6.21 ab 8.31 ± 1.16 a 7.93 ± 0.70
50% 30 62.44 ± 8.81 53.70 ± 9.37 b 7.96 ± 0.37 a 8.34 ± 0.99

Values are means ± 2SD. This indicates that, according to LSD0.05, there are no significant differences for the
same letter or letters inside the same column. ns: At a 0.05 level of probability, not significant. ns: Not significant.

2.6. Antibacterial Activity of A. curassavica Methanolic Leaf Extracts

The leaf methanolic extracts (LMEs) from A. curassavica plants treated with various
levels of compost (v/v) + AgNPs (mg/L) are listed in Table 5 for their antibacterial activities.
All of the LME concentrations utilized had a noticeable impact on the growth of Dickeya
solani and Pectobacterium atrosepticum. By gradually raising the LME concentration, the
inhibition zones (IZs cm) against the development of both bacteria were raised.

Table 5. Inhibition zones of the methanol extracts from plants treated with compost (v/v) + AgNPs
(mg/L) treatments.

Treatment
Inhibition Zones against Dickeya solani Growth (cm)

Methanol Extract Concentration (mg/L)

Compost (v/v) + AgNPs
(mg/L) Control 4000 2000 1000 500

0+ 0 0 1.23 ± 0.11 1.16 ± 0.11 1.06 ± 0.11 0.9 ± 0
0 + 10 0 1.16 ± 0.11 1.06 ± 0.30 1.03 ± 0.30 0.86 ± 0.11
0 + 20 0 1.26 ± 0.11 1.2 ± 0 1.13 ± 0.11 0.96 ± 0.23
0 + 30 0 1.43 ± 0.11 1.2 ± 0.2 1 ± 0.2 0.8 ± 0

25% ± 0 0 1.1 ± 0 1.1 ± 0 1 ± 0 0.93 ± 0.81
25% ± 10 0 1.2 ± 0 1.133 ± 0.11 1.133 ± 0.11 1.1 ± 0
25% ± 20 0 1.53 ± 0.11 1.33 ± 0.11 1.2 ± 0 1.1 ± 0.2
25% ± 30 0 2.2 ± 0.2 1.8 ± 0.2 1.33 ± 0.11 1.2 ± 0.2
50% ± 0 0 1.3 ± 0 1.2 ± 0 1.2 ± 0 1.2 ± 0
50% ± 10 0 1.56 ± 0.11 1.43 ± 0.11 1.3 ± 0 1.16 ± 0.11
50% ± 20 0 2.13 ± 0.23 1.8 ± 0.2 1.5 ± 0 1.3 ± 0.2
50% ± 30 0 2.43 ± 0.11 2.03 ± 0.11 1.63 ± 0.30 1.36 ± 0.11

Gentamicin 20 mg/disc 3

LSD 0.05 0.103

Treatment Inhibition zones against Pectobacterium atrosepticum growth (cm)

0 0 1.6 ± 0.2 1.56 ± 0.11 1.23 ± 0.11 0.93 ± 0.11
0 + 10 0 1.26 ± 0.11 1.16 ± 0.11 1.1 ± 0.2 0.9 ± 0
0 + 20 0 1.36 ± 0.23 1.46 ± 0.30 1.26 ± 0.41 0.83 ± 0.11
0 + 30 0 1.63 ± 0.30 1.53 ± 0.11 1.16 ± 0.11 0.8 ± 0

25% ± 0 0 1.46 ± 0.11 1.26 ± 0.11 1.13 ± 0.11 1 ± 0
25% ± 10 0 1.66 ± 0.11 1.36 ± 0.11 1.2 ± 0 1.13 ± 0.11
25% ± 20 0 1.86 ± 0.11 1.63 ± 0.11 1.46 ± 0.11 1.36 ± 0.11
25% ± 30 0 2.73 ± 0.11 2.03 ± 0.11 1.7 ± 0.4 1.3 ± 0.4
50% ± 0 0 1.4 ± 0.2 1.3 ± 0 1.3 ± 0.2 1.2 ± 0.2

50% ± 10 0 1.76 ± 0.30 1.63 ± 0.30 1.46 ± 0.11 1.2 ± 0.2
50% ± 20 0 2.46 ± 0.11 2.16 ± 0.30 1.7 ± 0.2 1.36 ± 0.11
50% ± 30 0 2.76 ± 0.11 2.2 ± 0.2 1.96 ± 0.11 1.43 ± 0.11

Gentamicin 20 mg/disc 3.5

LSD 0.05 0.137
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The LMEs at the concentrations of 4000, 4000, 4000, and 2000 mg/L, respectively, from
the plants treated with compost (v/v) + AgNPs (mg/L) at the levels of 50% + 30, 25% + 30,
50% + 20, and 50% + 30, respectively, were found to have the highest IZs of 2.43, 2.2, 2.13,
and 2.03 cm, reported against the growth of D. solani.

The LMEs at the concentration of 4000 mg/L of plants treated with compost (v/v) + AgNPs
(mg/L) at the levels of 50% + 30, 25% + 30, and 50% + 20, respectively, showed the highest IZs
of 2.76, 2.73, and 2.46 cm against the growth of P. atrosepticum. These values were followed
by the IZ values of 2.2, 2.16, and 2.03 cm from the LMEs of plants treated with compost
(v/v) + AgNPs (mg/L) at the levels of 50% + 30, 50% + 20, and 25% + 30, respectively.

Additionally, the impact of the LMEs was significantly affected by the treatments of
A. curassavica plants with compost + AgNPs at various doses because bacterial growth was
inhibited. Plants treated with 25% or 50% compost + AgNPs 30 mg/L showed the greatest
antibacterial activity of LMEs.

The determined minimum inhibitory concentrations (MICs) of the LMEs (Table 6)
ranged from 15 to 250 mg/L for the development of D. solani in comparison to 30 mg/L
(control Gentamicin), and from 30 to 250 mg/L in comparison to 35 mg/L (control Gentam-
icin) for the growth of P. atrosepticum. The MIC values against the development of D. solani
in the LME of plants treated with amounts of compost (v/v) + AgNPs (mg/L) of 50% + 30
and 50% + 20, respectively, were 15 and 30 mg/L.

Table 6. The MIC (mg/L) measured against the growth of D. solani and P. atrosepticum.

Treatments MIC (mg/L)

Compost (v/v) + AgNPs (mg/L) D. solani P. atrosepticum

0 + 0 250 500
0 + 10 250 250
0 + 20 250 500
0 + 30 500 500

25% + 0 250 250
25% + 10 125 125
25% + 20 60 125
25% + 30 60 30
50% + 0 250 250
50% + 10 125 125
50% + 20 30 60
50% + 30 15 30

Gentamicin 20 mg/disc 30 35

The LME of plants treated with amounts of compost (v/v) + AgNPs (mg/L) of
25% + 30 and 50% + 30 had the best MIC value against P. atrosepticum growth, which
was 30 mg/L. The most effective concentration of LME on the growth of bacteria was
obtained by treating plants with 25% or 50% compost + AgNPs 30 mg/L.

2.7. Phenolic Compounds in Leaf Extracts

The phenolic compounds (PCs) found in the LMEs of A. curassavica by the HPLC
analysis are listed in Table 7 and their chromatographic analysis is shown in Figure 5. In the
control treatment, benzoic acid (15.08 µg/g), salicylic acid (14.68 µg/g), catechol (8.12 µg/g),
and cinnamic acid (6.89 µg/g) were the PCs with the highest abundance in the LME. The
primary PCs in the LME from the plants treated with 0% compost + 10 mg/L AgNPs were
ellagic acid (12.62 µg/g), syringic acid (11.22 µg/g), and pyrogallol (6.78 µg/g).
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Table 7. Phenolic compounds identified in the leaf methanol extracts from Asclepias curassavica
by HPLC.

Compound
Concentration (µg/g of Methanol Leaf Extract)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Chlorogenic acid ND ND ND ND ND ND 3.01 ND ND ND 2.03 ND
Catechol 8.12 ND ND ND 8.22 ND ND ND ND ND ND 8.36

Syringic acid ND 11.22 4.58 5.22 3.56 14.32 2.10 6.13 13.22 12.31 3.56 ND
p-Coumaric acid ND 2.36 10.45 3.05 ND 10.45 ND 6.77 ND 9.14 11.42 4.22

Cinnamic acid 6.89 ND ND ND 7.14 ND 3.23 5.98 ND 7.24 ND 4.08
Caffeic acid 2.76 ND 8.15 ND 2.78 2.38 4.24 ND 12.74 ND 1.89 ND
Pyrogallol ND 6.78 ND 9.12 ND ND ND 10.23 4.12 11.87 ND 2.49
Gallic acid 3.10 2.14 ND 0.75 3.11 ND 10.33 9.44 ND ND 3.15 ND
Ferulic acid ND 3.04 3.66 4.31 ND 6.32 9.87 3.12 5.32 16.74 ND ND

Salicylic acid 14.68 ND ND ND 15.36 6.52 ND ND ND ND ND 11.98
Ellagic acid ND 12.62 8.69 15.39 ND 5.13 ND ND 3.10 ND ND ND
Benzoic acid 15.08 ND ND ND 2.41 ND ND ND ND ND ND ND

ND: not detected; T0: 100% nursery soil; T1: 0% Compost + 10 mg/L AgNPs; T2: 0% Compost + 20 mg/L
AgNPs; T3: 0% Compost + 30 mg/L AgNPs; T4: 25% Compost + 0 mg/L AgNPs; T5: 25% Compost + 10 mg/L
AgNPs; T6: 25% Compost + 20 mg/L AgNPs; T7: 25% Compost + 30 mg/L AgNPs; T8: 50% Compost + 0 mg/L
AgNPs; T9: 50% Compost + 10 mg/L AgNPs; T10: 50% Compost + 20 mg/L AgNPs; T11: 50% Compost +
30 mg/L AgNPs.
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The most prevalent PCs in the LME of plants treated with 0% compost + 20 mg/L Ag-
NPs were p-coumaric acid (10.45 µg/g), ellagic acid (8.69 µg/g), and caffeic acid (8.15 µg/g).
The two compounds with the highest PC concentrations found in the LME from the plants
treated with 0% compost + 30 mg/L AgNPs were ellagic acid (15.39 µg/g) and pyrogallol
(9.12 µg/g).

Plants treated with 25% compost + 0 mg/L AgNPs showed the presence of salicylic
acid (15.36 µg/g), catechol (8.22 µg/g), and cinnamic acid (7.14 µg/g) as the primary PCs
in the LME. Syringic acid (14.32 µg/g) and p-coumaric acid (10.45 µg/g) were found to
be the main PCs in the LME in the plants treated with 25% compost + 10 mg/L AgNPs,
whereas gallic acid (10.33 µg/g) and ferulic acid (9.87 µg/g) were the predominant PCs in
plants treated with 25% compost + 20 mg/L AgNPs.

Pyrogallol (10.23 µg/g) and gallic acid (9.44 µg/g) were found to be the primary PCs
in plants treated with 25% compost + 30 mg/L AgNPs. In plants treated with 50% compost
+ 0 mg/L AgNPs, syringic acid (13.22 µg/g) and caffeic acid (12.74 µg/g) were the two PCs
that were most prevalent.

The four PCs with the highest concentrations were ferulic acid (16.74 g/g), syringic
acid (12.31 g/g), pyrogallol (11.87 g/g), and p-coumaric acid (9.14 g/g) in the LME of
plants treated with 50% compost + 10 mg/L AgNPs. The most prevalent PC in LME from
the plants treated with 0% compost + 20 mg/L AgNPs was p-coumaric acid (11.42 g/g).
Salicylic acid (11.98 g/g) and catechol (8.36 g/g) were present in the LME of the plants
treated with 50% compost + 30 mg/L AgNPs as the major PCs.

2.8. Flavonoid Compounds in Leaf Extracts

The flavonoid compounds (VCs) identified by HPLC analysis in LME of A. curassavica
are shown in Table 8 and Figure 6. Hesperidin (12.45 µg/g), luteolin (9.58 µg/g), quercetin
(8.25 µg/g), and chrysoeriol (7.89 µg/g) were the most prevalent VCs in the LME in the
control treatment. The highest concentrations of VCs found in the LME of plants treated
with 0% compost + 10 mg/L AgNPs were hesperidin (6.71) and luteolin (6.65 µg/g).

Hesperidin (11.23 µg/g) and rutin (3.02 µg/g) were the two most prevalent VCs
found in the LME of plants treated with 0% compost + 20 mg/L AgNPs. The two most
prevalent VCs in the LME of plants treated with 0% compost + 30 mg/L AgNPs were
kaempferol (9.63 µg/g) and rutin (6.11 µg/g). The primary VCs present in the LME
of plants treated with 25% compost + 0 mg/L AgNPs were quercetin (10.22 µg/g) and
chrysoeriol (8.63 µg/g).
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Table 8. Flavonoid compounds identified in the leaf methanol extracts from Asclepias curassavica
by HPLC.

Compound
Concentration (µg/g of Methanol Leaf Extract)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

7-Hydroxyflavone 7.76 ND ND ND 3.55 7.88 0.35 ND 3.11 0.23 ND 2.33
Naringin 2.12 4.01 ND ND 2.14 ND 11.82 3.52 ND 6.84 ND ND

Rutin ND 2.11 3.02 6.11 1.89 ND ND 2.49 5.47 3.40 5.16 10.54
Apigenin ND ND ND ND ND 0.56 3.60 ND ND 2.63 ND ND
Quercetin 8.25 4.40 1.98 5.10 10.22 14.23 ND 4.77 4.63 1.55 14.56 6.42

Kaempferol 1.65 3.89 ND 9.63 1.46 4.27 8.41 7.08 18.84 ND ND 1.44
Luteolin 9.58 6.65 ND ND 4.06 3.99 ND 6.65 1.45 10.73 4.83 ND

Hesperidin 12.45 6.71 11.23 1.07 2.33 11.26 4.73 4.31 12.79 ND 5.23 11.06
Catechin 3.18 ND 1.53 ND 3.07 5.74 17.58 5.00 1.22 ND ND ND

Chrysoeriol 7.89 ND ND ND 8.63 ND 0.28 ND 0.87 0.95 ND ND

ND: not detected; for the legends of T0–T11, see Table 7.

In plants treated with 25% compost + 10 mg/L AgNPs, the primary VCs in the LME
were found to be quercetin (14.23 µg/g), hesperidin (11.26 µg/g), and 7-hydroxyflavone
(7.88 µg/g). In the LME of plants treated with 25% compost + 20 mg/L AgNPs, the three
largest VCs were catechin (17.58 µg/g), naringin (11.82 µg/g), and kaempferol (8.41 µg/g).

The primary VCs in the LME of plants treated with 25% compost + 30 mg/L AgNPs
were kaempferol (7.08 µg/g), luteolin (6.65 µg/g), and catechin (5.00 µg/g). The two
compounds with the highest concentrations of VCs in the LME of plants treated with 50%
compost + 0 mg/L AgNPs were kaempferol (18.84 µg/g) and hesperidin (12.79 µg/g). The
two VCs with the highest concentrations in the LME of plants treated with 50% compost +
10 mg/L AgNPs were luteolin (10.73 µg/g) and naringin (6.84 µg/g). The most abundant
VC in the LME of plants treated with 50% compost + 20 mg/L AgNPs was quercetin (14.56
µg/g). Hesperidin (11.06 µg/g), rutin (10.54 µg/g), and quercetin (6.42 µg/g) were the
most abundant VCs in the LME of plants treated with 50% compost + 30 mg/L AgNPs.

Plants 2023, 12, x FOR PEER REVIEW 12 of 24 
 

 

Plants treated with 25% compost + 0 mg/L AgNPs showed the presence of salicylic 
acid (15.36 µg/g), catechol (8.22 µg/g), and cinnamic acid (7.14 µg/g) as the primary PCs 
in the LME. Syringic acid (14.32 µg/g) and p-coumaric acid (10.45 µg/g) were found to be 
the main PCs in the LME in the plants treated with 25% compost + 10 mg/L AgNPs, 
whereas gallic acid (10.33 µg/g) and ferulic acid (9.87 µg/g) were the predominant PCs in 
plants treated with 25% compost + 20 mg/L AgNPs. 

Pyrogallol (10.23 µg/g) and gallic acid (9.44 µg/g) were found to be the primary PCs 
in plants treated with 25% compost + 30 mg/L AgNPs. In plants treated with 50% compost 
+ 0 mg/L AgNPs, syringic acid (13.22 µg/g) and caffeic acid (12.74 µg/g) were the two PCs 
that were most prevalent. 

The four PCs with the highest concentrations were ferulic acid (16.74 g/g), syringic 
acid (12.31 g/g), pyrogallol (11.87 g/g), and p-coumaric acid (9.14 g/g) in the LME of plants 
treated with 50% compost + 10 mg/L AgNPs. The most prevalent PC in LME from the 
plants treated with 0% compost + 20 mg/L AgNPs was p-coumaric acid (11.42 g/g). Sali-
cylic acid (11.98 g/g) and catechol (8.36 g/g) were present in the LME of the plants treated 
with 50% compost + 30 mg/L AgNPs as the major PCs. 

2.8. Flavonoid Compounds in Leaf Extracts 
The flavonoid compounds (VCs) identified by HPLC analysis in LME of A. curassa-

vica are shown in Table 8 and Figure 6. Hesperidin (12.45 µg/g), luteolin (9.58 µg/g), quer-
cetin (8.25 µg/g), and chrysoeriol (7.89 µg/g) were the most prevalent VCs in the LME in 
the control treatment. The highest concentrations of VCs found in the LME of plants 
treated with 0% compost + 10 mg/L AgNPs were hesperidin (6.71) and luteolin (6.65 µg/g). 

  

  

Figure 6. Cont.



Plants 2023, 12, 2274 12 of 22
Plants 2023, 12, x FOR PEER REVIEW 13 of 24 
 

 

  

  

  

  

Figure 6. HPLC chromatograms of the identified flavonoid compounds in leaf methanol extracts 
from Asclepias curassavica. For the legends of T0–T11, see Table 7. 

Table 8. Flavonoid compounds identified in the leaf methanol extracts from Asclepias curassavica by 
HPLC. 

Compound 
Concentration (µg/g of Methanol Leaf Extract) 

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 
7-Hy-

droxyfla-
vone 

7.76 ND ND ND 3.55 7.88 0.35 ND 3.11 0.23 ND 2.33 

Figure 6. HPLC chromatograms of the identified flavonoid compounds in leaf methanol extracts
from Asclepias curassavica. For the legends of T0–T11, see Table 7.

3. Discussion

The Asclepias curassavica L. plants (Asclepiadaceae family) or Apocynaceae family
were treated with compost and silver nanoparticles (AgNPs), and the results indicated
some positive effects on the vegetative growth parameters (plant height, plant diameter,
number of branches/plant, leaf area, total fresh weight, total dry weight), total chlorophyll
(SPAD unit), and the percentage of leaf methanol extracts (LMEs) in both successive seasons.
The LMEs taken from the plants treated with the investigated treatments also contained
a number of phenolic and flavonoid chemicals that were identified using HPLC analysis.

The results of the vegetative parameters and all of the photosynthetic pigment contents
of fenugreek plants were enhanced by the foliar application of AgNPs concentrations of
20 and 40 mg/L [60]. The considerable promotion of photosynthesis by AgNPs, which
was strongly associated with the alteration in nitrogen metabolism [61,62], was noteworthy.
The action of AgNPs in suppressing ethylene signaling in the fenugreek plant may be the
reason for the induced growth increases brought on by varied AgNPs concentrations [63].
The increased growth characteristics, photosynthetic pigments, and IAA of treated plants
may be responsible for these increases in yield and chemical components [60].

Vinblastine from the Catharanthus roseus plant (Apocynaceae family) was isolated
in high concentrations, which were visible in explants treated with 75 mg/L SNPs and
50 mg/L AgNPs [64]. Different doses of AgNPs had a an impact on the callus proliferation
and increased the callus biomass of Caralluma tuberculata (family Apocynaceae); using
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AgNPs at 60 mg/L in combination with 0.5 mg/L2,4-D and 3.0 mg/L BA, the maximum
fresh and dry biomass buildup of callus was noted [65]. The average number of leaves,
number of branches, and carbohydrate content of the leaves of sunflower plants were all
positively impacted by foliar spraying with 50 mL/L of AgNPs. There was no significant in-
teraction among organic fertilizers, AgNPs, and salicylic acid on the vegetative parameters
of sunflowers [66]. Different methods of applying AgNPs to the lotus (Nelumbo nucifera)
increased plant height, leaf diameter, fresh leaf weight, dried leaf weight, and various
biochemical characteristics compared to the control. The diameter and chlorophyll content
of upright and floating leaves showed a positive correlation with dry leaf mass [67].

AgNPs improved plant qualitative and quantitative yield and increased plant yield
and biochemical content of garden thyme (Thymus vulgaris L.) exposed to UV-B stress [68].

The growth of the Lilium cv. Mona Lisa was encouraged by soaking its bulbs in
various concentrations of AgNPs, as shown by the increased accumulation of leaf and bulb
biomass and the hastened flowering. The treated plants also produced more flowers and
flowered for a longer period of time. The leaves gained the most chlorophyll a, chlorophyll
b, and carotenoids with 100 ppm AgNPs [69]. All concentrations of applied colloidal
AgNPs accelerated flowering, increased bulb diameter, and increased the fresh weight of
the aboveground portion of the lily plants and bulbs [70]. The quality and quantity of cut
flowers and bulbs produced by lily plants increased with the use of AgNPs solutions at
various concentrations. All morphological traits rose on average by 26.29% with AgNPs
compared to controls, with the exception of vase life [71]. The tulips that were exposed to
100 mg/L AgNPs flowered earlier and had longer stems for cut flowers, larger petals, and
greater stem diameter [72].

One of the most commonly utilized nanomaterials is silver nanoparticles (AgNPs);
however, studies on plants have shown that AgNPs are hazardous to them at the molecular,
cellular, and physiological levels [7,73]. AgNPs are been released have the capacity to
penetrate various media and finally reach plant rhizospheres [74,75]. Another result is
that the AgNPs are inevitably absorbed by crops and readily enter the food chain [76],
having an impact on both food production and food quality as well as posing a risk
to human health [77]. When sprayed on rice plants at a concentration of 60 µg/mL,
AgNPs not only infiltrated the cell wall but also disrupted the cell shape and structural
components and inhibited root growth since AgNPs may only cause harm to plants when
utilized in concentrations over a certain point [78]. Additionally, they cause root elongation
in Arabidopsis thaliana [79] and both vegetative growth and root elongation in Lolium
multiflorum [80]. AgNPs inhibit plant growth by impairing various stages of cell division
and collapsing root cortical cells, epidermis, and root caps [80–82].

The absorbed AgNPs altered the structure of the thylakoid membrane due to the
AgNPs’ accumulation in leaves, which reduced the amount of chlorophyll and inhibited
plant growth [79]. After being exposed to 50 mg/L of AgNPs, Vigna radiata seedlings’ total
chlorophyll content drastically decreased [83]. As a result of exposure to AgNPs, numerous
plants were reported to have significantly less total chlorophyll content [84–86]. AgNPs
also had an impact on the homeostasis of water and other small molecules within the plant
body, as well as the balance between the oxidant and antioxidant systems [79].

Compost has been demonstrated to improve soil structure, increase permeability and
infiltration, and increase soil organic matter and water-holding capacity [87,88]. If the
compost was tilled into the soil, Asclepias tuberosa transplants benefited more frequently
from the compost’s better growth and reproduction. Compost had no benefit for the
production of flower and seeds. It can be helpful in promoting better growth in prairie
plots, but its use can have unfavorable effects in other conditions [89]. Another study
revealed that the maximum plant growth of Acacia nilotica in pot trials was recorded when
a 75% compost level was applied, while the minimum plant growth in the field trial was
observed without any compost application. The increase in growth of A. nilotica plants was
reported with the increases in the amount of compost mixture when a 100% compost level
was applied, while the minimum was observed [90].
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The combination of biochar–mineral complex and compost stimulated the microbial
process in organic farming, leading to better production of vegetables by improving the
soil properties [91]. Compost at the rate of 15 ton/feddan enhanced plant height, number
of branches, total fresh or dry weight/plant and per feddan, chemical percentages, and
chlorophyll a, b, and a + b of dragonhead (Dracocephalum moldavica) plants [92]. When
the proportion of compost in the media increased, seedlings of Angelica arch-angelica,
Marrubium vulgare, and Thymus vulgaris had higher shoot and root dry weights and mineral
concentrations [93].

Under normal or saline–sodic soil conditions, the application of compost exhibited
a positive impact on the growth parameters of plants [94]. Compost’s high organic content
boosts microbial activity in soils with high salinity, making more nutrients and minerals
available to plants, which stimulates crop growth and yield [95–98].

In the present work, the growth of the two soft rot bacteria Dickeya solani and Pec-
tobacterium atrosepticum was inhibited by the treatment of methanol leaf extracts from
the collected plants with various treatments of compost and AgNPs in the current study.
The antimicrobial activity of plant extract is due to the presence of secondary metabolites
such as tannin, saponin, phenolics, flavonoids, and glycosides [99,100]. The growth of
Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae were all
inhibited by the methanol extract of A. curassavica, but Proteus vulgaris was not [101]. The
methanolic extracts of A. curassavica were observed to have antimicrobial activity against
the growth of Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Escherichia coli, and
Klebsiella pneumoniae at various levels [102].

The Pinus halepensis cone extract’s n-butanol fraction, with inhibition zones (IZs)
of 14.33 mm and 12.33 mm, respectively, had the highest activity against D. solani and
P. atrosepticum at a concentration of 2000 g/mL [103]. The oily extract from Bougainvillea
spectabilis was found to be effective against the growth of D. solani at a concentration
of 4000 g/mL, with an IZ value of 12.33 mm [104]. The growth of P. atrosepticum was
significantly inhibited by an ethanol extract of Moringa oleifera seeds from ripened pods
that contained the plant’s primary polyphenolic components vanillic acid, benzoic acid,
naringenin, chlorogenic acid, and myricetin [105]. Furthermore, phenolic and flavonoids
from plant extracts have demonstrated significant antimicrobial properties. For example,
ferulic acid showed antibacterial activity against D. solani, with an IZ ranging from 6.00 to
25.75 mm at various doses, but chlorogenic acid was ineffective [104].

The levels of compost and AgNPs treatments had an impact on the contents
of numerous phenolic and flavonoid components in the MLEs from A. curassavica
plants. When compared to untreated plants, AgNPs treatments resulted in large in-
creases in the total phenolic, flavonoid, and tannin contents [60]. A. curassavica, with its
bioactive compounds (calactin, calotropin, calotropagenin, coroglaucigenin, asclepin,
asclepain CI, asclepain CII, asclepine (asclepiadin), uscharidin), was used tradition-
ally in different populations [106]. Sixteen flavonoids, all of which are derivatives
of the flavonols quercetin and kaempferol, were isolated from the leaf material of
Asclepias [107]. The flavonoids glyeosides-quercetin 3-O-(2”,6”-α-L-dirhamnopyranosyl)-
β-D-galactopyranoside, quercetin 3-O-β-dglucopyranosyl-(1→6)-β-D-galactopyranoside,
quercetin 3-O-(2”-O-~t-L-rhamnopyranosyl)-β-D-galactopyranoside, quercetin 3-O-α-L-
rhamnopyranosyl-(1→6)-β-D-glucopyranoside, quercetin 3-O-β-D-galactopyranoside,
quercetin 3-O-β-D-glucopyranoside, and quercetin 3-O-(2”,6”-α-L-dirhamnopyranosyl)-
β-D-glucopyranoside were isolated and characterized from this plant [108]. The flavonoids
quercetin 3-O-D-glucopyranosyl (1→6)-β-D-galactopyranoside, quercetin 3-0-(2”,6”-α-L-
dirharnnopyranosyl)-β-D-galactopyranoside, and rutin were isolated from A. curassavica
ethanolic leaf extract [109].

Flavonoids, fixed oils, phenols, quinines, tannin, terpenoid, glycosides, coumarins,
sugars, xanthoprotein, saponin, and steroids were present in the leaf, stem, and root extracts
of A. curassavica [102,110,111]. Steroids, glycosides, phenols, and saponins were found
in the methanol extracts of A. curassavica root and leaf, while flavonoids and resins were
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present in smaller amounts [102]. The total phenolics in A. muricata treated with various
concentrations of AgNPs (250–1000 ppm) did not differ significantly. A. muricata leaves
treated with AgNPs differed significantly from the control in terms of their flavonoid
content [112].

To the best of our knowledge, this is the first study to examine how different compost
and AgNPs combination treatments affect the productivity, growth, and phytochemicals
of A. curassavica plants as measured over the course of two successive growing seasons.
Although using synthesized nanoparticles as biostimulants has many intrinsic advantages,
problems such as toxicity at high concentrations and dangerous disposal to the environment
may limit their continuing usage, which opens new research opportunities.

A further limitation is that the stability of nanoparticles in the environment is another
tough feature in utilizing them. The size of the particles and their affinity for other environ-
mental components heavily influence the suspension’s stability. The poorer stability of the
metal nanoparticles in nature makes them more susceptible to oxidation in the air. These
nanoparticles are kept in a specialized environment of inert gases because they cannot be
kept in regular environmental conditions for use in the future [113,114].

4. Materials and Methods
4.1. Synthesis of Silver Nanoparticles (AgNPs)

Silver nanoparticles (AgNPs) were synthesized chemically using analytical-grade
ethanol, silver nitrate (AgNO3), and sodium borohydride (NaBH4). In this procedure,
sodium borohydride served as a reducing agent while ethanol served as a stabilizing agent.
A homogeneous solution was created by dissolving 500 mg of AgNO3 in 20 mL of ethanol
and stirring it with a magnet stirrer for 1 h [54]. This step is necessary for the production of
silver particles. After that, 500 mg of NaBH4 was added to this solution, one drop at a time.
When the solution changes from clear to black, this means that AgNPs are being produced.
The precipitation was then collected, filtered, and repeatedly washed with ethanol and
deionized water. The dried nanoparticles were maintained in a dark bottle for further
characterization studies.

4.2. Characterization of AgNPs

The morphology, surface, and shape of the AgNPs were characterized by scanning
electron microscopy (SEM) at 10 kV (JSM-6360 LA, JEOL, Tokyo, Japan) with a 3 mm
working distance and transmission electron microscopy (TEM) using the JEM-2100 micro-
scope (JEOL, Tokyo, Japan). The presence of the produced AgNPs was investigated using
a UV-visible spectrophotometer (Shimadzu, Tokyo, Japan), with the reduction of pure Ag+
ions verified via measurement at UV-245 double-beam (200–1000 nm). The X-ray diffraction
analysis (XRD) patterns were registered in a diffractometer (Shimadzu XRD-6100) using
CuKα radiation (k = 1:5406 A◦) operated at a voltage of 40 kV and a current of 30 mA.
Data were collected over a 2θ range of 5–80◦, 0.0200 steps, and 10 s of counting time per
step. Based on the XRD peak widths, the crystallite domain size was determined. They
must be free of non-uniform moieties, according to the assumption. With the help of the
Debye–Scherrer equation, the average size of the AgNPs may be determined. A particle
size analyzer (PSA, MALVERN, ZETASIZER Ver.6.20) was used to examine particle size
distribution. Quartz was used to examine the material, Thetes, the temperature was set at
25 ◦C, and pure water was utilized for viscosity and refractive index data, resulting in high
size resolution. Furthermore, an assessment of the surface functional groups of the AgNPs
that were synthesized was conducted via Fourier transform infrared spectroscopy (FTIR)
utilizing the KBr-disc method within the 400–4000 cm−1 range.

4.3. Experimental Field Design and Data Recorded

The field study on Asclepias curassavica plants was conducted over the course of
two successive growing seasons, 2020 and 2021, at the Nursery of Department of Flori-
culture, Ornamental Horticulture and Garden Design, Faculty of Agriculture, Alexandria
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University, Egypt. The plant with its voucher number Z0001 was identified by Dr. Hany
M. El-Naggar (Department of Floriculture, Ornamental Horticulture and Garden Design,
Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria).

Clay and sand (2:1 v/v) were used as the growing media for A. curassavica plants, and
two amounts of compost were applied when the soil was prepared for the two seasons, as
shown in Table 9. AgNPs were sprayed on the plants three times: on the first of May, the
first of June, and the first of July for the two seasons. The concentrations used were 0, 10,
20, and 30 mg/L. Table 10 displays the results of the compost’s chemical analysis.

Table 9. The treatments of compost and AgNPs used in the present study.

Treatments Compost (% from the
Soil Mixer)

Silver Nanoparticles
(AgNPs) (mg/L)

T0 0 0
T1 10
T2 20
T3 30
T4

(25% compost) 25% compost
and 75% of nursery soil

0
T5 10
T6 20
T7 30
T8

(50% compost) 50% compost
and 50% nursery soil

0
T9 10
T10 20
T11 30

Table 10. Chemical analysis of the compost.

Element Value

Organic carbon (OC) 16.56%
Organic matter (OM) 28.55%

Nitrogen (N) 1.57%
Carbon/Nitrogen (C/N ratio) 10.54

Phosphorus (P) 0.45%
Potassium (K) 2.45%

In both seasons, measurements were taken of the plant’s height (cm), diameter (cm),
number of branches/plant, leaf area, total fresh weight (g), total dry weight (g), total
chlorophyll (SPAD unit), and the percentage of extracts.

The extraction yield of A. curassavica plants was calculated using the following equa-
tion: extraction yield (%) = W1/W2 × 100, where W1 is the mass of leaf crude extract and
W2 is the mass of the leaf sample [115].

4.4. Preparation of Plant Methanol Extracts

A. curassavica leaves were air dried at room temperature and transferred to powder us-
ing a grinder. About 50 g from the powdered leaves was extracted by the methanol solvent
(150 mL) for 72 h at room temperature. The solvent was removed and the extracts were
concentrated and collected in separate bottles and stored at 4 ◦C until further analysis [116].

4.5. Antibacterial Activity

The selected phytopathogenic bacteria, Dickeya solani (LT592258) and Pectobacterium
atrosepticum (LN851554), were obtained from the Department of Plant Pathology, Faculty of
Agriculture (El-Shatby), Alexandria University (Alexandria, Egypt). Methanolic extract of
A. curassavica was dissolved in 10% dimethyl sulfoxide (DMSO) and prepared at different
concentrations (4000, 2000, 1000, and 500 µg/mL).
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Antibacterial activity was determined using the disc diffusion method [117,118], where
the autoclaved filter paper discs 5 mm in diameter were used and each disc received 40 µL
of the prepared concentrations (4000, 2000, 1000, and 500 µg/mL). The minimum inhibitory
concentrations (MICs) were determined by serial dilution of the extracts ranging from 15 to
4000 µg/mL [119]. Negative (10% DMSO) and positive (gentamicin 20 µg/disc) controls
were used, and all tests were performed in triplicate.

4.6. HPLC Analysis of Phenolic and Flavonoid Components

The phenolic components from the methanol extracts of A. curassavica leaves were
categorized by HPLC (Agilent 1100, USA). A binary LC pump, a UV/Vis detector, and
a C18 column (125 mm, 4.60 mm, 5 µm) make up this apparatus. The Agilent Chem-
Station was used to acquire and analyze chromatograms. A gradient mobile phase of
two solvents—Solvent A (MeOH) and Solvent B [Acetic acid in H2O (1:25)]—was used to
separate phenolic acids. The gradient program began with 100% B and remained there
for 3 min. This was followed by 5 min of 50% eluent A, 2 min of 80% eluent A, 5 min
of 50% eluent A, 2 min of 80% eluent A, 5 min of 50% eluent A, 5 min of 50% eluent A,
and 5 min of detection wavelength at 250 nm. As a result, the phenolic components were
arranged in order to authenticate standard components by this mobile phase [120,121]. For
the flavonoid compounds, HPLC (Agilent 1100), composed of two LC pumps, a UV/Vis
detector, and C18 column (250 mm × 4.6 mm, 5 µm), was used. The mobile phase was
acetonitrile (A) and 0.2% (v/v) aqueous formic acid (B) with an isocratic elution (70:30)
program. The detection wavelength was set at 360 nm [121].

4.7. Statistical Analysis

The experiment was statically analyzed using CoStat program ver., 6.303 (CoHort
software, Monterey, CA, USA). A completely randomized design [122] was performed
and the means were equated by the Least Significant Difference (LSD) at 0.05 level of
probability [123]. The data were expressed as means ± 2SD values and were deemed
statistically significant when p ≤ 0.05.

5. Conclusions

The findings of the current study show that the interaction of compost and AgNPs
applications had a positive effect on the vegetative parameters of A. curassavica plants,
including plant height (cm), plant diameter (cm), branch number/plant, leaf fresh weight
(g), leaf dry weight (g), and leaf area (cm2), gradually increasing with concentration
compared to untreated plants. The chemical constituents of A. curassavica plants, such as
their chlorophyll content, leaf methanol extract percentages, phenolic compounds, and
flavonoid compounds, were also impacted by the treatments. Generally, the best outcomes
were achieved with for the majority of the assessed parameters. We recommend that the
plants treated with 50% compost containing 20 or 30 mg/L AgNPs be employed in field
experiments at a wide scale and in subsequent research.
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70. Byczyńska, A.; Zawadzińska, A.; Salachna, P. Colloidal Silver Nanoparticles Enhance Bulb Yield and Alleviate the Adverse Effect
of Saline Stress on Lily Plants. J. Ecol. Eng. 2023, 24, 338–347. [CrossRef]
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