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Abstract: In recent years, the global agricultural system has been unfavorably impacted by adverse
environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of
plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main
obstacles to global agricultural production and food security. Therefore, there is a need for the devel-
opment of novel approaches to overcome these problems and achieve sustainability. Nanotechnology
has emerged as one such novel approach to improve crop production, through the utilization of
nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their
ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since
they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used
as a modern agricultural tool. The implementation of nanoparticles has been found to be effective
in improving the qualitative and quantitative aspects of crop production under various biotic and
abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible
and highlights the importance of the application of nanoparticles in combating abiotic stress, in
addition to the major physiological, biochemical and molecular-induced changes that can help plants
tolerate stress conditions. It also addresses the potential environmental and health impacts as a result
of the extensive use of nanoparticles.

Keywords: climate changes; abiotic stress; nanoparticles; molecular changes; biochemical changes

1. Introduction

Abiotic stress is the term used to describe how nonliving elements negatively affect
living things in a particular environment. Drought, salt, heavy metals, extremely low or
high temperatures and other environmental extremes are some of the potential stresses
that are major global issues. In the changing global climate, plants are more susceptible
to abiotic stress. Climate change, which is a result of global warming, is accompanied
by a sharp increase in the frequency and severity of heat waves, droughts and other
abiotic stress situations, such as flooding, salinity and freezing [1]. In addition to natural
causes, anthropogenic perturbations of the biosphere, manifesting in a wide range of
global phenomena, such as accelerated rate of industrialization, intensive agriculture and
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extensive mining, coupled with a burgeoning population and rapid urbanization, have led
to catastrophes in global warming, thus indirectly contributing to abiotic stress and the
grave contamination of the essential elements of life on the planet [2].

Plants are sessile organisms and abiotic stressors, including drought, salt and severe
temperatures, must be endured by them [3]. Stress responses are complex, integrated
circuits rather than simple, linear routes, incorporating several pathways, particularly
cellular compartments, tissues and interactions with extra cofactors and/or signaling
molecules to coordinate a specific response to a given stimulus [4]. The tissue or organ
that is under stress will determine how the plant reacts. Additionally, the complexity of
the response can be significantly influenced by the intensity and duration of the stress [5].
Plants activate early stress-signaling mechanisms in response to abiotic stresses in order to
counteract stress reactions and promote tolerance [6,7]. When a plant cell detects stress,
second messengers, such as calcium, reactive oxygen species (ROS), phospholipids and
nitric oxide (NO), as well as various protein kinases, relay and amplify the signal [8]. SnRk1
kinases change the expression of approximately 1000 stress-responsive genes, facilitating
the restoration of homeostasis by suppressing energy-intensive processes and encouraging
plant stress tolerance. This enables them to resist various abiotic challenges, such as salt,
flooding, drought and nutrient scarcity [9]. Plant hormones, such as ABA and ethylene, also
act as primary signals for plant defense responses, such as the closing of stomata during
drought stress [5]. These stress-signaling mechanisms activate transcription factors, which
further activate various stress-response genes to cope with the harsh effects of abiotic stress.

The elevated ROS as a response to abiotic stress may damage proteins, membranes
and other structural components of plants, which can eventually lead to impairments
in their essential physiological processes [10]. Membrane peroxidation and damage to
photosynthetic systems were reported in various plants, irrespective of the stress. Hence,
plant defense mechanisms mainly focus on scavenging the ROS by activating antioxidant
molecules [11]. Enhanced production of phenols and flavonoid is a common activity
reported in many plants under various abiotic stresses. Phytochelatin production in marked
amounts was observed mostly in various heavy metal stresses [12]. Proline content was
also found to be increased to cope with various abiotic stresses by acting as an osmolyte.
Another important biochemical change is the activation of antioxidant enzymes to scavenge
the ROS molecules. SOD, APX, GPX and catalase are some of the antioxidant enzymes that
help plants tolerate oxidative stress [10,12].

Long-term stressors may have negative impacts on plant development and growth,
which directly affect agricultural yield. Given that plants are considered the living king-
dom’s producers, conditions that have an adverse effect on plants raise concerns regarding
food security [13]. Abiotic stressors have a significant role in yield losses, accounting for
up to 50% of losses in the yield of major crops [14]. In this context, scientists are con-
centrating on research into approaches such as genetic engineering and plant breeding
to reduce abiotic stress. Recently, nanotechnology also found its application in abiotic-
stress tolerance [15]. Worldwide interest in nanomaterials is currently growing as a means
of defending plant growth from abiotic challenges, such as drought, salt, heavy metals,
extremely high temperatures and flooding [16]. Nanoparticles (NPs) are thought to be
useful and promising techniques for modifying crop yield by enhancing a plant’s ability to
tolerate abiotic stress, in order to address present and upcoming production restrictions
in sustainable agriculture [17]. Figure 1 represents various abiotic stress factors and their
responses in plants.
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2. Absorption and Translocation of Nanofertilizers or Nanoparticles by Plants

The interaction and penetration of nanoparticles into the plant system is the prelimi-
nary step in the processes of absorption and translocation and for the mechanism of action.
Osmotic pressure and capillary forces play a major role in the absorption of nanoparticles
from the root epidermal regions. Usually, nanoparticles within a range of 3–5 nm are easily
absorbed. With the help of small pores, nanoparticles cross the epidermal cell wall of roots
and enter the plant system. In some instances, a small number of nanoparticles enhance the
ability to form their own pores on the cell wall if their size is larger than that of the usual
pores that absorb the nanoparticles [18,19]. In some instances, the charge of the nanoparti-
cles plays a major role in the initial interaction that occurs with the epidermis region [20].
Furthermore, the nanoparticles take both apoplastic and symplastic pathways to reach the
target tissue. Usually, the membrane carrier protein accompanies the nanoparticles and
helps in transportation using the xylem channels [21]. Later, if there is any aggregation at
various regions of the channels, they are sent back to the roots with the help of phloem.
The cuticle and stomata are the means of passage through which the nanoparticles reach
the internal system of the leaf. Particles less than 5 nm take the cuticular pathway, while
particles larger than 5 nm take the latter pathway. Compared to the root, the leaf has a



Plants 2023, 12, 292 4 of 26

similar internal transport system. The nanoparticles are delivered by phloem tubes via
both apoplastic and symplastic pathways to the intended location or organs such as shoots,
roots and fruit [22].

3. Nanoparticles and Their Applications in Agriculture

Nanoparticles have increased in their significance in a number of technological, medi-
cal, and agricultural domains. Nanotechnology’s most recent developments have aided in
pushing the limits to enhance the betterment of humankind. As the name suggests, nanopar-
ticles vary from 1 to 100 nm in size and have unique physicochemical properties [23].
Usually, nanoparticles are synthesized using top-down and bottom-up synthesis routes
(Figure 2). In the top-down approach, nanoparticles are formed from larger molecules
after decomposition. Electro-explosion, mechanical milling, chemical ways of etching, laser
ablation and sputtering are some of the examples of top-down approaches. The synthesis
of metal-oxide nanoparticles comes from top-down approaches. Whereas in bottom-up
synthesis, simpler substances combine and react to form nanoparticles. Spinning, the
sol-gel process, condensation and pyrolysis are some of the examples of bottom-up ap-
proaches. The green synthesis of nanoparticles, usually from biological samples, falls under
the bottom-up category [24]. The following characterizations are crucial to the success of
nanoparticle synthesis: 1. Morphological characterizations using microscopy (i.e., scanning
electron microscopy and transmission electron microscopy). 2. Structural characteriza-
tions using XRD, XPS, Raman and Zeta-size analyzers. 3. Optical characterizations using
UV-visible and photoluminescence [23]. In green synthesis, processed extracts of plants,
fungus and microbes are made to react with metal salt solutions and are further processed
by reduction and capping, resulting in the formation of metal nanoparticles coated with
desired biomolecules. Since the size of green-synthesized nanoparticles is very small, they
aid in the effective transport to the target site and also aid in improving outcomes [25].
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As is well-known, the population of the world is growing every day, which means
the way food is produced needs to be updated to keep up with demand. One method for
boosting production was the use of chemical fertilizers, which eventually had a negative
impact on soil fertility. Therefore, the extensive use of fertilizers results in numerous
aberrations. The majority of NPK (nitrogen, phosphorus and potassium) components will,
however, be depleted depending on the fertilizer content and application method owing
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to hydrolysis, leaching, evaporation and phytolytic degradation, eventually defeating the
purpose of using them [26]. On the other hand, the use of nanoparticles in agriculture has
gained importance in recent times. Nanoparticles were treated as ecofriendly and nontoxic
and had a large impact on the reduction of pathogens in agriculture. Nanotechnology has
also helped in the design of nanofertilizers and pesticides, which were green synthesized
and coated with various traditional chemical compounds that were generally used as
pesticides and fertilizers [27]; furthermore, nutrients can be encapsulated inside nanotubes
or materials [28]. Nanofertilizers or nanoparticles have increased surface area and contact
ratios, increasing bioavailability and helping in the easy dispersion of the desired micro
or macro nutrients, which ultimately increases the uptake efficiency by the target tissues.
Nutrients, soluble fertilizers coated with semipermeable membranes and waxes help in
the controlled release of nutrients at the target site, which also helps to improve ecological
balance [29,30].

Numerous studies back up the use of nanoparticles/nanofertilizers, which, when
used in both in vitro and in vivo approaches, eventually aid the plant’s overall growth
and development. Treatment of ZnO nanoparticles at 1000 ppm concentration helps with
seed germination, shoot and root development in peanut plants [31]. When 1.5 ppm ZnO
nanoparticles were sprayed over chickpea leaves, it was found that seed-germination ability
rose and biomass accumulation improved [32]. Multiwalled carbon nanotubes showed
better efficiency in the growth of tobacco cells [33]. The synergistic effect of SiO2 and TiO2
nanoparticles increased the uptake capacity of water and fertilizers [34]. SiO2 nanoparticles,
when treated with Zea mays L., showed increased efficiency in the production of biochem-
icals and better photosynthetic efficiency and protein production [35]. In addition, TiO2
nanoparticles also helped to increase photosynthetic efficiency and in the better accumula-
tion of biomass in spinach [36]. Similarly, TiO2, when treated with seeds of Brassica napus,
was observed to increase seed-germination efficiency [37]. Apatite nanoparticles (hydrox-
yapatite) were synthesized using a chemical method. When treated with soybean cultures,
the seed yield and growth ratio were increased drastically when compared with conven-
tional Ca(H2PO4)2, phosphorus fertilizer [38]. Other than as nutrients and fertilizers, plant
growth regulators are also used or encapsulated in nanomaterials to increase the potential
in agriculture. Polymeric nanoparticles were prepared using gibberellic acid formulated
along with chitosan and alginate. It was observed that these polymeric nanoparticles lead
to an almost four-fold increase in fruit production [39].

4. Nanoparticles in Genetic Engineering of Plants

The development of diverse gene-transformation technologies has been assisted by
contemporary biotechnology. Nanotechnology has also showed promise in the devel-
opment of a novel method of gene transformation employing nanoparticles, along with
the biolistic gun/gene gun and Agrobacterium-mediated techniques. The chromosomal
DNA of Zea mays was incorporated into Cre recombinase and loxP sites with the help of
mesoporous silica nanoparticles. The transformation was successfully established, and
the desired editing at the gene level was achieved [40]. The layered double hydroxide
(LDH) clay nanoparticles might be loaded with the biodegradable dsRNA of different
plant viruses. dsRNA provides protection against the cauliflower mosaic virus (CMV) in
treated tobacco leaves, and this protection was additionally retained in newly developed
leaves [41]. In pollen grains of cotton, the β-glucuronidase-gene-coated magnetic nanopar-
ticle complex was used for gene transformation and it was clearly observed that offspring
stably inherited the characteristics of the incorporated genetic material [42].

5. Nanoparticles in Abiotic Stress Management
5.1. Nanoparticles in Salt-Stress Tolerance

Global-warming-driven water scarcity also forces irrigation with saline water in agri-
cultural lands all over the world, which leads to enhanced salt content in the soil. Salinity
(the buildup of excessive salt in the soil) is one of the main challenges to modern agricul-
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ture, and it eventually stunts and impairs plant growth and development, ending in plant
mortality [43,44]. Most plants die when the NaCl content is higher than 200 mM. Salinity
has a significant impact on every stage of the plant’s life cycle, including seed germination,
seedling development, vegetative growth and blooming [45]. Numerous horticultural
crops, such as fruits, vegetables and spices, are impacted by salinity. In addition to causing
osmotic stress, water stress, oxidative stress, nutritional stress and reduced cell division,
salt stress imbalances ionic strength, which has an impact on a number of biochemical,
physiological and metabolic processes [46,47]. The response to various abiotic stress has
been illustrated in Figure 3.
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According to Zulfiqar and Ashraf [48], the application of nanoparticles, such as Zn
NPs, Ag NPs, SiO2 NPs, Cu NPs, Fe NPs, Mn NPs, C NPs, Ti NPs, Ce NPs and K NPs, was
effective in mitigating the toxic effects of salt stress in various plants. El-Sharkawy et al. [49]
found that the foliar application of K NPs in salt-sensitive Medicago sativa improved salt tol-
erance by reducing electrolyte leakage and enhancing the proline and antioxidant-enzyme
content, such as that of catalase. Similarly, reduced oxidative stress was evident in the lower
MDA and ROS levels and higher antioxidant activity in AgNPs-treated pearl millet plants,
which may have been caused by a decrease in Na+ absorption in the leaves [50]. Cerium-
oxide nanoparticles were discovered to be beneficial in increasing photosynthetic activity
in Brassica napus by altering the root cells and thus improving the mineral uptake [50,51].
Increasingly prevalent data suggest that applying nanoparticles to plants can considerably
reduce the detrimental impacts of salt stress, and thus also control plant adaptations.

5.2. Nanoparticles in Drought-Stress Tolerance

Drought is regarded as the most detrimental environmental stress, reducing crop yield
more than any other. According to the Intergovernmental Panel on Climate Change (IPCC),
the average temperature will rise by 1.8 to 4.0 ◦C by 2100, and drought will affect vast areas
of the world [52]. Drought affects agriculture when plants have insufficient moisture to
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develop normally and complete their life cycles. The severity of drought is further increased
by a continuous decline in precipitation and increase in evapotranspiration demand [53].
For instance, drought stress prevents plant development, because water is required for
cell turgor, which is the pressure that a contained liquid exerts on cell walls, causing
cells to expand [8]. The principal effects of drought on crop plants include slower rates
of cell division and growth, smaller leaves, longer stems and roots, disordered stomatal
oscillations, altered water and nutrient relationships with lower crop output and inefficient
water usage [53].

As per previous studies, NPs cause a variety of morphological, physiological and
biochemical changes in plants as they increase their resistance to drought stress by increas-
ing plant root hydraulic conductance and water uptake and demonstrate a differential
abundance of proteins involved in oxidation-reduction, ROS detoxification, stress signaling
and hormone pathways [17]. The foliar application of metal-oxide nanoparticles, such as
titanium dioxide (TiO2), zinc oxide (ZnO) and iron oxide (Fe3O4), were found to be effective
in enhancing the plant’s physiological and metabolic activities under drought stress [54].
When Si NPs were applied to drought-stressed pomegranate plants, additional improve-
ments were made to their photosynthetic pigments, nutrient status, physical and chemical
parameters (especially those related to fruit cracking), phenolic content and concentrations
of osmolytes, antioxidant enzymes and abscisic acid [55]. El-Zohri et al. [56] suggested
that green ZnO-NPs administered topically at lower concentrations could successfully
boost tomato tolerance to drought stress. In addition to nanofertilizers, green synthesized
Fe3O4 NPs were also found to be effective in reducing the impact of drought stress on
fenugreek plants [57]. However, a study by Potter et al. [58] indicates that the potential
benefits of using NPs in enhancing plant drought resistance only actualize under specific
environmental circumstances.

5.3. Nanoparticles in Cold-Stress Tolerance

Global climate change also contributes to cold or low-temperature stress, which harms
plant growth and development. Plants often experience two types of low-temperature
stress: chilling and freezing. Chilling temperatures for plants range from 0 to 15 ◦C,
depending on the species and tolerance level of the plant. The air temperature and wind
speed during exposure are other factors that affect chilling temperatures. In contrast to
its response to chilling temperatures, the plant will battle against freezing temperatures
(below 0 ◦C) [59]. Crop species can be hurt or killed by low and nonfreezing temperatures,
which can have an impact on their productivity, survival and ecological dispersion [60].
As enzyme and other-protein activity are reduced at colder temperatures, cold stress
slows down plant growth [8]. Numerous processes in these plants are impacted by low
temperatures, including those involved in secondary metabolism, respiration, defense and
protein and nucleic acid production [59].

Chitosan nanoparticles and TiO2 NPs have been used extensively in a variety of stud-
ies for their efficiency in cold-stress tolerance. The application of Ti NPs was found to be
effective in improving electrolyte leakage, photosynthetic activity and membrane damage
under cold-stress conditions in chickpea plants using transcriptional regulation [61–63].
Hasanpour et al. [64] suggest that when TiO2 NPs are applied to plants, the tolerance of
chickpea plants to cold stress may develop by controlling the pressure of the tempera-
ture drop injury and altered metabolism for plant growth. The deleterious effects of cold
stress are reduced and glycyrrhizin content is enhanced when using TiO2 NPs in licorice
plants [65]. The use of chitosan nanoparticles was found to be effective in reducing the
ROS with the accumulation of osmoprotectants in banana plants under cold-stress con-
ditions [66]. Furthermore, in rice plants, the foliar application of ZnO NPs may reduce
chilling stress through the antioxidative system and transcription factors involved in the
chilling response [67]. Similarly, the use of SiNPs can also improve the photosynthetic
ability of sugarcane plants under chilling stress [68].
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5.4. Nanoparticles in Heavy-Metal-Stress Tolerance

Heavy-metal (HM) stress is one of the deleterious factors that reduces crop produc-
tivity in the modern day. Human activities, such as industrialization and urbanization,
have resulted in HM pollution all over the world [2]. Enhanced implementation of modern
agricultural tools, such as chemical pesticides and fertilizers, has also contributed to HM
stress in crop plants. Heavy metals such as Hg, Pb, Cd, Ni, Co, Cr and Ag have deleterious
impacts on plants [69]. Since plants reside at the baseline of trophic systems, the chances
of bioaccumulation of these HMs via the food chain are high, and this eventually leads to
chronic health impairments, such as kidney and liver damage, in humans and other ani-
mals. In addition, HMs have a direct impact on plants, such as through morphological and
physiological abnormalities and impaired metabolic pathways [70]. These affect the quality
and quantity of plant-based products, especially in agricultural crops and medicinal plants.

A number of studies on the use of nanoparticles to alleviate HM stress have been
conducted. Nanoparticles applied to the soil can absorb and transform the HMs in soil,
thereby reducing the bioaccumulation and mobility of HMs. The Cd metal availability
in soil has been reduced by the application of Fe3O4 NPs [71]. The hydroxyapatite NPs
can reduce the toxic effects of metals in soil and can maintain the soil pH by releasing
phosphate ions [72]. NPs also induce the formation of apoplast barriers, which reduce
the heavy-metal content in the root. Furthermore, heavy metals can be intercepted by
the regulation of metal transporter genes in plants using specific NPs, which can deter
the translocation of HMs by forming complexes with them [73]. NPs such as SiNPs have
endorsed the production of organic acids that curtail the damage of HM stress [74,75]. NPs
also activate the antioxidant system, thereby reducing the stress caused by ROS [75].

5.5. Nanoparticles in Flooding-Stress Tolerance

Most plants are sensitive to flooding as a result of excessive water clogging in soil.
Flooding is caused either by excessive rainfall, poor soil drainage or irrigation practices.
The complete submersion of plants in floodwater can be disastrous for crops. Flooding is
thus one of many abiotic-stress factors that affect food availability and countries’ economies.
It influences the plants grown in different ecosystems, such as floodplains, riparian zones,
salt marshes, tidal zones and wetlands. Plants grown in different ecosystems show varied
responses to flooding stress; wetland plant species show tolerance to shoot submergence
and soil water logging, while dry-land species are sensitive to flooding stress. Excessive
water logging in air spaces delays the exchange and diffusion of gas between the roots
(rhizosphere) and the atmosphere, thereby inhibiting respiration due to a lack of oxygen
leading to hypoxia and ultimately leading to anoxia in plants. Under flooding stress, soil
pH and redox potential will be affected, the carbon-dioxide content increases and the
mobilization of phytotoxins increases, affecting the root metabolism, nutrient uptake and
overall plant growth [76].

Nanoparticles have been reported to alleviate flooding stress in plants. In soybean
plants under flooding stress, silver NPs helped to alleviate stress conditions by regulating
amino-acid synthesis, proteins, glycolysis and wax formation, and NPs enhanced the
growth of soybean plants despite stress [77,78]. Another study has been conducted into
soybean plants under flooding stress, where Al2O3 NPs were applied to ameliorate the
growth impairment induced by flood stress. The Al2O3 NPs increased root length, including
that of the hypocotyl, suppressed the proteins involved in glycolysis, arbitrated the cells
involved in the scavenging of ROS by upregulating the ascorbate/glutathione pathway
(AsA/GSH) and increased the ribosomal proteins [79].

5.6. Nanoparticles in Heat-Stress Tolerance

High temperatures can cause heat stress. In recent decades, global warming has
worsened this trend. The rise in temperature above a critical limit for a longer time
sufficient to permanently harm plant development is often understood to constitute heat
stress [80]. Extreme changes may damage the intermolecular connections required for
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optimal growth during hot summers, which would hinder plant development and fruit
set [81]. In general, heat stress decreases the effectiveness of photosynthetic processes,
shortening the plant life cycle and lowering productivity [82]. Heat stress may become a
significant issue restricting field-crop productivity in tropical and subtropical areas.

The application of Se NPs in sorghum plants exposed to high temperatures was found
to be helpful in ameliorating negative impacts, such as membrane damage and reduced
pollen germination and crop yields, by activating the antioxidant defense system [83]. The
application of AgNPs shielded wheat plants from heat stress by enhancing morphological
growth [84]. Similar to this, Zn nanoparticles were discovered to be helpful in improving
wheat’s ability to withstand heat stress by increasing the production of antioxidant enzymes
and decreasing lipid peroxidation [85]. The foliar application of nanoparticles on tomato
leaves becomes activated when the temperature exceeds certain limits and protects plants
from heat stress. Si NPs are also said to be helpful in coping with heat stress [86].

6. Response of Plants to Nanoparticles under Abiotic Stress

Some of the most extensively researched useful NPs include carbon nanotubes (CNTS),
MWCNTS, fullerols, metal-based NPs (Ag NPs and Au NPs), crystalline powders of
nanoscale (Fe, Co and Cu) and metal-oxide NPs (iron oxide, TiO2 NPs, ZnO NPs, SiO2 NPs,
CuO NPs and CaCO3 NPs) [87]. NPs have high surface energy and a high surface/volume
ratio, which improves their reactivity and increases biochemical activity that has diverse
impacts on plants [88]. NPs can quickly interact with plants and stimulate molecular
mechanisms [13]. In addition, the NMs function in a dual manner, first protecting against
ROS while simultaneously acting as inducers of oxidative stress, which in turn causes the
activation of the antioxidant defense system in plants [14]. NPs enable plants to adjust
to stressful conditions more effectively and produce more yields by reducing the toxic
effects of abiotic stress and by influencing various morphological, anatomical, physiological,
biochemical and molecular attributes of plants.

6.1. Morphological Changes under the Influence of Nanoparticles

Abiotic stresses such as salt, drought, high and low temperatures and heavy met-
als significantly affect aspects of plant morphology, such as fresh and dry weight, leaf
area, shoot and root length, overall plant growth and crop yield [84]. According to
Hassanisaadi et al. [89], the priming of seeds with low concentrations of NPs increased
root length, shoot length and seed germination rate. The reduced pollen germination, seed
set and yield in sorghum under the influence of temperature stress were recovered by the
application of Se NPs [83]. Silver NPs derived from plants contribute to the increase in leaf
area and dry weight of aerial structures under high temperatures [84]. TiNPs have been re-
ported to increase plant height in Dracocephalum moldavica under salinity stress [90]. FeNPs
have been shown to increase plant growth and overall biomass production in Brassica napus
under drought stress [91]. The morphological changes under the influence of nanoparticles
are reported in Table 1.

Table 1. Morphological changes under the influence of nanoparticles.

Stress Plant Nanoparticles Morphological Changes under the
Influence of Nanoparticles Reference

Drought Brassica napus L. Fe Increased biomass production and
leaf growth [91]

Salt Dracocephalum moldavica L. Ti Increased plant height [90]

Flood Glycine max (L.) Merr Al2O3
Enhanced seedling weight and

root length [77]

Salt Sorghum bicolor (L.) Moench Zn Improved shoot length and
root length [92]
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Table 1. Cont.

Stress Plant Nanoparticles Morphological Changes under the
Influence of Nanoparticles Reference

Heat Triticum aestivum L. Ag
Improved plant growth, root and

shoot length, dry weight and
fresh weight

[84]

High temperature Sorghum bicolor (L.) Moench Se Increased pollen germination [83]

Drought Triticum aestivum L. Se Improved shoot and root length, leaf
area and leaf number [93]

Salt Moringa oleifera Lam. Fe3O4
Improved plant growth, number of

branches, leaf area and biomass [93]

Drought Oryza sativa L. ZnO Increased plant height, fresh weight
and dry weight [94]

Drought Linum usitatissimum L. Fe2O3

Enhanced growth parameters, such
as shoot and root length and

seed yield
[95]

Salt Lycopersicon esculentum Mill. Si Retained fruit quality and size [96]

Cadmium and
drought stress Triticum aestivum L. Fe Improved photosynthesis and yield [97]

6.2. Anatomical Changes under the Influence of Nanoparticles

Plants undergo various anatomical changes in response to abiotic stress. The anatomi-
cal responses depend on the type of abiotic stress. Under drought conditions, the structure
of stomata undergoes changes (large sub-stomatal cavities) and there is an increase in the
thickness of the upper-epidermal waxy cuticle, cuticular edges and xylem tracheids lignifi-
cation [98]. Under heat stress, decrease in cell size, closure of stomata and transcription rate
is curtailed, while an increase in stomatal and trichomatous densities with bigger xylem
vessels in roots and shoots is observed [99]. The mesophyll cells have been damaged and
the plasma membrane permeability has been increased in Vitis vinifera L. CV. Jingx under
heat stress [100]. Transpirational water loss has been reduced by engaging in bimodal
stomatal behavior in Zygophyllum qatarense Hadidi exposed to high temperatures [101].
The application of nanoparticles helps the plant survive under stress conditions by aiding
in the anatomical adaptations of the plant. The TiO2 nanoparticles have been successful
in regulating the stomatal opening in maize plants under heat stress, thus reducing its
impact [102]. The treatment of SiO2 nanoparticles inhibited the negative effects of salinity
by improving the epicuticular wax layer (EWL) in strawberry plants [103]. In the study con-
ducted by Mustafa et al. [77], the Al2O3 nanoparticles reduced cell death in the hypocotyl
region of the soybean plant. ZnO NPs were shown to be successful in reducing damages to
epidermis and vascular tissues in Sorghum bicolor under salt stress [92]. Another study on
the influence of CeO2 NPs in Brassica napus L. under salt stress has been reported. It was
observed that the former could shorten root apoplastic barriers [51].

6.3. Physiological Changes under the Influence of Nanoparticles

Plants under stress exhibit a variety of physiological responses, such as changes in the
photosynthetic machinery, transpiration, mineral and water uptake, lipid peroxidation and
seed germination. Under cold stress, plants exhibit inhibition in the germination of seeds
and decreased pollen fertility, seed set and chlorophyll content, thereby affecting photosyn-
thesis [104]. Further, plant cells undergo electrolyte leakage, protoplasmic streaming and
plasmolysis [105]. Heat stress can decrease the rate of nutrient uptake in plants [106]. The
Cd accumulated in soil also has an effect on macronutrient and micronutrient uptake due
to the inability of plants to absorb water under Cd stress [107]. Drought stress is known
to inhibit photosynthesis by affecting the thylakoid membranes. High soil salinity causes
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the inhibition of plant germination [105]. Heavy metals also decrease seed germination
and photosynthesis and have other deterring effects on various plant physiological pro-
cesses [108]. Si nanoparticles increase the rate of photosynthesis and stomatal conductance
in plants experiencing drought stress and help them to survive in stress conditions [109].
In tomato leaves under heat stress, the application of a fixed concentration of nano-TiO2
increased leaf transpiration, net photosynthetic rate and stomatal conductance. Nano-TiO2
decreased the energy loss from the photosystem II (PS II) and increased unregulated energy
loss [102]. The physiological changes under the influence of nanoparticles are reported
in Table 2.

Table 2. Physiological changes under the influence of nanoparticles.

Stress Plant Nanoparticle Physiological Response of Plants
under the Influence of Nanoparticles Reference

Heavy metal
(lead) Coriandrum sativum L. Si Reduced MDA [110]

Drought Linum usitatissimum L. Ti
Reduced chlorophyll damage,

electrolyte leakage, lipid peroxidation
and H2O2 accumulation

[111]

Drought Brassica napus L. Fe Reduced MDA production [91]

Salt Dracocephalumm oldavica L. Ti Enhanced nutrient uptake [90]

Salt Medicago sativa L. K2SO4 Reduced electrolyte leakage [49]

Salt Moringa oleifera Lam. Fe3O4
Improved photosynthesis and decreased

lipid peroxidation [93]

Salt Triticum aestivum L. Au Improved nitrogen metabolism [112]

Salt Abelmoschus esculentus (L.)
Moench Zn Enhanced photosynthetic pigments [113]

Drought Linum usitatissimum L. Fe2O3 Reduced MDA and H2O2 accumulation [95]

Drought Oryza sativa L. ZnO Decreased lipid peroxidation [94]

As stress Hordeum vulgare L. CaO Enhanced Ca uptake, reduced As
uptake and accumulation [114]

6.4. Major Biochemical Changes to Tolerate Abiotic Stress

Abiotic stress such as salinity, drought, and high metal level stresses have overlapping
effects on plants which includes elevated levels of reactive oxygen species, activation of the
antioxidant system, and buildup of inert solutes (osmolytes), such as sugars, polyamines,
secondary metabolites, and amino acids [115]. Under abiotic stress, the proteins and
enzymes are susceptible to denaturation resulting in enzyme activation, the protein pro-
duction reduces, the fluidity of membrane lipids increases, the membrane integrity is
lost [116]. The total carbohydrate content varies in response to different biotic stresses. The
total carbohydrate content is known to decrease under salinity stress while it is known
to increase in response to lower temperature stress [117]. The plants under abiotic stress
produce enzymes, and secondary metabolites such as anthocyanins, flavonoids, lignins,
phenolic acids and other molecules to alleviate the abiotic stress and manage the oxidative
stress in order to reduce cellular damage [116].

According to reports, NPs cause a variety of morphological, physiological, and bio-
chemical changes in plants to increase their resistance to drought stress [17]. By reducing
the misfolding of proteins brought on by flooding stress, the application of Ag NPs im-
proved the ability of soybean seedlings to withstand stress [77]. The foliar application of
Zn NPs boosted the levels of proline, glycine betaine, free amino acids, and sugars under
drought conditions [118]. Under various abiotic stresses, proline concentration is found to
be high. Proline has been hypothesized to protect enzymes and cellular structures when
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present in high concentrations as an osmoticum [119]. The accumulation of such osmolytes
will help to maintain the redox potential of cells under stressful conditions [52] and also
acts as a signal for antioxidant response [115]. The biochemical changes under the influence
of nanoparticles have been reported in Table 3.

Table 3. Biochemical changes under the influence of nanoparticles.

Stress Plant Nanoparticles Biochemical Changes Reference

Drought Linum usitatissimum L. Ti Improved protein and seed
oil production [111]

Drought Oryza sativa L. ZnO Enhanced proline content [94]

Salt Pennisetum gluacum (L.) R.Br. Ag Proline, ROS and MDA reduced [50]

Salt Medicago sativa L. K2SO4 Increased proline content [49]

Salt Lycopersicon esculentum Mill. Si Improved chlorophyll and
phenol contents [96]

Salt Moringa oleifera Lam. Fe3O4
Increased crude protein, fiber

and minerals [93]

As stress Oryza sativa L. Fe Enhanced accumulation of proline,
glutathione and phytochelation [12]

Salt Abelmoschus esculentus (L.) Moench Zn Reduced proline content [113]

6.5. Antioxidant Response

Reactive oxygen species (ROS) are the byproducts of oxygen metabolism and oxidative
stress is characterized by an increase in ROS concentration in the cell. In an attempt to
mitigate the oxidative stress, the cell employs several mechanisms [120,121]. The signaling,
expression profiles, metabolic model, biochemistry and physiology that a cell display dur-
ing an oxidative stress, in order to equilibrate and production and detoxification of ROS
and re-establish redox homoeostasis constitutes its anti-oxidant response [122]. Such an
anti-oxidant response generally utilizes enzymes such as Superoxide dismutase (SOD), glu-
tathione peroxidase (GPX), Catalase (CAT), Peroxiredoxins (Prxs) and Guaiacol peroxidase
(POX). In addition, the ascorbate-glutathione cycle and its constituent enzymes are active.
Along with the enzymes, ascorbate and glutathione buffers, and secondary metabolites
such as carotenoids, tocopherols and phenolics are some of the non-enzymatic components
that play a role in antioxidant response [123]. Oxidative stress may be indirectly acquired
due to other abiotic stresses and thus this response system and its members must possess
high tolerance to a wide variety of stresses. For instance, H2O2 concentration raises in
a variety of stresses depending on the intensity and duration of stress and its differen-
tial abundance in various cellular compartments is disrupted depending on the type of
stress [124]. In response to this, an enzyme system has evolved consisting of 152 genes in
Arabidopsis which establishes a complex system-wide physiology supporting a variety of
mechanisms to neutralize the stress [125]. Similar systems have also been studied in other
plants including rice and wheat cultivars using multi-omics approach as well as simpler
measurements of ROS and H2O2 [126–128]. The damage itself is generally measured based
on electrolyte leakage, lipid peroxidation and propidium iodide fluorescence assay. NPs
are known to both induce and complement this antioxidant response system due to its ROS
generation and scavenging properties as well as its ability to regulate membrane damage.

CeO2 NPs were seen to scavenge and hence reduce ROS and H2O2 concentrations
in germinating rice seedlings in a dose dependent manner [129,130]. CeO2 NP’s surface
lattice has vacant oxygen sites which allows them to scavenge O2- radicals and OH radicals
and thus alternate their oxygen states between Ce3+ and Ce4+ [131]. At low concentrations
CeO2 NPs suppressed ROS production in M. arborea while higher concentrations mimicked
SOD activity [132]. Similar response was seen when A. thaliana was treated with CeO2 NPs,
but in addition a 2.5-fold increase in lipid peroxidation was recorded [133].



Plants 2023, 12, 292 13 of 26

TiO2 NPs in its rutile and anatase form were pretreated to spinach seeds before
being planted and later sprayed with TiO2 NPs during oxidative stress due to UV-B
irradiation and the damage were assessed in the extracted chloroplast. O2- radical and
H2O2 accumulation and thus lipid peroxidation was found to be significantly reduced [134].
Similar to CeO2 NPs, the TiO2 NPs can alternate between its 2 oxidation states Ti4+ and
Ti3+ while oxidizing or reducing the ROS and H2O2. It can also increase the tolerance
in stressed chlorophyll of chickpea cultivars by reducing the electrolyte leakage [61]. In
addition, TiO2 NPs also have the ability to generate ROS in dark and light environments,
independent of its size [135]. This causes it to increase lipid peroxidation of membrane
damage. For instance, in Lemna minor treated with TiO2-A NPs without oxidative stress
led to membrane damage, however lipid peroxidation was not observed probably due to
absorption of TiO2-A at the roots, which is biologically inert [136].

ZnO NPs have a distinct surface morphology that exposes the polar faces outwards
which can then fill it’s O2 vacancies with electrons to produce free radicals and thus generate
ROS [137]. When A. cepa and Fagopyrum esculentum was treated with ZnO NPs, it led to
oxidative stress due to the NPs itself as well as the ions they released [138]. In contrast,
they dissolved free Zn ions and alleviated stress in Pseudokirchneriella subcapitata [139,140].
NiO NPs also led to elevated lipid peroxidation and ROS generation in tomato roots [141].
Thus, could be attributed to the ability of Ni to take part in the Haber-Weiss cycle and
thus generate OH radicals. However, it cannot be concluded whether these released Ni
ions or the NiO NPs as a whole contributed to the ROS generation. Such an ambiguity
also arises in case of ZnO NPs, CoO NPs, CoO2 NPs and CuO NPs as well, in terms of
weather the metal ion released which can alternate between 2 oxidation states or the NPs
as a whole causes ROS generation and lipid peroxidation [138–140,142]. CuO NPs however
can form a unique pentavalent ion that can generate ROS in Elodea densa by the Fenton
reaction [143]. It also caused loss of membrane integrity due to K+ leakage in hydroponic
treatment in maize [144]. Fe2O4 NPs can increase lipid peroxidation by blocking aquaporins
and disrupting the respiration rates in ryegrass and pumpkin roots [145].

Other than metal oxide NPs, Ag NPs, graphene NPs and MWCNTs also have been
studied in terms of antioxidant response. Ag NPs when treated onto B. juncea led to
large reduction in lipid peroxidation and H2O2 concentrations due to its ability to po-
tentially increase redox reaction efficiency by acting as an electron relay center in these
reactions [146,147]. In contrast, graphene NPs and MWCNTs increased H2O2 and ROS
content and thus loss of cell viability when treated to cabbage, tomato, red spinach (for
graphene NPs) and rice suspension cells (for MWCNTs) respectively [148,149].

6.6. Molecular and Signaling Response

When subjected to abiotic stress, a plant gives a complex manifold response whose
early phase mainly involves stimulation of stress phytohormones, ROS accumulation as
well as kinase cascades and activation of ion channels that communicate both functional
electro-physiology as well as oscillatory signaling [150–152]. Following the early phase, the
next system of response involves species and stress dependent complex regulation of gene
networks whose downstream targets generally involve defense and repair of the stress-
induced injury [153]. Some of the stress induced proteins also play a role in neutralization
of ROS, induction of mitogen-activated protein (MAP) kinase and salt overly sensitive
(SOS) kinase signaling cascades [123,150]. Recently, functional outcomes of these regulatory
networks were also found to include ion and water transport and uptake as well as proteins
that further regulate the transcription of secondary response elements [154,155]. The
treatment of NPs to plants under abiotic stress is reported to alleviate the stress by inducing
one or more of the molecular responses described above. Some of the well-studied NPs are
Aluminum oxide (Al2O3) NPs, Silicon NPs, Zinc oxide (ZnO) NPs, multi-walled carbon
nanotubes and Titanium dioxide (TiO2) NPs. The study conducted by Zhao et al. (2022)
has concluded that nanomaterials such as silver and copper oxide have been potential
nanomaterials by inducing stress responses and defense mechanisms thereby increasing
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crop stress resilience [156]. The molecular responses under the influence of nanoparticles
have been reported in Table 4.

6.6.1. Salt Stress

Salt ion concentrations can cause toxicity to plants due to osmotic as well as oxida-
tive stress in the cells. The osmotic dis-regulation also leads to nutrient deficiency in the
plants [157]. Both Ag and Si NPs upon treatment to Solanum lycopersicum L. under osmotic
stress, the differential transcriptome showed an upregulation of the genes for proteins such
as ABA Response Element Binding Protein (AREB), Cystein-Rich Receptor-Like Protein Ki-
nase 42-Like (CRK1), 9-Cis-Epioxycarotinoid Dioxygenase 3 (NCED3) and downregulation
of the genes for proteins such as ABA and Environmental Stress-Induced Protein (TASI4),
Zinc Finger Homeodomain Transcription Factor (ZFHD1), Dwarf And Delayed Flowing 2
(DDF2) and variants of MAPK. These differentially regulated genes are all involved in ABA
pathways and the perturbed ABA would then lead to regulation of water and salt balance
in plants by modulating stomatal closure by activating Sucrose non-fermenting 1-related
protein kinase (SnRK2) [158,159].

One of the downstream targets of SnRK2 is to phosphorylate the AREB transcription
factor which in turn transcribes key genes of the ABA pathway thus forming an indirect
positive feedback loop [160]. SnRKs also have RBOH1 as a common phosphorylation target
which also mediates ABA signaling. However, RBOH1 is also an NADPH oxidase that
activates the ROS signaling network [158,161]. Thus, the NP mediated SnRKs activate ABA
signaling via AREB instead of RBOH when in osmotic stress. On the other hand, in drought,
the Si NPs were found to inhibit ABA signaling that activated APX2 expression which
have initiated a chloroplast electron transport chain to give rise to ROS and H2O2 [162].
AREB1, a member of the AREB transcription factor family, also plays a role in plant growth
arrangement and seed germination during osmotic stress [163]. AREB1 upregulates the
expression of P5CS1 which is the key enzyme of proline biosynthesis and thus influences
osmoregulation [164,165]. Proline is also an antioxidant signaling molecule that can chelate
metal ions [166]. However, NPs have also been observed to directly upregulate P5CS1 [158].

The ABA pathway is also upregulated by NCED3 during osmotic stress and TAS14
during drought stress [167]. While the ABA-dependent stress response proteins such as
TAS14 and NCED3 are clearly upregulated, the gene ZFHD1, which was downregulated
by the Ag NPs, infact codes for an ABA-independent stress response protein [168]. This
indicates that NP treatment to a plant under osmotic stress selectively upregulates the ABA-
dependent response systems. NPs also selectively activated ABA over other potential stress
related phytohormone regulation. For instance, NPs generally downregulated DDF2 which
is known to alleviate osmotic stress in plants by reducing gibberellic acid biosynthesis [169].
One of the key consequences of ABA signaling is oxidative stress alleviation [170]. Another
gene which is upregulated by the NPs is CRK1, which is known to sense ROS and regulate
the redox equilibrium via extracellular protein domains [171].

Table 4. Molecular responses under the influence of nanoparticles.

Stress Plant Studied Nano Particle Used Plant Response Reference

Salinity and
osmotic stress

Lycopersicon esculentum
Mill. Ag, Si

ABA upregulation and its dependent
stress alleviation by NCED3, TAS14 and

SnRK2 upregulation; osmoregulation and
oxidative stress alleviation by

AREB1-mediated P5CS1 overexpression
and proline biosynthesis; SOS, ROS and

MAPK-signaling activation

[158]
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Table 4. Cont.

Stress Plant Studied Nano Particle Used Plant Response Reference

Drought stress Arabidopsis thaliana L. TiO2, Ag, MWCNTs Noncoding RNA-mediated translational
repression of physiological target genes [172]

Flood stress Glycine max (L.) Merr Ag, Al2O3

Protein, lipid and energy metabolism
perturbation by PAB2 and BKR1

upregulation and PDC downregulation,
respectively, and antioxidant defense by

glyoxalase II 3 downregulation

[77]

Cold stress Cicer arietinum L. TiO2

Upregulation of RUBISCO and PEPC to
increase photosynthesis and reduce

electrolyte leakage index
[63]

The major signaling pathways that are activated by NPs in osmotic stress include SOS,
MAPK and ROS signaling. SOS pathway regulates salt tolerance and ion homeostasis while
MAPK and ROS pathways regulate oxidative stress conditions [122]. These pathways are
either activated or repressed depending on the nature of the NPs. For instance, Ag NPs
activated MAPK2 while Si NPs repressed it under the same salt conditions [158].

6.6.2. Drought Stress

Plants have devised two major changes to tolerate drought stress, reduction of tran-
spirational loss of water by stomatal closure and increased root water uptake by morpho-
logical and anatomical modifications. However, very few molecular studies exit for this
phenomenon and only one study involved NPs treatment. Garcia-Sanchez et al., 2015
observed 16 genes that were responsive to drought out of the 351 that were differentially
regulated when A. thaliana was treated withTiO2 NPs, Ag NPs and multi-walled carbon
nanotubes [172]. However, it can be assumed to apart from the small number of coding
genes that is responsive, there could certainly be non-coding elements such as miRNAs
that could regulate essential physiological genes by transcriptional repression, which is
common in plants under stress [173,174].

6.6.3. Flood Stress

Flooding greatly reduces the availability of oxygen in the submerged roots of the
plant, causing drastic physiological changes and damage [175]. When Glycine max L.
(soybeans) were exposed to Ag NPs and Al2O3 NPs during flooding stress, the differential
proteome between the two NPs treated and untreated showed 172 proteins with altered
concentrations of which 107 were root proteins [77]. The differential transcriptome on the
other hand showed NPs induced downregulation of Flavodoxin-Like Quinone Reductase
(FQR1), Alcohol dehydrogenase 1 (ADH) and Pyruvate Decarboxylase 2 (PDC) while
upregulating NmrA-Like which is a negative transcriptional regulator. The alleviation of
the flood stress was better with Al2O3 NPs treatment compared to Al NPs treatment [77].

The proteins related to energy metabolism were downregulated by the NPs and
those of glycolysis, protein translation and post translational modification as well as lipid
metabolism was upregulated by the NPs during flood [77]. Most importantly, glycoly-
sis regulation is based on the O2 availability and the submersion induced anaerobicity
that redirect the carbon flux towards fermentation [176]. The anaerobic stress due to the
formation of methylglyoxal is detoxified by glyoxalase into lactate. In response to Ag
NPs, glyoxalase II is downregulated along with other fermentation related proteins in the
root cells indicating a possibly lowered cytotoxicity in the NP treated plants [77,177]. The
conversion of acetaldehyde to ethanol is the key step in fermentation which is catalyzed
by PDC exclusively during anaerobic stress in the plant cells. The lower PDC expression
in NPs treated plants under flood stress compared to the untreated plants indicate that
NPs have a potential role in alleviating the anaerobic stress [178,179]. Lipid metabolism
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is also perturbed by NPs during floods. Beta Ketoacyl reductase 1 (BKR1) catalyzes fatty
acid and wax biosynthesis which is then deposited on the cuticle as a physical barrier to
water stress [180]. During flood, the BKR1 expression is increased by the NPs treatment,
however, during the recovery period after flood the expression is reduced but the activity
of the enzyme is enhanced [78].

The translation initiation is increased due to the upregulation of Poly-A Binding
Protein 2 (PAB2) that binds to the poly-A tails of the transcripts and protects it from
stress induced degradation and promotes its translation [181]. On the other hand, the
transcriptionally regulated genes NmrA-like and FQR1 are members of the NmrA-like
family which is an antioxidant ROS scavenging protein family [182]. The NPs alleviate
flood stress by regulating protein synthesis, lipid synthesis energy metabolism, and by
detoxifying the resulting oxidative stress. Additionally, all these effects were only observed
with NPs of size 15 nm. The differentially expressed classes of proteins vary greatly with
the size of the NPs [78].

6.6.4. Cold Stress

Cold temperatures have a diverse range of physiological damage to plants due to
their ability to disrupt protein and lipid structure and integrity. The cold induced lipid
modification impacts the membrane integrity and its related functions such as transport
and permeability which are essential for plants in photosynthesis, gas exchange and tran-
spiration. Generally, a reduction in transpiration and CO2 intake as well as inhibition of
chlorophyll is observed. At a molecular level, the large subunit of ribulose-1,5-bisphosphate
carboxylase oxygenase (RUBISCO) gets inhibited and consequently its small subunit gets
degraded causing a reduction in CO2 fixation [183]. When Cicer arietinum L. (Chickpea)
was treated with TiO2NPs under cold stress, it led to differential expression of the genes
related to cellular defense, chromatin modification, cell signaling and transcriptional regu-
lation [63]. Most importantly among these were the upregulation of the genes coding for
the large and small subunits of RUBISCO, Chlorophyll a/b binding proteins and Phos-
phoenolpyruvate Carboxylase (PEPC) which in turn led to increased photosynthesis and
altered energy metabolism and thus decreased H2O2 concentration [64]. The higher expres-
sion of photosynthetic and energy metabolism proteins alleviates their reduced activity
due to cold temperature stress. The energy metabolism is shifted from aerobic to anaerobic
pathway and the oxaloacetate formed by the PEPC enzyme is reduced to malate, which is
then degraded by dismutation in the mitochondria. Such a metabolic model reduces the
electrolyte leakage index [184].

6.6.5. Heat Stress

Numerous genes and transcription factors that are involved in regulating or inducing
responses to heat stress are influenced by various NPs [185]. The pretreatment of alfalfa
seedling with ZnO NPs before subjecting it to heat stress modified the ultrastructure of
chloroplasts, mitochondria, and cell wall thereby averting heat-induced damages and keep-
ing up better plant growth. ZnO NPs considerably improved heat stress-induced reduction
of TGS-GUS genes in Arabidopsis thaliana seedlings exposed to heat stress (37 ◦C) [186].
However, the study conducted by Younis et al. [187] found that, TaPIP1 and TaNIP2 aqua-
porin genes were shown to be overexpressed in wheat seedlings when exposed to heat
stress when silicon, as opposed to Si NPs, was applied, increasing the relative water content
of the plants.

6.6.6. Heavy Metal Stress

Recent research has shown that plants’ molecular and signaling pathways can be up-
regulated by using nanoparticles to help them tolerate heavy metals [188]. According to
Kareem et al. [189], the upregulation of antioxidant enzymes and osmoprotectants under
the influence of ZnO NPs improved heat tolerance mechanisms in mung bean. A dramatic
decrease in molecular expression of IRT1, IRT2, YSL2, and YSL15 genes which are involved in
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both Fe and Cd absorption, has been observed in rice seedlings after being exposed to ZnVI
(100 mg/L). In addition, overexpression of the OsVIT1 and OsCAX4 genes resulted in the re-
tention of Cd in vacuoles [190]. Additionally, it was shown that rice plants Si NPs up-regulate
the genes for Si uptake (OsLsi1) and Cd transport (OsHMA3) while down-regulate the genes
for Cd uptake and transport (OsLCT1 and OsNramp5) [74]. Venkatachalam et al. [191] found
significant genomic modifications in the ZnONPs treated plants, including the appearance of
novel DNA bands and/or the absence of typical bands in the RAPD pattern under Cd and
Pb stress. Si NPs also suppress the expression of the genes low-affinity cation transporter
(LCT1) and natural resistance-associated macrophage protein 5, which are involved in the
movement and uptake of Cd from root to shoot (NRAMP5). Both the silicon absorption gene
low silicon rice 1 (LSI1) and the heavy metal ATPase 3 (HMA3) gene, which transports Cd
into the vacuoles, are stimulated in rice plants [192]. The expression of antioxidant encoding
genes such as BnGST (Glutathione S-transferase), BnPOD (Peroxidase), and BnAPX (Ascorbate
peroxidase) that were upregulated under Hg stress were decreased on treatment with sulfur
nanoparticles [193].

7. The Drawbacks of Using Nanoparticles in Plants

Despite its application in agriculture in combating environmental stress, concerns
have been raised about the accumulation of nanomaterials and their potential entry into
the food chain [194]. Although it is understood that nanoscale materials such as protein, fat
globules, carbohydrates, and DNA present in food are not toxic, the excessive use of certain
engineered nanoscale materials in agriculture may pose a threat to both human health and
the environment [195]. On exposure to the engineered nanoparticles (ENPs) present in
the soil, the plants uptake and bioaccumulate the nanoparticles. Therefore, plants are the
fundamental elements of all ecosystems that play a crucial role in the transport of ENPs that
bind to the surface of plant roots and can be chemically or physically hazardous to them.
Once bound to plant roots, the ENPs may lead to the formation of large pores on cell walls
which facilitates the internalization of large ENPs through it [133,196]. It has also been
observed in leguminous plants that the nano-cerium oxide particles that entered the roots
and root nodules prevented the nitrogen fixing process that soybean crops perform [194].
Concerns are also raised about the chemical damage to the plants and long-term effects
of these nanoparticles on the food supply. Further the nanoparticles can gain entry to the
food chain, disturb it could be hazardous to humans and animals [197].

8. Conclusions and Prospects

Environmental costs brought on by urbanization, harsh weather, habitat loss and
global pollution are some of the main factors contributing to abiotic stress, which calls into
question the survival of green plants worldwide, including those used in agriculture. In
the existing crisis of a population boom, abiotic stressors, such as salinity, high and low
temperatures, heavy metals and water scarcity, cast doubts regarding global food security.
Nanotechnology is a contemporary technology that has been widely applied in relation
to abiotic-stress tolerance in plants. The ability of NPs to shield crop plants from various
abiotic challenges and the mechanisms of NP accumulation in plants are both highlighted
in this review. Due to the smaller size and high reactivity of nanoparticles, they are
easily absorbed by plants in any of their forms, such as nanofertilizers, nanoherbicides or
nanopesticides. NPs interact with plants in a variety of ways depending on their chemical
makeup, size, surface area and sensitivity. These interactions result in severe morphological,
anatomical and physiological changes and are crucial to improving crop plants. Improved
growth, biomass production, chlorophyll content, sugar level, accumulation of osmolytes
and antioxidant production along with the increased expression of stress-related genes,
which elevate protein and chlorophyll content and promote nitrogen metabolism, are some
of the beneficial effects of using nanoparticles in abiotic stress management.

Even though the effectiveness of nanoparticles in abiotic-stress tolerance is well doc-
umented, most of these studies are still in the laboratory stage. The extensive usage of
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nanoparticles has prompted worries about their potential adverse effects on the environ-
ment and also about the possibility of nanoparticle accumulation in edible plant parts.
Hence, focused research aiming to create appropriate evaluation methodologies to evaluate
the effects of nanoparticles and nanofertilizers on biotic and abiotic ecosystem components
is needed. In addition, the impact of nanoparticles on human beings and identification
of the acceptable limits are also necessary. Future studies should concentrate on design-
ing NPs that are affordable, nontoxic, ecologically safe and self-degradable in order to
commercialize nanotechnology from the laboratory to the agricultural fields.
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