Effects of Nanoparticles on Plant Growth and Development Under Biotic and Abiotic Stress: 2nd Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 541

Special Issue Editors


E-Mail Website
Guest Editor
Centro de Investigación en Química Aplicada (CIQA), Blvd. Ing. Enrique Reyna H. No. 140, Saltillo 25294, Coahuila, México
Interests: synthesis of metallic nanoparticles; synthesis of nanoparticle–polymer composites; surface modification of nanoparticles; electrically conductive polymer composites; thermally conductive polymer composites; antimicrobial polymers; photocatalyst–polymer composites; polymer–carbon composites; polymer composites for water treatment; sustainable agriculture; nanotechnology; nano-agrochemicals
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
Interests: plant biostimulation; plant nutrition; stress tolerance induction; seed priming using nanometric or bulk species of essential and beneficial nutrients; biopolymers; UV radiation; relationships between plant biostimulation, plant nutrition, tolerance to stress, and the nutritional quality and biofortification of vegetables and fruits
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The growth in the world population is the main factor that governs global environmental change, since it causes a need to occupy spaces destined for agriculture, increases the consumption of food, water, and energy, and generates the strong emission of greenhouse gases, causing drastic climate changes. Environmental changes limit agricultural production and reduce the yield and quality of products due to biotic and abiotic environmental stress. In addition, various environmental stress conditions, such as drought, heat, salinity, cold, or pathogenic infections, are detrimental to plant growth and development.

Different technologies are used to reduce the effects of biotic and abiotic stresses on agricultural crops. Recently, nanotechnology has attracted much attention and has been used to combat stress in plants and reduce its negative effects on agricultural production, avoiding large economic losses. Various nanoparticles and nanomaterials have been used, and positive and negative biological effects have been found.

Nanotechnology is an important tool for sustainable crop production, reducing nutrient loss, suppressing disease by pathogens, and thus improving yields. The idea of using nanotechnology for the sustainable production of safe food is explored, in this Special Issue, from a number of perspectives, including those related to the toxicity of food and the environment.

This Special Issue includes articles related to the use of nanoparticles and nanomaterials to combat biotic and abiotic stress in crop production.

Prof. Dr. Gregorio Cadenas-Pliego
Prof. Dr. Adalberto Benavides-Mendoza
Prof. Dr. Antonio Juárez Maldonado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • biotic stress
  • nanoparticles
  • agricultural crops
  • drought
  • salinity
  • nanomaterials
  • environmental stresses
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 4037 KiB  
Article
Comparative Study on the Effects of Silicon Nanoparticles and Cellulose Nanocrystals on Drought Tolerance in Tall Fescue (Festuca arundinacea Schreb.)
by Meng Li, Sile Hu, Xulong Bai, Jie Ren, Kanliang Tian, Huili Zhang, Zhilong Zhang and Vanquy Nguyen
Plants 2025, 14(10), 1461; https://doi.org/10.3390/plants14101461 - 14 May 2025
Viewed by 425
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims [...] Read more.
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation. Full article
Show Figures

Graphical abstract

Back to TopTop