Special Issue "Nutraceuticals and Human Health"

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Nutrition and Public Health".

Deadline for manuscript submissions: 31 July 2020.

Special Issue Editor

Dr. Anna Scotto D'Abusco
Website
Guest Editor
Dept. of Biochemical Sciences, Sapienza University of Roma.P.le Aldo Moro, 5, 00185 Roma, Italy
Interests: inflammation; osteoarthritis onset and progression; osteosarcoma; aging and skin cancer; glucosamine and its peptidyl derivatives; nutraceutical compounds

Special Issue Information

Dear Colleagues,

In this Special Issue of Nutrients, we would like to collect papers on the health-promoting effect of nutraceuticals, taking into account both healthy people and patients affected by different pathologies. At present, the administration of nutraceuticals is very diffused to treat diseases, to contrast aging and stress, and to serve as dietary supplements for athletes.

Several studies on compositions, formulations, and nutraceutical delivery have been conducted so far, with inconsistent outcomes. Particularly, the debate on the secondary and rare adverse effects of some nutraceuticals and their safety and effectiveness is very interesting. In recent years, the health claims of a large number of nutraceuticals were not approved by FDA and EFSA agencies. Therefore, further research is required to analyze more in depth the mechanism of action of molecules to be used as nutraceuticals.

We welcome different types of manuscript submissions, including original research articles and up-to-date reviews (systematic reviews and meta-analyses).

Potential topics may include but not be limited to the study of molecules extracted from plants used to treat different types of pathologies as inflammatory diseases, bone diseases, cancer, cardiovascular disease, obesity and weigth control, diabetes, immunometabolism, hyperlipidemic diseases, skin diseases, and quality of life.

Dr. Anna Scotto D'Abusco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Herbal extracts
  • Nutraceutical screening
  • Biochemical analyses
  • Cell culture models
  • In vivo studies
  • Inflammation
  • Bone diseases
  • Cancer
  • Immunometabolism
  • Health claims

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal
Nutrients 2020, 12(7), 1990; https://doi.org/10.3390/nu12071990 (registering DOI) - 04 Jul 2020
Abstract
The purpose of this study was to investigate the impact of antioxidant-rich marine phytoplankton supplementation (Oceanix, OCX) on performance and muscle damage following a cross-training event in endurance-trained subjects. Additionally, an animal model was carried out to assess the effects of varying dosages [...] Read more.
The purpose of this study was to investigate the impact of antioxidant-rich marine phytoplankton supplementation (Oceanix, OCX) on performance and muscle damage following a cross-training event in endurance-trained subjects. Additionally, an animal model was carried out to assess the effects of varying dosages of OCX, with exercise, on intramuscular antioxidant capacity. Methods: In the human trial, endurance-trained subjects (average running distance = 29.5 ± 2.6 miles × week−1) were randomly divided into placebo (PLA) and OCX (25 mg) conditions for 14 days. The subjects were pre-tested on a one-mile uphill run, maximal isometric strength, countermovement jump (CMJ) and squat jump (SJ) power, and for muscle damage (creatine kinase (CK)). On Day 12, the subjects underwent a strenuous cross-training event. Measures were reassessed on Day 13 and 14 (24 h and 48 h Post event). In the animal model, Wistar rats were divided into four groups (n = 7): (i) Control (no exercise and placebo (CON)), (ii) Exercise (E), (iii) Exercise + OCX 1 (Oceanix, 2.55 mg/day, (iv) Exercise + OCX 2 (5.1 mg/day). The rats performed treadmill exercise five days a week for 6 weeks. Intramuscular antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) and muscle damage (CK and myoglobin (MYOB) were collected. The data were analyzed using repeated measures ANOVA and t-test for select variables. The alpha value was set at p < 0.05. Results: For the human trial, SJ power lowered in PLA relative to OCX at 24 h Post (−15%, p < 0.05). Decrements in isometric strength from Pre to 48 h Post were greater in the PLA group (−12%, p < 0.05) than in the OCX. Serum CK levels were greater in the PLA compared to the OCX (+14%, p < 0.05). For the animal trial, the intramuscular antioxidant capacity was increased in a general dose-dependent manner (E + Oc2 > E + Oc1 > E > CON). Additionally, CK and MYOB were lower in supplemented compared to E alone. Conclusions: Phytoplankton supplementation (Oceanix) sustains performance and lowers muscle damage across repeated exercise bouts. The ingredient appears to operate through an elevating oxidative capacity in skeletal muscle. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Open AccessArticle
Regular Consumption of Lipigo® Promotes the Reduction of Body Weight and Improves the Rebound Effect of Obese People Undergo a Comprehensive Weight Loss Program
Nutrients 2020, 12(7), 1960; https://doi.org/10.3390/nu12071960 - 30 Jun 2020
Abstract
Obesity is a global public health problem. Objective: To evaluate the effect of the regular consumption of the product Lipigo® on body weight and rebound effect on overweight/obese subjects undergoing a comprehensive weight loss program. Methods: A randomized, parallel, double-blind, placebo-controlled clinical [...] Read more.
Obesity is a global public health problem. Objective: To evaluate the effect of the regular consumption of the product Lipigo® on body weight and rebound effect on overweight/obese subjects undergoing a comprehensive weight loss program. Methods: A randomized, parallel, double-blind, placebo-controlled clinical trial was conducted with male and female subjects presenting a BMI 25–39.9 kg/m2. All subjects underwent a comprehensive weight loss program (WLP) for 12 weeks, which included an individualized hypocaloric diet, physical activity recommendations, nutritional education seminars, and three times a day consumption of the product Lipigo® or Placebo. After-WLP, subjects continued the treatment for 9 months to assess rebound effect. Body weight (BW), BMI, and body composition were measured at the beginning and the end of the WLP, and in the follow-up. Results: A total of 120 subjects (85% women) 49.0 ± 9.5 years old and with a BW of 81.57 ± 13.26 kg (BMI 31.19 ± 3.44 kg/m2) were randomized and 73 subjects finished the study. At the end of the WLP, there was a tendency toward reduced BW (p = 0.093), BMI (p = 0.063), and WC (p = 0.059) in the treated group. However, subjects with obesity type 1 (OB1) from the treated group significantly reduced body weight (−5.27 ± 2.75 vs. −3.08 ± 1.73 kg; p = 0.017) and BMI (−1.99 ± 1.08 vs. −1.09 ± 0.55 kg/m2; p = 0.01) compared with placebo. They also presented a minor rebound effect after 9 months with product consumption (−4.19 ± 3.61 vs. −1.44 ± 2.51 kg; p = 0.026), minor BMI (−1.61 ± 1.43 vs. −0.52 ± 0.96 kg/m2; p = 0.025) and tended to have less fat-mass (−3.44 ± 2.46 vs. −1.44 ± 3.29 kg; p = 0.080) compared with placebo. Conclusions: The regular consumption of the product Lipigo® promotes the reduction of body weight and reduces the rebound effect of obese people after 52 weeks (12 months), mainly in obesity type 1, who undergo a comprehensive weight loss program. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Open AccessArticle
Protocatechuic Acid Extends Survival, Improves Motor Function, Diminishes Gliosis, and Sustains Neuromuscular Junctions in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
Nutrients 2020, 12(6), 1824; https://doi.org/10.3390/nu12061824 - 18 Jun 2020
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by motor neuron apoptosis and subsequent skeletal muscle atrophy caused by oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation. Anthocyanins are polyphenolic compounds found in berries that possess neuroprotective and anti-inflammatory properties. Protocatechuic acid [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by motor neuron apoptosis and subsequent skeletal muscle atrophy caused by oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation. Anthocyanins are polyphenolic compounds found in berries that possess neuroprotective and anti-inflammatory properties. Protocatechuic acid (PCA) is a phenolic acid metabolite of the parent anthocyanin, kuromanin, found in blackberries and bilberries. We explored the therapeutic effects of PCA in a transgenic mouse model of ALS that expresses mutant human Cu, Zn-superoxide dismutase 1 with a glycine to alanine substitution at position 93. These mice display skeletal muscle atrophy, hindlimb weakness, and weight loss. Disease onset occurs at approximately 90 days old and end stage is reached at approximately 120 days old. Daily treatment with PCA (100 mg/kg) by oral gavage beginning at disease onset significantly extended survival (121 days old in untreated vs. 133 days old in PCA-treated) and preserved skeletal muscle strength and endurance as assessed by grip strength testing and rotarod performance. Furthermore, PCA reduced astrogliosis and microgliosis in spinal cord, protected spinal motor neurons from apoptosis, and maintained neuromuscular junction integrity in transgenic mice. PCA lengthens survival, lessens the severity of pathological symptoms, and slows disease progression in this mouse model of ALS. Given its significant preclinical therapeutic effects, PCA should be further investigated as a treatment option for patients with ALS. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Open AccessArticle
Raspberry Ketone [4-(4-Hydroxyphenyl)-2-Butanone] Differentially Effects Meal Patterns and Cardiovascular Parameters in Mice
Nutrients 2020, 12(6), 1754; https://doi.org/10.3390/nu12061754 - 11 Jun 2020
Abstract
Raspberry ketone (RK; [4-(4-hydroxyphenyl)-2-butanone]) is a popular nutraceutical used for weight management and appetite control. We sought to determine the physiological benefits of RK on the meal patterns and cardiovascular changes associated with an obesogenic diet. In addition, we explored whether the physiological [...] Read more.
Raspberry ketone (RK; [4-(4-hydroxyphenyl)-2-butanone]) is a popular nutraceutical used for weight management and appetite control. We sought to determine the physiological benefits of RK on the meal patterns and cardiovascular changes associated with an obesogenic diet. In addition, we explored whether the physiological benefits of RK promoted anxiety-related behaviors. Male and female C57BL/6J mice were administered a daily oral gavage of RK 200 mg/kg, RK 400 mg/kg, or vehicle for 14 days. Commencing with dosing, mice were placed on a high-fat diet (45% fat) or low-fat diet (10% fat). Our results indicated that RK 200 mg/kg had a differential influence on meal patterns in males and females. In contrast, RK 400 mg/kg reduced body weight gain, open-field total distance travelled, hemodynamic measures (i.e., reduced systolic blood pressure (BP), diastolic BP and mean BP), and increased nocturnal satiety ratios in males and females. In addition, RK 400 mg/kg increased neural activation in the nucleus of the solitary tract, compared with vehicle. RK actions were not influenced by diet, nor resulted in an anxiety-like phenotype. Our findings suggest that RK has dose-differential feeding and cardiovascular actions, which needs consideration as it is used as a nutraceutical for weight control for obesity. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Open AccessArticle
Allithiamine Alleviates Hyperglycaemia-Induced Endothelial Dysfunction
Nutrients 2020, 12(6), 1690; https://doi.org/10.3390/nu12061690 - 05 Jun 2020
Abstract
Diabetes mellitus-related morbidity and mortality is a rapidly growing healthcare problem, globally. Several nutraceuticals exhibit potency to target the pathogenesis of diabetes mellitus. The antidiabetic effects of compounds of garlic have been extensively studied, however, limited data are available on the biological effects [...] Read more.
Diabetes mellitus-related morbidity and mortality is a rapidly growing healthcare problem, globally. Several nutraceuticals exhibit potency to target the pathogenesis of diabetes mellitus. The antidiabetic effects of compounds of garlic have been extensively studied, however, limited data are available on the biological effects of a certain garlic component, allithiamine. In this study, allithiamine was tested using human umbilical cord vein endothelial cells (HUVECs) as a hyperglycaemic model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometric analysis using antibodies against specific marker proteins including CD31, CD45, CD54, and CD106. The non-cytotoxic concentration of allithiamine was determined based on MTT, apoptosis, and necrosis assays. Subsequently, cells were divided into three groups: incubating with M199 medium as the control; or with 30 mMol/L glucose; or with 30 mMol/L glucose plus allithiamine. The effect of allithiamine on the levels of advanced glycation end-products (AGEs), activation of NF-κB, release of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α, and H2O2-induced oxidative stress was investigated. We found that in the hyperglycaemia-induced increase in the level of AGEs, pro-inflammatory changes were significantly suppressed by allithiamine. However, allithiamine could not enhance the activity of transketolase, but it exerts a potent antioxidant effect. Collectively, our data suggest that allithiamine could alleviate the hyperglycaemia-induced endothelial dysfunction due to its potent antioxidant and anti-inflammatory effect by a mechanism unrelated to the transketolase activity. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Graphical abstract

Open AccessArticle
Dietary Supplements for Male Infertility: A Critical Evaluation of Their Composition
Nutrients 2020, 12(5), 1472; https://doi.org/10.3390/nu12051472 - 19 May 2020
Abstract
Dietary supplements (DS) represent a possible approach to improve sperm parameters and male fertility. A wide range of DS containing different nutrients is now available. Although many authors demonstrated benefits from some nutrients in the improvement of sperm parameters, their real effectiveness is [...] Read more.
Dietary supplements (DS) represent a possible approach to improve sperm parameters and male fertility. A wide range of DS containing different nutrients is now available. Although many authors demonstrated benefits from some nutrients in the improvement of sperm parameters, their real effectiveness is still under debate. The aim of this study was to critically review the composition of DS using the Italian market as a sample. Active ingredients and their minimal effective daily dose (mED) on sperm parameters were identified through a literature search. Thereafter, we created a formula to classify the expected efficacy of each DS. Considering active ingredients, their concentration and the recommended daily dose, DS were scored into three classes of expected efficacy: higher, lower and none. Twenty-one DS were identified. Most of them had a large number of ingredients, frequently at doses below mED or with undemonstrated efficacy. Zinc was the most common ingredient of DS (70% of products), followed by selenium, arginine, coenzyme Q and folic acid. By applying our scoring system, 9.5% of DS fell in a higher class, 71.4% in a lower class and 19.1% in the class with no expected efficacy. DS marketed in Italy for male infertility frequently includes effective ingredients but also a large number of substances at insufficient doses or with no reported efficacy. Manufacturers and physicians should better consider the scientific evidence on effective ingredients and their doses before formulating and prescribing these products. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Abscisic Acid: A Conserved Hormone in Plants and Humans and a Promising Aid to Combat Prediabetes and the Metabolic Syndrome
Nutrients 2020, 12(6), 1724; https://doi.org/10.3390/nu12061724 - 09 Jun 2020
Abstract
Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a [...] Read more.
Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a signal regulating cell responses to environmental challenges. In mammals, nanomolar ABA controls the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue with an insulin-independent mechanism and increasing energy expenditure in the brown and white adipose tissues. Activation by ABA of AMP-dependent kinase (AMPK), in contrast to the insulin-induced activation of AMPK-inhibiting Akt, is responsible for stimulation of GLUT4-mediated muscle glucose uptake, and for the browning effect on white adipocytes. Intake of micrograms per Kg body weight of ABA improves glucose tolerance in both normal and in borderline subjects and chronic intake of such a dose of ABA improves blood glucose, lipids and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and the metabolic syndrome. This review summarizes the most recent results obtained in vivo with microgram amounts of ABA, the role of the receptor LANCL2 in the hormone’s action and the significance of the endowment by mammals of two different hormones controlling the metabolic response to glucose availability. Finally, open issues in need of further investigation and perspectives for the clinical use of nutraceutical ABA are discussed. Full article
(This article belongs to the Special Issue Nutraceuticals and Human Health)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Name: Anna Scotto d’Abusco
Affiliation: Sapienza University of Roma, Dept of Biochemical Sciences “A. Rossi Fanelli”
Topic: Micronized natural extracts to treat bone pathologies

Name: Antonella Di Sotto
Affiliation: Sapienza University of Roma, Dept of Physiology and Pharmacology “V. Erspamer”
Topic: Hop inflorescence by-products as antiviral remedies against influenza infection

Name: Lorenzo Maria Donini
Affiliation: Sapienza University of Roma, Dept of Experimental Medicine, Medical Pathophysiology, Food Science and Endocrinology Section
Topic: Effects of plant food extracts on inflammatory pathways in human primary osteoblasts

Name: Viviana Roman
Affiliation: Inst. “Stefan S. Nicolau”, Center of Immunology
Topic: The effect of some natural compounds upon chemotherapy response in head and neck cancer

Back to TopTop