-
Laser-Induced Au Catalyst Generation for Tailored ZnO Nanostructure Growth
-
Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy
-
Nanoscale Phase Change Material Array by Sub-Resolution Assist Feature for Storage Class Memory Application
-
Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance
-
Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xylella fastidiosa
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Nanomaterials include: Nanomanufacturing and Applied Nano.
Impact Factor:
5.719 (2021);
5-Year Impact Factor:
5.810 (2021)
Latest Articles
Precision Tailoring Quasi-BIC Resonance of a-Si:H Metasurfaces
Nanomaterials 2023, 13(11), 1810; https://doi.org/10.3390/nano13111810 (registering DOI) - 05 Jun 2023
Abstract
The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in
[...] Read more.
The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the Q-factor with gradual heating. A gradual increment in temperature leads to a spectral shift in the resonance wavelength. With the support of ellipsometry measurements, the spectral shift resulting from the short-duration (ten minutes) heating is identified to be due to refractive index variations in the material rather than a geometric effect or amorphous/polycrystalline phase transition. In the case of quasi-BIC modes in the near-infrared, resonance wavelength could be adjusted from T = 350 C to T = 550 C without affecting the Q-factor considerably. Apart from the temperature-induced resonance trimming, large Q-factors can be attained at the highest analyzed temperature (T = 700 C) in the near-infrared quasi-BIC modes. Resonance tailoring is just one of the possible applications of our results. We expect that our study is also insightful in the design of a-Si:H metasurfaces where large Q-factors are required at high temperatures.
Full article
(This article belongs to the Special Issue Metasurfaces for Photonic Devices: Theory and Applications)
Open AccessArticle
Transport Characteristics of Silicon Multi-Quantum-Dot Transistor Analyzed by Means of Experimental Parametrization Based on Single-Hole Tunneling Model
Nanomaterials 2023, 13(11), 1809; https://doi.org/10.3390/nano13111809 (registering DOI) - 05 Jun 2023
Abstract
►▼
Show Figures
The transport characteristics of a gate-all-around Si multiple-quantum-dot (QD) transistor were studied by means of experimental parametrization using theoretical models. The device was fabricated by using the e-beam lithographically patterned Si nanowire channel, in which the ultrasmall QDs were self-created along the
[...] Read more.
The transport characteristics of a gate-all-around Si multiple-quantum-dot (QD) transistor were studied by means of experimental parametrization using theoretical models. The device was fabricated by using the e-beam lithographically patterned Si nanowire channel, in which the ultrasmall QDs were self-created along the Si nanowire due to its volumetric undulation. Owing to the large quantum-level spacings of the self-formed ultrasmall QDs, the device clearly exhibited both Coulomb blockade oscillation (CBO) and negative differential conductance (NDC) characteristics at room temperature. Furthermore, it was also observed that both CBO and NDC could evolve along the extended blockade region within wide gate and drain bias voltage ranges. By analyzing the experimental device parameters using the simple theoretical single-hole-tunneling models, the fabricated QD transistor was confirmed as comprising the double-dot system. Consequently, based on the analytical energy-band diagram, we found that the formation of ultrasmall QDs with imbalanced energetic natures (i.e., imbalanced quantum energy states and their imbalanced capacitive-coupling strengths between the two dots) could lead to effective CBO/NDC evolution in wide bias voltage ranges.
Full article

Figure 1
Open AccessArticle
Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing
Nanomaterials 2023, 13(11), 1808; https://doi.org/10.3390/nano13111808 (registering DOI) - 05 Jun 2023
Abstract
A nonlinear MEMS multimass sensor is numerically investigated, designed as a single input-single output (SISO) system consisting of an array of nonlinear microcantilevers clamped to a shuttle mass which, in turn, is constrained by a linear spring and a dashpot. The microcantilevers are
[...] Read more.
A nonlinear MEMS multimass sensor is numerically investigated, designed as a single input-single output (SISO) system consisting of an array of nonlinear microcantilevers clamped to a shuttle mass which, in turn, is constrained by a linear spring and a dashpot. The microcantilevers are made of a nanostructured material, a polymeric hosting matrix reinforced by aligned carbon nanotubes (CNT). The linear as well as the nonlinear detection capabilities of the device are explored by computing the shifts of the frequency response peaks caused by the mass deposition onto one or more microcantilever tips. The frequency response curves of the device are obtained by a pathfollowing algorithm applied to the reduced-order model of the system. The microcantilevers are described by a nonlinear Euler-Bernoulli inextensible beam theory, which is enriched by a meso-scale constitutive law of the nanocomposite. In particular, the microcantilever constitutive law depends on the CNT volume fraction suitably used for each cantilever to tune the frequency bandwidth of the whole device. Through an extensive numerical campaign, the mass sensor sensitivity estimated in the linear and nonlinear dynamic range shows that, for relatively large displacements, the accuracy of the added mass detectability can be improved due to the larger nonlinear frequency shifts at resonance (up to 12%).
Full article
(This article belongs to the Special Issue Computational Modeling and Simulation for Nanomaterials, Nanotechnology, and Nanoscience - II)
Open AccessArticle
Zirconium Component Modified Porous Nanowood for Efficient Removal of Phosphate from Aqueous Solutions
Nanomaterials 2023, 13(11), 1807; https://doi.org/10.3390/nano13111807 (registering DOI) - 05 Jun 2023
Abstract
Rapid urban industrialization and agricultural production have led to the discharge of excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate capture nanocomposite (PEI−[email protected])
[...] Read more.
Rapid urban industrialization and agricultural production have led to the discharge of excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate capture nanocomposite (PEI−[email protected]) with mild preparation conditions, environmental friendliness, recyclability, and high efficiency has been developed by modifying aminated nanowood with a zirconium (Zr) component. The Zr component imparts the ability to capture phosphate to the PEI−[email protected], while the porous structure provides a mass transfer channel, resulting in excellent adsorption efficiency. Additionally, the nanocomposite maintains more than 80% phosphate adsorption efficiency even after ten adsorption–desorption cycles, indicating its recyclability and potential for repeated use. This compressible nanocomposite provides novel insights into the design of efficient phosphate removal cleaners and offers potential approaches for the functionalization of biomass−based composites.
Full article
(This article belongs to the Special Issue Functional Coatings with Nanostructures: Synthesis, Characterizations and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Controllable Synthesis and Charge Density Wave Phase Transitions of Two-Dimensional 1T-TaS2 Crystals
by
, , , , , , , and
Nanomaterials 2023, 13(11), 1806; https://doi.org/10.3390/nano13111806 (registering DOI) - 05 Jun 2023
Abstract
1T-TaS2 has attracted much attention recently due to its abundant charge density wave phases. In this work, high-quality two-dimensional 1T-TaS2 crystals were successfully synthesized by a chemical vapor deposition method with controllable layer numbers, confirmed by the structural characterization. Based on
[...] Read more.
1T-TaS2 has attracted much attention recently due to its abundant charge density wave phases. In this work, high-quality two-dimensional 1T-TaS2 crystals were successfully synthesized by a chemical vapor deposition method with controllable layer numbers, confirmed by the structural characterization. Based on the as-grown samples, their thickness-dependency nearly commensurate charge density wave/commensurate charge density wave phase transitions was revealed by the combination of the temperature-dependent resistance measurements and Raman spectra. The phase transition temperature increased with increasing thickness, but no apparent phase transition was found on the 2~3 nm thick crystals from temperature-dependent Raman spectra. The transition hysteresis loops due to temperature-dependent resistance changes of 1T-TaS2 can be used for memory devices and oscillators, making 1T-TaS2 a promising material for various electronic applications.
Full article
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Reduction of Nitroaromatics by Gold Nanoparticles on Porous Silicon Fabricated Using Metal-Assisted Chemical Etching
Nanomaterials 2023, 13(11), 1805; https://doi.org/10.3390/nano13111805 (registering DOI) - 05 Jun 2023
Abstract
In this study, we investigated the use of porous silicon (PSi) fabricated using metal-assisted chemical etching (MACE) as a substrate for the deposition of Au nanoparticles (NPs) for the reduction of nitroaromatic compounds. PSi provides a high surface area for the deposition of
[...] Read more.
In this study, we investigated the use of porous silicon (PSi) fabricated using metal-assisted chemical etching (MACE) as a substrate for the deposition of Au nanoparticles (NPs) for the reduction of nitroaromatic compounds. PSi provides a high surface area for the deposition of Au NPs, and MACE allows for the fabrication of a well-defined porous structure in a single step. We used the reduction of p-nitroaniline as a model reaction to evaluate the catalytic activity of Au NPs on PSi. The results indicate that the Au NPs on the PSi exhibited excellent catalytic activity, which was affected by the etching time. Overall, our results highlighted the potential of PSi fabricated using MACE as a substrate for the deposition of metal NPs for catalytic applications.
Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles)
►▼
Show Figures

Figure 1
Open AccessCommunication
Green Cleaning of 3D-Printed Polymeric Products by Micro-/Nano-Bubbles
by
, , , , , , and
Nanomaterials 2023, 13(11), 1804; https://doi.org/10.3390/nano13111804 - 05 Jun 2023
Abstract
3D printing technology has been used to directly produce various actual products, ranging from engines and medicines to toys, especially due to its advantage in producing items of complicated, porous structures, which are inherently difficult to clean. Here, we apply micro-/nano-bubble technology to
[...] Read more.
3D printing technology has been used to directly produce various actual products, ranging from engines and medicines to toys, especially due to its advantage in producing items of complicated, porous structures, which are inherently difficult to clean. Here, we apply micro-/nano-bubble technology to the removal of oil contaminants from 3D-printed polymeric products. Micro-/nano-bubbles show promise in the enhancement of cleaning performance with or without ultrasound, which is attributed to their large specific surface area enhancing the adhesion sites of contaminants, and their high Zeta potential which attracts contaminant particles. Additionally, bubbles produce tiny jets and shock waves at their rupture, driven by coupled ultrasound, which can remove sticky contaminants from 3D-printed products. As an effective, efficient, and environmentally friendly cleaning method, micro-/nano-bubbles can be used in a range of applications.
Full article
(This article belongs to the Special Issue Nanobubbles and Their Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Carbon and Cellulose-Based Nanoparticle-Reinforced Polymer Nanocomposites: A Critical Review
Nanomaterials 2023, 13(11), 1803; https://doi.org/10.3390/nano13111803 - 05 Jun 2023
Abstract
Nanomaterials are currently used for different applications in several fields. Bringing the measurements of a material down to nanoscale size makes vital contributions to the improvement of the characteristics of materials. The polymer composites acquire various properties when added to nanoparticles, increasing characteristics
[...] Read more.
Nanomaterials are currently used for different applications in several fields. Bringing the measurements of a material down to nanoscale size makes vital contributions to the improvement of the characteristics of materials. The polymer composites acquire various properties when added to nanoparticles, increasing characteristics such as bonding strength, physical property, fire retardance, energy storage capacity, etc. The objective of this review was to validate the major functionality of the carbon and cellulose-based nanoparticle-filled polymer nanocomposites (PNC), which include fabricating procedures, fundamental structural properties, characterization, morphological properties, and their applications. Subsequently, this review includes arrangement of nanoparticles, their influence, and the factors necessary to attain the required size, shape, and properties of the PNCs.
Full article
(This article belongs to the Special Issue Fiber Reinforced Polymer Nanocomposites)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of α-Al2O3 Additive on the Surface Micro-Arc Oxidation Coating of Ti6Al4V Alloy
by
and
Nanomaterials 2023, 13(11), 1802; https://doi.org/10.3390/nano13111802 - 05 Jun 2023
Abstract
►▼
Show Figures
α-Al2O3 nanoparticles can enter a micro-arc oxidation coating and participate in the coating-formation process through chemical reaction or physical–mechanical combination in the electrolyte. The prepared coating has high strength, good toughness and excellent wear and corrosion resistance. In this paper,
[...] Read more.
α-Al2O3 nanoparticles can enter a micro-arc oxidation coating and participate in the coating-formation process through chemical reaction or physical–mechanical combination in the electrolyte. The prepared coating has high strength, good toughness and excellent wear and corrosion resistance. In this paper, 0, 1, 3 and 5 g/L of α-Al2O3 nanoparticles were added to a Na2SiO3-Na(PO4)6 electrolyte to study the effect on the microstructure and properties of a Ti6Al4V alloy micro-arc oxidation coating. The thickness, microscopic morphology, phase composition, roughness, microhardness, friction and wear properties and corrosion resistance were characterized using a thickness meter, scanning electron microscope, X-ray diffractometer, laser confocal microscope, microhardness tester and electrochemical workstation. The results show that surface quality, thickness, microhardness, friction and wear properties and corrosion resistance of the Ti6Al4V alloy micro-arc oxidation coating were improved by adding α-Al2O3 nanoparticles to the electrolyte. The nanoparticles enter the coatings by physical embedding and chemical reaction. The coatings’ phase composition mainly includes Rutile-TiO2, Anatase-TiO2, α-Al2O3, Al2TiO5 and amorphous phase SiO2. Due to the filling effect of α-Al2O3, the thickness and hardness of the micro-arc oxidation coating increase, and the surface micropore aperture size decreases. The roughness decreases with the increase of α-Al2O3 additive concentration, while the friction wear performance and corrosion resistance are improved.
Full article

Figure 1
Open AccessArticle
Sub-Millisecond Laser-Irradiation-Mediated Surface Restructure Boosts the CO Production Yield of Cobalt Oxide Supported Pd Nanoparticles
by
, , , , , , , and
Nanomaterials 2023, 13(11), 1801; https://doi.org/10.3390/nano13111801 - 05 Jun 2023
Abstract
The catalytic conversion of CO2 into valuable commodities has the potential to balance ongoing energy and environmental issues. To this end, the reverse water–gas shift (RWGS) reaction is a key process that converts CO2 into CO for various industrial processes. However,
[...] Read more.
The catalytic conversion of CO2 into valuable commodities has the potential to balance ongoing energy and environmental issues. To this end, the reverse water–gas shift (RWGS) reaction is a key process that converts CO2 into CO for various industrial processes. However, the competitive CO2 methanation reaction severely limits the CO production yield; therefore, a highly CO-selective catalyst is needed. To address this issue, we have developed a bimetallic nanocatalyst comprising Pd nanoparticles on the cobalt oxide support (denoted as CoPd) via a wet chemical reduction method. Furthermore, the as-prepared CoPd nanocatalyst was exposed to sub-millisecond laser irradiation with per-pulse energies of 1 mJ (denoted as CoPd-1) and 10 mJ (denoted as CoPd-10) for a fixed duration of 10 s to optimize the catalytic activity and selectivity. For the optimum case, the CoPd-10 nanocatalyst exhibited the highest CO production yield of ∼1667 μmol g−1catalyst, with a CO selectivity of ∼88% at a temperature of 573 K, which is a 41% improvement over pristine CoPd (~976 μmol g−1catalyst). The in-depth analysis of structural characterizations along with gas chromatography (GC) and electrochemical analysis suggested that such a high catalytic activity and selectivity of the CoPd-10 nanocatalyst originated from the sub-millisecond laser-irradiation-assisted facile surface restructure of cobalt oxide supported Pd nanoparticles, where atomic CoOx species were observed in the defect sites of the Pd nanoparticles. Such an atomic manipulation led to the formation of heteroatomic reaction sites, where atomic CoOx species and adjacent Pd domains, respectively, promoted the CO2 activation and H2 splitting steps. In addition, the cobalt oxide support helped to donate electrons to Pd, thereby enhancing its ability of H2 splitting. These results provide a strong foundation to use sub-millisecond laser irradiation for catalytic applications.
Full article
(This article belongs to the Special Issue Laser-Matter Interaction for Nanostructuration and Characterization: From Fundamentals to Sensing and Energy Applications)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Size Matters? A Comprehensive In Vitro Study of the Impact of Particle Size on the Toxicity of ZnO
by
, , , , and
Nanomaterials 2023, 13(11), 1800; https://doi.org/10.3390/nano13111800 - 04 Jun 2023
Abstract
This study describes a comparative in vitro study of the toxicity behavior of zinc oxide (ZnO) nanoparticles and micro-sized particles. The study aimed to understand the impact of particle size on ZnO toxicity by characterizing the particles in different media, including cell culture
[...] Read more.
This study describes a comparative in vitro study of the toxicity behavior of zinc oxide (ZnO) nanoparticles and micro-sized particles. The study aimed to understand the impact of particle size on ZnO toxicity by characterizing the particles in different media, including cell culture media, human plasma, and protein solutions (bovine serum albumin and fibrinogen). The particles and their interactions with proteins were characterized in the study using a variety of methods, including atomic force microscopy (AFM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Hemolytic activity, coagulation time, and cell viability assays were used to assess ZnO toxicity. The results highlight the complex interactions between ZnO NPs and biological systems, including their aggregation behavior, hemolytic activity, protein corona formation, coagulation effects, and cytotoxicity. Additionally, the study indicates that ZnO nanoparticles are not more toxic than micro-sized particles, and the 50 nm particle results were, in general, the least toxic. Furthermore, the study found that, at low concentrations, no acute toxicity was observed. Overall, this study provides important insights into the toxicity behavior of ZnO particles and highlights that no direct relationship between nanometer size and toxicity can be directly attributed.
Full article
(This article belongs to the Special Issue Toxicity and Ecotoxicity Assessment of Nanomaterials by In Vitro and In Vivo Models)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Antimony Species on Electrical Properties of Sb-Doped Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition
by
, , , , , , , , , , and
Nanomaterials 2023, 13(11), 1799; https://doi.org/10.3390/nano13111799 - 04 Jun 2023
Abstract
This study systematically investigates the influence of antimony (Sb) species on the electrical properties of Sb-doped zinc oxide (SZO) thin films prepared by pulsed laser deposition in an oxygen-rich environment. The Sb species-related defects were controlled through a qualitative change in energy per
[...] Read more.
This study systematically investigates the influence of antimony (Sb) species on the electrical properties of Sb-doped zinc oxide (SZO) thin films prepared by pulsed laser deposition in an oxygen-rich environment. The Sb species-related defects were controlled through a qualitative change in energy per atom by increasing the Sb content in the Sb2O3:ZnO-ablating target. By increasing the content of Sb2O3 (wt.%) in the target, Sb3+ became the dominant Sb ablation species in the plasma plume. Consequently, n-type conductivity was converted to p-type conductivity in the SZO thin films prepared using the ablating target containing 2 wt.% Sb2O3. The substituted Sb species in the Zn site (SbZn3+ and SbZn+) were responsible for forming n-type conductivity at low-level Sb doping. On the other hand, the Sb–Zn complex defects (SbZn–2VZn) contributed to the formation of p-type conductivity at high-level doping. The increase in Sb2O3 content in the ablating target, leading to a qualitative change in energy per Sb ion, offers a new pathway to achieve high-performing optoelectronics using ZnO-based p–n junctions.
Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Construction of 2D/2D Mesoporous WO3/CeO2 Laminated Heterojunctions for Optimized Photocatalytic Performance
by
, , , , , , , and
Nanomaterials 2023, 13(11), 1798; https://doi.org/10.3390/nano13111798 - 04 Jun 2023
Abstract
Photocatalytic elimination of antibiotics from the environment and drinking water is of great significance for human health. However, the efficiency of photoremoval of antibiotics such as tetracycline is severely limited by the prompt recombination of electron holes and slow charge migration efficacy. Fabrication
[...] Read more.
Photocatalytic elimination of antibiotics from the environment and drinking water is of great significance for human health. However, the efficiency of photoremoval of antibiotics such as tetracycline is severely limited by the prompt recombination of electron holes and slow charge migration efficacy. Fabrication of low-dimensional heterojunction composites is an efficient method for shortening charge carrier migration distance and enhancing charge transfer efficiency. Herein, 2D/2D mesoporous WO3/CeO2 laminated Z-scheme heterojunctions were successfully prepared using a two-step hydrothermal process. The mesoporous structure of the composites was proved by nitrogen sorption isotherms, in which sorption-desorption hysteresis was observed. The intimate contact and charge transfer mechanism between WO3 nanoplates and CeO2 nanosheets was investigated using high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy measurements, respectively. Photocatalytic tetracycline degradation efficiency was noticeably promoted by the formation of 2D/2D laminated heterojunctions. The improved photocatalytic activity could be attributed to the formation of Z-scheme laminated heterostructure and 2D morphology favoring spatial charge separation, confirmed by various characterizations. The optimized 5WO3/CeO2 (5 wt.% WO3) composites can degrade more than 99% of tetracycline in 80 min, achieving a peak TC photodegradation efficiency of 0.0482 min−1, which is approximately 3.4 times that of pristine CeO2. A Z-scheme mechanism is proposed for photocatalytic tetracycline by from WO3/CeO2 Z-scheme laminated heterojunctions based on the experimental results.
Full article
(This article belongs to the Special Issue Applications of Nanomaterials for Electrocatalysis, Photocatalysis, Photoelectrochemical Solar Cells and Toxicity)
►▼
Show Figures

Figure 1
Open AccessReview
Colloidal 2D Lead Chalcogenide Nanocrystals: Synthetic Strategies, Optical Properties, and Applications
Nanomaterials 2023, 13(11), 1797; https://doi.org/10.3390/nano13111797 - 03 Jun 2023
Abstract
Lead chalcogenide nanocrystals (NCs) are an emerging class of photoactive materials that have become a versatile tool for fabricating new generation photonics devices operating in the near-IR spectral range. NCs are presented in a wide variety of forms and sizes, each of which
[...] Read more.
Lead chalcogenide nanocrystals (NCs) are an emerging class of photoactive materials that have become a versatile tool for fabricating new generation photonics devices operating in the near-IR spectral range. NCs are presented in a wide variety of forms and sizes, each of which has its own unique features. Here, we discuss colloidal lead chalcogenide NCs in which one dimension is much smaller than the others, i.e., two-dimensional (2D) NCs. The purpose of this review is to present a complete picture of today’s progress on such materials. The topic is quite complicated, as a variety of synthetic approaches result in NCs with different thicknesses and lateral sizes, which dramatically change the NCs photophysical properties. The recent advances highlighted in this review demonstrate lead chalcogenide 2D NCs as promising materials for breakthrough developments. We summarized and organized the known data, including theoretical works, to highlight the most important 2D NC features and give the basis for their interpretation.
Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Laser–Metal Interaction with a Pulse Shorter than the Ion Period: Ablation Threshold, Electron Emission and Ion Explosion
Nanomaterials 2023, 13(11), 1796; https://doi.org/10.3390/nano13111796 - 03 Jun 2023
Abstract
The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse–time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons
[...] Read more.
The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse–time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons receiving an energy larger than the threshold drag the ions off the surface in the mode of electrostatic ablation. We show that a pulse shorter than the ion period (Shorter-the-Limit (StL)) ejects conduction electrons with an energy larger than the work function (from a metal), leaving the bare ions immobile in a few atomic layers. Electron emission is followed by the bare ion’s explosion, ablation, and THz radiation from the expanding plasma. We compare this phenomenon to the classic photo effect and nanocluster Coulomb explosions, and show differences and consider possibilities for detecting new modes of ablation experimentally via emitted THz radiation. We also consider the applications of high-precision nano-machining with this low intensity irradiation.
Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations
by
, , , and
Nanomaterials 2023, 13(11), 1795; https://doi.org/10.3390/nano13111795 - 02 Jun 2023
Abstract
Zinc oxide (ZnO) nanoparticles have shown great potential because of their versatile and promising applications in different fields, including solar cells. Various methods of synthesizing ZnO materials have been reported. In this work, controlled synthesis of ZnO nanoparticles was achieved via a simple,
[...] Read more.
Zinc oxide (ZnO) nanoparticles have shown great potential because of their versatile and promising applications in different fields, including solar cells. Various methods of synthesizing ZnO materials have been reported. In this work, controlled synthesis of ZnO nanoparticles was achieved via a simple, cost-effective, and facile synthetic method. Using transmittance spectra and film thickness of ZnO, the optical band gap energies were calculated. For as-synthesized and annealed ZnO films, the bandgap energies were found to be 3.40 eV and 3.30 eV, respectively. The nature of the optical transition indicates that the material is a direct bandgap semiconductor. Spectroscopic ellipsometry (SE) analysis was used to extract dielectric functions where the onset of optical absorption of ZnO was observed at lower photon energy due to annealing of the nanoparticle film. Similarly, X-ray diffraction (XRD) and scanning electron microscopy (SEM) data revealed that the material is pure and crystalline in nature, with the average crystallite size of ~9 nm.
Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels
by
, , , , , , , , , and
Nanomaterials 2023, 13(11), 1794; https://doi.org/10.3390/nano13111794 - 02 Jun 2023
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to
[...] Read more.
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Full article
(This article belongs to the Special Issue Nanoscale Materials for Water Purification and Catalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66
Nanomaterials 2023, 13(11), 1793; https://doi.org/10.3390/nano13111793 - 02 Jun 2023
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However,
[...] Read more.
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the -OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the -OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Full article
(This article belongs to the Topic Metal Organic Frameworks and Derived Materials for Advanced Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Preparation of Hybrid Nanopigments with Excellent Environmental Stability, Antibacterial and Antioxidant Properties Based on Monascus Red and Sepiolite by One-Step Grinding Process
Nanomaterials 2023, 13(11), 1792; https://doi.org/10.3390/nano13111792 - 02 Jun 2023
Abstract
►▼
Show Figures
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process.
[...] Read more.
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process. The density functional theory calculations demonstrated that the surfactants loaded on sepiolite were in favor of enhancing the electrostatic, coordination, and hydrogen bonding interactions between Monascus red and sepiolite. Thus, the obtained hybrid nanopigments exhibited excellent antibacterial and antioxidant properties, with an inhibition effect on Gram-positive bacteria that was superior to that of Gram-negative bacteria. In addition, the scavenging activity on DPPH and hydroxyl free radicals as well as the reducing power of hybrid nanopigments were higher than those of hybrid nanopigments prepared without the addition of the surfactant. Inspired by nature, gas-sensitive reversible alochroic superamphiphobic coatings with excellent thermal and chemical stability were successfully designed by combining hybrid nanopigments and fluorinated polysiloxane. Therefore, intelligent multifunctional hybrid nanopigments have great application foreground in related fields.
Full article

Figure 1
Open AccessArticle
Bioinspired Hierarchical Carbon Structures as Potential Scaffolds for Wound Healing and Tissue Regeneration Applications
by
, , , and
Nanomaterials 2023, 13(11), 1791; https://doi.org/10.3390/nano13111791 - 02 Jun 2023
Abstract
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization
[...] Read more.
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization options. In this study, bio-inspired hierarchical all-carbon structures comprising carbon nanotube (CNT) carpets covalently bonded to flexible carbon fabric have been investigated as a platform for cell growth and future tissue regeneration applications. CNTs are known to provide guidance for cell growth, but loose CNTs are susceptible to intracellular uptake and are suspected to cause in vitro and in vivo cytotoxicity. This risk is suppressed in these materials due to the covalent attachment of CNTs on a larger fabric, and the synergistic benefits of nanoscale and micro-macro scale architectures, as seen in natural biological materials, can be obtained. The structural durability, biocompatibility, tunable surface architecture, and ultra-high specific surface area of these materials make them attractive candidates for wound healing. In this study, investigations of cytotoxicity, skin cell proliferation, and cell migration were performed, and results indicate promise in both biocompatibility and directed cell growth. Moreover, these scaffolds provided cytoprotection against environmental stressors such as Ultraviolet B (UVB) rays. It was seen that cell growth could also be tailored through the control of CNT carpet height and surface wettability. These results support future promise in the design of hierarchical carbon scaffolds for strategic wound healing and tissue regeneration applications.
Full article
(This article belongs to the Special Issue Micro- and Nanostructured Biomaterials for Biomedical Applications and Regenerative Medicine)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
25 May 2023
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain

12 May 2023
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China

Topics
Topic in
Chemosensors, Foods, Molecules, Nanomaterials, Toxics
Advances in Chemistry, XXVIth International Galician Portuguese Conference on Chemistry
Topic Editors: Jose Manuel Andrade, Luis Cuadros-RodríguezDeadline: 15 June 2023
Topic in
Catalysts, ChemEngineering, Energies, Materials, Nanomaterials
Materials and Catalysts for Pollutants and CO2 Capture and Transformation
Topic Editors: Vicente Montes, Rafael Estevez, Manuel ChecaDeadline: 30 June 2023
Topic in
Micromachines, Nanomanufacturing, Nanomaterials, Polymers, Sensors
Micro/Nanofluidics and Structures Based Sensing, Material Processing and Energy Conversion
Topic Editors: Yi-Je Juang, Yan-Cheng Lin, Li-Hsien Yeh, Yen-Wen LuDeadline: 20 July 2023
Topic in
Biomolecules, IJMS, Nanomaterials, Viruses
Fibrous Proteins and Self-Assembling Peptides: From Structure and Assembly to Applications
Topic Editors: Anna Mitraki, Chrysoula Kokotidou, Vagelis Harmandaris, Anastassia RissanouDeadline: 31 July 2023

Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Nanomaterials
Graphene-Based Materials for Cancer Therapy
Guest Editors: Alessandro Pistone, Daniela IannazzoDeadline: 15 June 2023
Special Issue in
Nanomaterials
Characterization of Quantum Effects in Nanomaterials, Nano-Devices, and Nanophotonics
Guest Editor: Jeong Ryeol ChoiDeadline: 30 June 2023
Special Issue in
Nanomaterials
Nanomaterials in Water Applications
Guest Editors: Junye Cheng, Hongguo Zhang, Zhenxing Wang, Lei HuangDeadline: 12 July 2023
Special Issue in
Nanomaterials
Biobased Nanoscale Drug Delivery Systems
Guest Editor: Helena P. FelgueirasDeadline: 25 July 2023
Topical Collections
Topical Collection in
Nanomaterials
Process Intensification, Process Design and Green Techniques for Nanomaterials Production and Applications
Collection Editors: Marco Stoller, Giorgio Vilardi
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: New Trends in Inorganic Nanoparticles and Composites from Preparation to Applications
Collection Editors: Edward H. Lester, Félix Zamora
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: Synthesis and Applications of Nanomaterials for Renewable Energies
Collection Editors: David Marrero-López, Efrat Lifshitz
Topical Collection in
Nanomaterials
Magnetic Nanostructured Materials: Synthesis, Characterization and Their Cutting-Edge Applications
Collection Editors: Georgia Basina, Vasileios Tzitzios