Advances in Nanostructured Electrode Materials: Design and Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 13 July 2025 | Viewed by 9659

Special Issue Editor


E-Mail Website
Guest Editor
Department of Civil, Energy, Environmental and Materials Engineering, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
Interests: nanocomposites; nanoparticles; graphene oxide; graphene-based materials; synthesis; structural characterization; green chemistry; heterogeneous catalysis; selective hydrogenation; environmental catalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of novel nanostructured materials is a cornerstone of emerging electrochemical technologies that provide clean and environmentally friendly solutions to meet end user requirements. Nanocomposites play a key role in the adoption of such technologies due to their unique and sometimes enhanced properties and because of the possibility of suitably tuning their structural and functional properties. Furthermore, nanostructured electrode materials are key in terms of significantly advancing the performance, efficiency, and safety technology. This Special Issue aims to depict the state-of-the-art design, synthesis and characterization of various nanostructured electrode materials, as well as their electrochemical applications in the fields of electrocatalysis, energy conversion, energy storage, and environmental protection.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but not limited to) the following:

  • Design and synthesis of nanostructured materials.
  • Functional nanomaterials.
  • Development of the different classes of multicomponent materials.
  • Nanoalloy.
  • Advanced characterization for understanding the electrochemical behavior and structure-property relationships of electrode materials.
  • Applications of nanostructured materials, including energy storage and conversion devices, electrocatalysis, water-splitting process for hydrogen production, photocatalysis, removal of pollutants.

We look forward to receiving your contributions.

Dr. Maria Grazia Musolino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructured materials
  • nanomaterials
  • nanocomposites
  • electrode materials
  • synthesis
  • characterization
  • functional materials
  • cathode
  • anode
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 30904 KiB  
Article
Large-Scale Compatible Roll-to-Roll Coating of Paper Electrodes and Their Compatibility as Lithium-Ion Battery Anodes
by Nicklas Blomquist, Manisha Phadatare, Rohan Patil, Renyun Zhang, Noah Leuschen and Magnus Hummelgård
Nanomaterials 2025, 15(2), 113; https://doi.org/10.3390/nano15020113 - 14 Jan 2025
Viewed by 310
Abstract
A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is [...] Read more.
A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is low compared to other technologies. To improve this situation, the underlying battery design must be changed and the material choices need to be made with a sustainable mindset. A suitable and effective approach is to utilize bio-materials, such as paper and electrode composites made from graphite and cellulose, and adopt already existing recycling methods connected to the paper industry. To address this, we have developed a concept for fabricating fully disposable and resource-efficient paper-based electrodes with a large-scale roll-to-roll coating operation in which the conductive material is a nanographite and microcrystalline cellulose mixture coated on a paper separator. The overall best result was achieved with coated roll 08 with a coat weight of 12.83(22) g/m2 and after calendering, the highest density of 1.117(97) g/cm3, as well as the highest electrical conductivity with a resistivity of 0.1293(17) mΩ·m. We also verified the use of this concept as an anode in LIB half-cell coin cells, showing a specific capacity of 147 mAh/g, i.e., 40% of graphite’s theoretical performance, and a good long-term stability of battery capacity over extended cycling. This concept highlights the potential of using paper as a separator and strengthens the outlook of a new design concept wherein paper can both act as a separator and a substrate for coating the anode material. Full article
Show Figures

Figure 1

13 pages, 3145 KiB  
Article
Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution
by Kunting Cai, Weibin Chen, Yinji Wan, Hsingkai Chu, Xiao Hai and Ruqiang Zou
Nanomaterials 2024, 14(14), 1168; https://doi.org/10.3390/nano14141168 - 9 Jul 2024
Viewed by 1242
Abstract
Refining synthesis strategies for metal–organic framework (MOF)-based catalysts to improve their performance and stability in an oxygen evolution reaction (OER) is a big challenge. In this study, a series of nanostructured electrocatalysts were synthesized through a solvothermal method by growing MOFs and metal–triazolates [...] Read more.
Refining synthesis strategies for metal–organic framework (MOF)-based catalysts to improve their performance and stability in an oxygen evolution reaction (OER) is a big challenge. In this study, a series of nanostructured electrocatalysts were synthesized through a solvothermal method by growing MOFs and metal–triazolates (METs) on nickel foam (NF) substrates (named MET-M/NF, M = Fe, Co, Cu), and these electrocatalysts could be used directly as OER self-supporting electrodes. Among these electrocatalysts, MET-Fe/NF exhibited the best OER performance, requiring only an overpotential of 122 mV at a current density of 10 mA cm−2 and showing remarkable stability over 15 h. The experimental results uncovered that MET-Fe/NF underwent an in situ structural reconstruction, resulting in the formation of numerous iron/nickel (oxy)hydroxides with high OER activity. Furthermore, in a two-electrode water-splitting setup, MET-Fe/NF only required 1.463 V to achieve a current density of 10 mA cm−2. Highlighting its potential for practical applications. This work provides insight into the design and development of efficient MOF-based OER catalysts. Full article
Show Figures

Figure 1

16 pages, 4445 KiB  
Article
Exploring Zinc-Doped Manganese Hexacyanoferrate as Cathode for Aqueous Zinc-Ion Batteries
by Julen Beitia, Isabel Ahedo, Juan Ignacio Paredes, Eider Goikolea and Idoia Ruiz de Larramendi
Nanomaterials 2024, 14(13), 1092; https://doi.org/10.3390/nano14131092 - 25 Jun 2024
Viewed by 2126
Abstract
Aqueous zinc-ion batteries (AZiBs) have emerged as a promising alternative to lithium-ion batteries as energy storage systems from renewable sources. Manganese hexacyanoferrate (MnHCF) is a Prussian Blue analogue that exhibits the ability to insert divalent ions such as Zn2+. However, in [...] Read more.
Aqueous zinc-ion batteries (AZiBs) have emerged as a promising alternative to lithium-ion batteries as energy storage systems from renewable sources. Manganese hexacyanoferrate (MnHCF) is a Prussian Blue analogue that exhibits the ability to insert divalent ions such as Zn2+. However, in an aqueous environment, MnHCF presents weak structural stability and suffers from manganese dissolution. In this work, zinc doping is explored as a strategy to provide the structure with higher stability. Thus, through a simple and easy-to-implement approach, it has been possible to improve the stability and capacity retention of the cathode, although at the expense of reducing the specific capacity of the system. By correctly balancing the amount of zinc introduced into the MnHCF it is possible to reach a compromise in which the loss of capacity is not critical, while better cycling stability is obtained. Full article
Show Figures

Figure 1

18 pages, 5015 KiB  
Article
Na3MnTi(PO4)3/C Nanofiber Free-Standing Electrode for Long-Cycling-Life Sodium-Ion Batteries
by Debora Maria Conti, Claudia Urru, Giovanna Bruni, Pietro Galinetto, Benedetta Albini, Vittorio Berbenni, Alessandro Girella and Doretta Capsoni
Nanomaterials 2024, 14(9), 804; https://doi.org/10.3390/nano14090804 - 5 May 2024
Viewed by 1706
Abstract
Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to [...] Read more.
Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers. Full article
Show Figures

Figure 1

12 pages, 6788 KiB  
Article
Uniaxial Magnetization and Electrocatalytic Performance for Hydrogen Evolution on Electrodeposited Ni Nanowire Array Electrodes with Ultra-High Aspect Ratio
by Yumu Sako, Ryusei Saeki, Masamitsu Hayashida and Takeshi Ohgai
Nanomaterials 2024, 14(9), 755; https://doi.org/10.3390/nano14090755 - 25 Apr 2024
Cited by 1 | Viewed by 1543
Abstract
Ni nanowire array electrodes with an extremely large surface area were made through an electrochemical reduction process utilizing an anodized alumina template with a pore length of 320 µm, pore diameter of 100 nm, and pore aspect ratio of 3200. The electrodeposited Ni [...] Read more.
Ni nanowire array electrodes with an extremely large surface area were made through an electrochemical reduction process utilizing an anodized alumina template with a pore length of 320 µm, pore diameter of 100 nm, and pore aspect ratio of 3200. The electrodeposited Ni nanowire arrays were preferentially oriented in the (111) plane regardless of the deposition potential and exhibited uniaxial magnetic anisotropy with easy magnetization in the axial direction. With respect to the magnetic properties, the squareness and coercivity of the electrodeposited Ni nanowire arrays improved up to 0.8 and 550 Oe, respectively. It was also confirmed that the magnetization reversal was suppressed by increasing the aspect ratio and the hard magnetic performance was improved. The electrocatalytic performance for hydrogen evolution on the electrodeposited Ni nanowire arrays was also investigated and the hydrogen overvoltage was reduced down to ~0.1 V, which was almost 0.2 V lower than that on the electrodeposited Ni films. Additionally, the current density for hydrogen evolution at −1.0 V and −1.5 V vs. Ag/AgCl increased up to approximately −580 A/m2 and −891 A/m2, respectively, due to the extremely large surface area of the electrodeposited Ni nanowire arrays. Full article
Show Figures

Figure 1

11 pages, 4865 KiB  
Article
Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe
by Zhengtang Cai, Kaipeng Zheng, Chun Ma, Yu Fang, Yuyang Ma, Qinglin Deng and Han Li
Nanomaterials 2024, 14(8), 722; https://doi.org/10.3390/nano14080722 - 20 Apr 2024
Viewed by 1714
Abstract
Compared to SnTe and PbTe base materials, the GeTe matrix exhibits a relatively high Seebeck coefficient and power factor but has garnered significant attention due to its poor thermal transport performance and environmental characteristics. As a typical p-type IV–VI group thermoelectric material, W-doped [...] Read more.
Compared to SnTe and PbTe base materials, the GeTe matrix exhibits a relatively high Seebeck coefficient and power factor but has garnered significant attention due to its poor thermal transport performance and environmental characteristics. As a typical p-type IV–VI group thermoelectric material, W-doped GeTe material can bring additional enhancement to thermoelectric performance. In this study, the introduction of W, Ge1−xWxTe (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) resulted in the presence of high-valence state atoms, providing additional charge carriers, thereby elevating the material’s power factor to a maximum PFpeak of approximately 43 μW cm−1 K−2, while slightly optimizing the Seebeck coefficient of the solid solution. Moreover, W doping can induce defects and promote slight rhombohedral distortion in the crystal structure of GeTe, further reducing the lattice thermal conductivity κlat to as low as approximately 0.14 W m−1 K−1 (x = 0.002 at 673 K), optimizing it to approximately 85% compared to the GeTe matrix. This led to the formation of a p-type multicomponent composite thermoelectric material with ultra-low thermal conductivity. Ultimately, W doping achieves the comprehensive enhancement of the thermoelectric performance of GeTe base materials, with the peak ZT value of sample Ge0.995W0.005Te reaching approximately 0.99 at 673 K, and the average ZT optimized to 0.76 in the high-temperature range of 573–723 K, representing an increase of approximately 17% compared to pristine GeTe within the same temperature range. Full article
Show Figures

Figure 1

Back to TopTop