You are currently viewing a new version of our website. To view the old version click .

Metrology

Metrology is an international, peer-reviewed, open access journal on the science and technology of measurement and metrology, published quarterly online by MDPI.

Quartile Ranking JCR - Q3 (Instruments and Instrumentation)

All Articles (187)

Photoacoustic (PA) velocimetry offers a promising solution to the limitations of conventional techniques for measuring blood flow velocity. Given its moderate penetration depth and high spatial resolution, PA imaging is considered suitable for measuring low-velocity blood flow in capillaries located at moderate depths. High-resolution measurements based on PA signals from individual blood cells can be achieved using a high-frequency transducer. However, high-frequency signals attenuate rapidly within biological tissue, restricting the measurable depth. Consequently, low-frequency transducers are required for deeper measurements. To date, PA flow velocimetry employing low-frequency transducers remains insufficiently explored. In this study, we investigated the effect of the concentration of particles that mimic blood cells within vessels under low-concentration conditions. The performance of flow velocity measurement was evaluated using an ultrasonic transducer (UST) with a center frequency of 10 MHz. The volume fraction of particles in the solution was systematically varied, and the spatially averaged flow velocity was assessed using two different distinct analysis methods. One method employed a time-shift approach based on cross-correlation analysis. Flow velocity was estimated from PA signal redpairs generated by particles dispersed in the fluid, using consecutive pulsed laser irradiations at fixed time intervals. The other method employed a pulsed Doppler method in the frequency domain, widely applied in ultrasound Doppler measurements. In this method, flow velocity redwas estimated from the Doppler-shifted frequency between the transmitted and received signals of the UST. For the initial analysis, numerical simulations were performed, followed by experiments based on displacement measurements equivalent to velocity measurements. The target was a capillary tube filled with an aqueous solution containing particles at different concentration levels. The time–domain method tended to underestimate flow velocity as particle concentration increased, whereas the pulsed Doppler method yielded estimates consistent with theoretical values, demonstrating its potential for measurements at high concentrations.

18 December 2025

Theoretical diagram of Doppler frequency analysis using the PW Doppler method: (a) time signal with a phase shift of —
  
    π
    /
    8
  
, (b) time signal with a phase shift of —
  π
, (c) time signal with a phase shift of —
  
    3
    π
    /
    2
  
, and (d) variation of correlation values with a phase change.

Enhancing GNSS-INS-Based Surveying with Time of Flight Cameras

  • Amna Qayyum,
  • Joël Bachmann and
  • David Eugen Grimm

Rapid advancements in surveying technology have necessitated the development of more accurate and efficient tools. Leica Geosystems AG (Heerbrugg, Switzerland), a leading provider of measurement and surveying solutions, has initiated a study to enhance the capabilities of its GNSS INS-based surveying systems. This research focuses on integrating the Leica GS18 I GNSS receiver and the AP20 AutoPole with a Time of Flight (ToF) camera through sensor fusion. The primary objective is to leverage the unique strengths of each device to improve accuracy, efficiency, and usability in challenging surveying environments. Results indicate that the fused AP20 configuration achieves decimetre-level accuracy (2.7–4.4 cm on signalized points; 5.2–20.0 cm on natural features). In contrast, the GS18 I fused configuration shows significantly higher errors (17.5–26.6 cm on signalized points; 16.1–69.4 cm on natural features), suggesting suboptimal spatio-temporal fusion. These findings confirm that the fused AP20 configuration demonstrates superior accuracy in challenging GNSS conditions compared to the GS18 I setup with deviations within acceptable limits for most practical applications, while highlighting the need for further refinement of the GS18 I configuration.

16 December 2025

Leica GS18 I: (a) top view. (b) front view with the built-in camera. (c) side view showing the battery compartment and the services panel. (Source: [17]).

The calibration of levelling staff is a key prerequisite for achieving high-precision levelling. Traditionally, this process is carried out using laser interferometric systems, which provide the required accuracy but are demanding in terms of operation, maintenance, and measurement conditions. This paper focuses on verifying the applicability of the convergent photogrammetry method for levelling staff calibration with a target accuracy of 0.010 mm. An experimental prototype of a photogrammetric calibration system (without real scale) was developed and tested using three different lenses, two processing software packages (Photomodeler and Agisoft Metashape), and two different approaches to camera calibration (self-calibration and field calibration). The repeatability of measurements was evaluated based on mutual lengths between selected checkpoints and the accuracy of determining the 3D positions of these points. The results showed that the Nikon AF-S NIKKOR 35 mm f/1.8G ED lens achieved the best repeatability and met the target accuracy requirement, while Photomodeler yielded smaller standard deviations in the determination of control point positions compared to Agisoft Metashape. The findings indicate that convergent photogrammetry, when applied under optimal conditions, has the potential to achieve the accuracy required for high-precision measurements in metrology, and may even offer an alternative to laser interferometric calibration systems in certain applications.

14 December 2025

Showcase of the prototype photogrammetric calibration system.

Curves in Archeology: Computing the Volume of a Greek Vase

  • Siddhant Shah,
  • Minfei Liang and
  • Eugene Pinsky

The concept of dynamic symmetry in art and extensive measurements on Greek vases suggest that a vase and its parts can be inscribed into similar rectangles, with all rectangles having the same ratio of lengths of their side. Such an observation is often used in describing self-similarity and fractal geometry. This work proposes a hypothesis that a logarithmic spiral describes the equation of the cross-section of a Greek vase. From extensive measurements, the parameters of such spirals are computed, and explicit formulae are derived for volume based on a few size measurements. The exact formula is quite complex and cannot be easily used, certainly not in antiquity. Therefore, a simple approximation formula is proposed for amphorae, the most important type of vase. This formula expresses the volume of the vase in terms of its diameter and the height of the corresponding solid. The approximation is compared with some exact volume computation results reported for amphorae, and it is shown that the proposed approximation is fairly close to the exact value. The simplicity of the proposed formula suggests an efficient method of calculating volume that was probably known in antiquity.

12 December 2025

Typology of Greek vase forms and primary usage. (A): bell krater (mixing wine and water), (B): lebes (wedding vessel), (C): skyphos (wine drinking cup), (D): aryballos (oils and perfume), (E): hydria (water jar), (F): volute krater (mixing water and wine), (G): kantharos (wine drinking cup), (H): psykter (cooling wine), (I): kylix (wine drinking cup), (J): stamnos (mixing and storage of liquids), (K): alabastron (aromatic oils), (L): oinochoe (pouring wine), (M): lekythos (storing oil and perfumes), (N): amphora (storage and transport of wine, oil, and dry goods).

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Metrology - ISSN 2673-8244