Reverse engineering (RE) is increasingly recognized as a vital methodology for reconstructing mechanical components, particularly in high-value sectors such as aerospace, transportation, and energy, where technical documentation is often missing or outdated. This study presents a systematic review that investigates the application, challenges,
[...] Read more.
Reverse engineering (RE) is increasingly recognized as a vital methodology for reconstructing mechanical components, particularly in high-value sectors such as aerospace, transportation, and energy, where technical documentation is often missing or outdated. This study presents a systematic review that investigates the application, challenges, and future directions of RE in mechanical component reconstruction. Adopting the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, 68 peer-reviewed studies were identified, screened, and synthesized. The review highlights RE applications in restoration, redesign, internal geometry modeling, and simulation-driven performance assessment, leveraging technologies such as 3D scanning, CAD modeling, and finite element analysis. However, persistent challenges remain across five domains: product complexity, tolerance and dimensional variations, scanning limitations, integration barriers, and human-material-process dependencies, which hinder automation, accuracy, and manufacturability. Future research opportunities include the automated conversion of point cloud data into editable boundary representation (B-rep) models and AI-driven approaches for feature recognition, geometry reconstruction, and the generation of simulation-ready models. Additionally, advancements in scanning techniques to capture hidden or internal features more effectively are crucial. Overall, this review provides a comprehensive synthesis of current practices and challenges while proposing pathways to advance RE in industrial applications, fostering greater automation, accuracy, and integration in digital manufacturing workflows.
Full article