- Article
Analysis of Physical Processes in Confined Pores of Activated Carbons with Uniform Porosity
- Magdalena Blachnio,
- Malgorzata Zienkiewicz-Strzalka and
- Anna Derylo-Marczewska
Mesoporous carbons based on silica hard templates were used to investigate physical processes in confined pores. Nitrogen adsorption, scanning electron microscopy, and scattered X-ray analyses revealed two classes of materials: carbons with moderate and highly developed mesoporosity. The pore structure was strongly dependent on pore expanders which proved essential for generating open, accessible architectures. All carbons exhibited a basic, graphitic surface (pHPZC = 8.4–10.9), enriched in electron-donating oxygen functionalities. Differential scanning calorimetry studies of confined water showed that melting point depression follows the Gibbs–Thomson relationship, confirming the strong dependence of phase transitions on pore size and water–surface interactions. Adsorption experiments using methylene blue demonstrated that capacity is governed by surface area, pore volume, and pore size distribution. For carbon with the largest average pore size, adsorption of various dyes revealed that uptake decreases with increasing molecular size, whereas affinity depends strongly on electrostatic interactions. Kinetic studies indicated that carbons with larger mesopores exhibit the fastest adsorption, and that large, complex dye molecules undergo significant diffusion limitations. Overall, the results show that the interplay between pore structure, adsorbate size, and surface chemistry influences both the equilibrium uptake and adsorption kinetics in mesoporous carbon materials.
4 January 2026






