Metal Composites, Volume II

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Metal Composites".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 9964

Special Issue Editor

Special Issue Information

Dear Colleagues,

Metal composites are of particular interest due to their potential to produce novel materials with unique tailor-made properties and improved performance compared with conventional materials, facilitating the aim of reducing the overall weight of the components. It offers a unique dimension in tailoring properties through careful selection of type, size, and amount of reinforcement. The dispersed phase (reinforcement) can be metal, ceramic, or polymers that are present in a variety of different morphologies, such as fibers, whiskers, particles, or platelets. Ideally, the resulting physical or chemical performance of the composite material should be superior to that of the matrix. Depending on the size of the individual constituents, the composites may be distinguished between nano/nano-, nano/micro-, and micro/micro-composites. The properties of metal composites, therefore, can be tailored based on the demand and end applications. Hence, the aim of such research is the development of materials with superior thermomechanical, physical, and chemical properties. In view of the dynamic capabilities that can be exhibited by metal composites, this Special Issue will cover all aspects including synthesis (solid, liquid, 2-phase, and 3D printing), secondary processing, properties (tensile, compressive, fatigue, impact, creep, tribological, etc.), corrosion behavior, and joining techniques. The main objective, thus, will be to bring the latest results in the area of metal composites to the research community worldwide.

Scientific contributions are invited from scientists, researchers, engineers, and industry members to disseminate recent inventions and developments in the field of additive manufacturing. Potential topics include, but are not limited to, the following:

  • Synthesis (casting/powder metallurgy solid, liquid, two-phase, 3D printing, and 4D printing);
  • Properties including mechanical, tribological and functional properties (strength, stiffness, fatigue resistance, impact loading, buckling, creep, welding (joining), corrosion, tribology, magnetic, electric, dielectric, etc.);
  • Microstructure and its property correlation;
  • Theoretical studies (including modeling and numerical simulation);
  • Defect and failure analysis;
  • Industrialization of the process.

We look forward to receiving submissions in any form, including review articles, regular research articles, and short communications. Both experimental and theoretical studies are of interest.

Prof. Dr. Prashanth Konda Gokuldoss
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal matrix composites
  • reinforcement
  • casting
  • powder metallurgy
  • additive manufacturing microstructure and properties

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 21074 KiB  
Article
Radiation-Induced Defect Formation Kinetics in Inconel–Cu Multimetallic Layered Composites
by Rajesh Ramesh and Kasra Momeni
J. Compos. Sci. 2024, 8(4), 139; https://doi.org/10.3390/jcs8040139 - 10 Apr 2024
Viewed by 447
Abstract
This study investigates the stability of Inconel–Cu Multimetallic Layered Composites (MMLCs) in nuclear reactor applications using Molecular Dynamics simulations. The focus is on understanding the underlying mechanisms governing the properties of MMLCs for advanced nuclear reactors, specifically, the mechanochemistry of the interface between [...] Read more.
This study investigates the stability of Inconel–Cu Multimetallic Layered Composites (MMLCs) in nuclear reactor applications using Molecular Dynamics simulations. The focus is on understanding the underlying mechanisms governing the properties of MMLCs for advanced nuclear reactors, specifically, the mechanochemistry of the interface between Inconel and copper alloys. The selection of Inconel–Cu MMLCs is primarily due to copper’s superior thermal conductivity, enhancing heat management within reactors by preventing hotspots and ensuring uniform temperature distribution. This research examines Incoloy 800H and two Inconel variants (718 and 625), assessing their stability at 1000 K after exposure to 10 keV collision cascades up to 0.12 dpa. Notable findings include defect clustering on the {1 2 0} family of planes of Inconel and Cu, with Stacking Faults and Lomer–Cottrell locks on the Inconel side. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

24 pages, 12006 KiB  
Article
A Comparative Study between a Thermal Spray CoCrFeMnNi0.8V/WC-Co High Entropy Alloy Composite Coating and Plain CoCrFeMnNi0.8V and WC-Co Thermal Spray Coatings
by Stavros Kiape, Maria Glava, Emmanuel Georgatis, Spyros Kamnis, Theodore E. Matikas and Alexandros E. Karantzalis
J. Compos. Sci. 2024, 8(4), 120; https://doi.org/10.3390/jcs8040120 - 24 Mar 2024
Viewed by 1234
Abstract
High entropy alloys (HEAs) have emerged as a frontier in surface engineering, challenging the status quo of traditional alloy systems with their exceptional mechanical properties and corrosion resistance. This study investigates the CoCrFeMnNi0.8V HEA, both as a standalone alloy and in [...] Read more.
High entropy alloys (HEAs) have emerged as a frontier in surface engineering, challenging the status quo of traditional alloy systems with their exceptional mechanical properties and corrosion resistance. This study investigates the CoCrFeMnNi0.8V HEA, both as a standalone alloy and in a composite with WC-Co, to evaluate their potential as innovative surface coatings. The CoCrFeMnNi0.8V alloy, enriched with vanadium, demonstrates a unique microstructure with enhanced hardness and wear resistance, while the addition of WC-Co particles contributes to improved toughness and durability. By employing High Velocity Oxy-Fuel (HVOF) thermal spray techniques, coatings are deposited onto steel substrates and subjected to rigorous microstructural characterization, wear, and corrosion resistance testing. The results reveal that the CoCrFeMnNi0.8V coating exhibits impressive corrosion resistance in chloride-rich environments. The composite coating leverages the synergy between the HEA’s inherent corrosion resistance and WC-Co’s wear resistance, striking a balance that suits demanding applications. With optimized processing conditions, the composite WC-Co-reinforced high entropy alloy coating could offer a significant advancement in protective coatings technology, especially for maritime and other corrosive settings. This work not only underscores the versatility of HEAs in surface engineering applications but also opens avenues for the development of new material mixtures. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

16 pages, 7064 KiB  
Article
Evaluation of Joint Strength for CFRPs and Aluminum Alloys by Friction Stir Spot Welding Using Multi-Stage Heating
by Kazuto Tanaka and Yusuke Aiba
J. Compos. Sci. 2024, 8(3), 110; https://doi.org/10.3390/jcs8030110 - 20 Mar 2024
Viewed by 639
Abstract
To reduce car body weight, multi-material structures with lightweight materials such as carbon-fiber-reinforced plastics (CFRPs) and aluminum alloys (Als) are used to replace parts of steel components, and joining technologies for such dissimilar materials are essential. Friction stir spot welding (FSSW) is one [...] Read more.
To reduce car body weight, multi-material structures with lightweight materials such as carbon-fiber-reinforced plastics (CFRPs) and aluminum alloys (Als) are used to replace parts of steel components, and joining technologies for such dissimilar materials are essential. Friction stir spot welding (FSSW) is one of the technologies used to rapidly and strongly join dissimilar materials. FSSW for carbon-fiber-reinforced thermosetting resin (CFRTS) and Als has been developed using composite laminates with integrally molded thermoplastic resin in the outermost layer. To suppress excessive heating under the tool, this study investigated whether multi-stage heating with a non-heating time during joining affects the heat distribution and strength properties of the joint. Due to heat diffusion in Al during the non-heating time, multi-stage heating can suppress excessive heating under the tool compared to continuous heating, resulting in up to 27% larger welded area, up to 37% smaller decomposed area, and up to 6% lower maximum temperature. The use of multi-stage heating results in up to 5% higher tensile shear strength and 210% longer fatigue life by reducing the thermal decomposition of CFRP matrix resin and PA12 resin. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

25 pages, 20956 KiB  
Article
Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites
by K. Chinna Maddaiah, G. B. Veeresh Kumar and R. Pramod
J. Compos. Sci. 2024, 8(3), 97; https://doi.org/10.3390/jcs8030097 - 07 Mar 2024
Viewed by 1064
Abstract
Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary [...] Read more.
Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurities in the composite. Optical microscopy showed intense ultrasonic cavitation effects, and nano-Al2O3 particles caused grain refinement in the AA7150 matrix. The composite’s mechanical characteristics improved when the Al2O3 nanoparticle weight percentage (wt.%) increased. With only 2.0 wt.% nano-Al2O3 particles, the composites yielded 232 MPa, 97.52% higher than the sonicated AA7150 matrix alloy. Multiple models were used to characterize the strength of the AA7150 nano-Al2O3 composite. The findings showed that thermal incongruity, Orowan strengthening, the Hall–Petch mechanism, and load transfer effects contributed the most towards the increased strength of the composite. Increasing the nano-Al2O3 wt.% in the AA7150 matrix improved hardness by 95.08%, yield strength by 90.34%, and sliding wear resistance by 46.52%. This enhancement may be attributed to the combined effects of better grain refinement, enhanced dispersion with dislocation strengthening, and better load transfer between the matrix and reinforcement, which are assisted by the inclusion of reinforcements. This result was confirmed by optical studies. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

15 pages, 4233 KiB  
Article
An Investigation of the Thermal Properties of LM13- Quartz- Fly-Ash Hybrid Composites
by B. R. N. Murthy, Amar Murthy Ambekar and Anupama Hiremath
J. Compos. Sci. 2024, 8(3), 90; https://doi.org/10.3390/jcs8030090 - 01 Mar 2024
Viewed by 962
Abstract
In the present work, a metal–matrix composite was casted using the LM13 aluminum alloy, which is most widely used for casting automotive components. Such applications require materials to withstand high operating temperatures and perform reliably without compromising their properties. In this regard, particulate-reinforced [...] Read more.
In the present work, a metal–matrix composite was casted using the LM13 aluminum alloy, which is most widely used for casting automotive components. Such applications require materials to withstand high operating temperatures and perform reliably without compromising their properties. In this regard, particulate-reinforced composites have gained widespread adaptability. The particulate reinforcements used comprise of one of the widely available industrial by-products. which is fly ash, along with the abundantly available quartz. Hybrid composites are fabricated through the economical liquid route that is widely used in mass production. Though there are numerous published research articles investigating the mechanical properties of metal–matrix composites, very few investigated the thermal properties of the composites. In the present work, thermal properties such as thermal conductivity and thermal diffusivity of cast hybrid composites were evaluated. The particulate reinforcements were added in varied weight percentages to the molten LM13 alloy and were dispersed uniformly using a power-driven stirrer. The melt with the dispersed particulate reinforcements was then poured into a thoroughly dried sand mold, and the melt was allowed to solidify. The quality of the castings was ascertained through density evaluation followed by a microstructural examination. It was found that the composites with only the fly ash particles as a reinforcement were less dense in comparison to the composites cast with the quartz particulate reinforcement. However, the hybrid composite, with both particulate reinforcements were dense. The microstructure revealed a refined grain structure. The thermal diffusivity and thermal conductivity values were lower for the composites cast with only the fly ash reinforcement. On the other hand, the composites cast with only quartz as the particulate reinforcement exhibited higher thermal diffusivity and thermal conductivity. The specific heat capacity was found to be lower for the fly ash-reinforced composites and higher for the quartz-reinforced composites in comparison to the LM13 base matrix alloy. However, the highest value of thermal diffusivity and thermal conductivity were reported for the hybrid composites with a 10 wt.% inclusion of both fly ash and quartz particulate reinforcements. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 5974 KiB  
Article
Hybrid Treatment and Natural Aging Behavior of Peak-Aged Eutectoid Steel Powder-Reinforced Al 7075 Matrix Composites
by Ananda Hegde, Karthik Birur Manjunathaiah, Sathyashankara Sharma, Gowrishankar Mandya Chennegowda, Gajanan Anne and Ramakrishna Vikas Sadanand
J. Compos. Sci. 2024, 8(3), 89; https://doi.org/10.3390/jcs8030089 - 29 Feb 2024
Viewed by 859
Abstract
The current work focuses on the natural aging phenomenon of a eutectoid steel powder-(0.8 wt.%) reinforced Al-Zn-Mg (Al 7075) alloy, which was subjected to a hybrid heat treatment. The hybrid treatment comprises the aging treatment of a matrix and the conventional treatment of [...] Read more.
The current work focuses on the natural aging phenomenon of a eutectoid steel powder-(0.8 wt.%) reinforced Al-Zn-Mg (Al 7075) alloy, which was subjected to a hybrid heat treatment. The hybrid treatment comprises the aging treatment of a matrix and the conventional treatment of a steel reinforcement in a single stretch on the stir cast composite. This material finds uses in space and transportation applications. The hybrid treatment consists of a conventional heat treatment cycle to obtain pearlite, bainite, and martensite phases in steel powder, followed by an age-hardening treatment for the Al 7075 matrix. This hybrid heat treatment resulted in improvements in the hardness and strength over the conventional aging treatment. The peak-aged hybrid specimens were subjected to natural aging in an open atmosphere for a continuous duration of 25 weeks to study the stability of the properties after peak aging. Tests of the mechanical properties such as the hardness and tensile strength along with microstructure analysis were carried out. During natural aging, the hardness of composites decreases irrespective of the quantity of the reinforcement in the composites and the type of reinforcement phase alteration during hybrid heat treatment. Also, the composites subjected to hybrid heat treatment show better resistance to natural aging compared to the conventionally aged samples. Within the group, the hybrid-treated martensite formed into a composite with 6 wt.% reinforcement showed only a 4% reduction in hardness during natural aging, which is an indication of a decent level of resistance to natural aging. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

13 pages, 4628 KiB  
Article
Influence of Cu Addition on the Wear Behavior of a Eutectic Al–12.6Si Alloy Developed by the Spray Forming Method
by Dayanand M. Goudar, Julfikar Haider, K. Raju, Rajashekar V. Kurahatti and Deesy G. Pinto
J. Compos. Sci. 2024, 8(3), 88; https://doi.org/10.3390/jcs8030088 - 27 Feb 2024
Viewed by 896
Abstract
In the present study, the influence of the addition of copper (Cu) on the wear behavior of a Al-12.6Si eutectic alloy developed using the spray forming (SF) method was discussed, and the results were compared with those of as-cast (AC) alloys. The microstructural [...] Read more.
In the present study, the influence of the addition of copper (Cu) on the wear behavior of a Al-12.6Si eutectic alloy developed using the spray forming (SF) method was discussed, and the results were compared with those of as-cast (AC) alloys. The microstructural features of the alloys were examined using both optical and the scanning electron microscopy, and the chemical composition and phase identification were achieved by X-ray diffraction (XRD) analysis. The results revealed that the microstructure of binary the SF alloy consisted of fine primary and eutectic Si phases, evenly distributed in the equiaxed α-Al matrix, whereas the Cu-based SF ternary alloy consisted of uniformly distributed fine eutectic Si particulates and spherical-shaped θ-Al2Cu precipitates, uniformly distributed in α-Al matrix. In contrast, the AC ternary (Al-12.6Si-2Cu) alloy consisted of unevenly dispersed eutectic Si needles and the coarse intermetallic compound θ-Al2Cu in the α-Al matrix. The addition of Cu enhanced the micro hardness of the SF ternary alloy by 8, 34, and 41% compared to that of the SF binary, AC ternary, and binary alloys, respectively. The wear test was conducted using a pin-on-disc wear testing machine at different loads (10–40 N) and sliding velocities (1–3 ms−1). The wear tests revealed that SF alloys exhibited an improved wear behavior in the entire applied load and sliding velocity range in comparison to that of the AC alloys. At a load of 40 N and a sliding velocity of 1 ms−1, the wear rate of the SF2 alloy is 62, 47, and 23% lower than that of the AC1, AC2, and SF1 alloys, respectively. Similarly, at a sliding velocity of 3 ms−1, the wear rate of the SF2 alloy is 52%, 42%, and 21% lower than that of the AC1, AC2, and SF1 alloys, respectively. The low wear rate in the SF2 alloy was due to the microstructural modification during spray forming, the precipitation of fine Al2Cu intermetallic compounds, and increased solid solubility. The SF alloys show an increased transition from oxidative to abrasive wear, while the AC alloys demonstrate wear mechanisms that change from oxidative to abrasive, including delamination, with an increase in sliding velocity and load. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

10 pages, 6230 KiB  
Article
CoCuMgAl-Mixed-Oxide-Based Catalysts with Fine-Tunable Composition for the Hydrogenation of Furan Compounds
by Liudmila N. Stepanova, Roman M. Mironenko, Mikhail V. Trenikhin, Aleksandra N. Serkova, Aleksei N. Salanov and Aleksandr V. Lavrenov
J. Compos. Sci. 2024, 8(2), 57; https://doi.org/10.3390/jcs8020057 - 02 Feb 2024
Viewed by 1181
Abstract
Catalysts based on CoCuMgAl mixed oxides were synthesized and studied in the hydrogenations of furfural and 5-hydroxymethylfurfural under different conditions. The changes in the structural properties of the catalysts at different stages of their preparation were studied using a set of physical methods [...] Read more.
Catalysts based on CoCuMgAl mixed oxides were synthesized and studied in the hydrogenations of furfural and 5-hydroxymethylfurfural under different conditions. The changes in the structural properties of the catalysts at different stages of their preparation were studied using a set of physical methods (XRD, SEM, and TEM). It was shown that the fine regulation of the chemical compositions of the mixed oxides (i.e., changes in the Co/Cu ratio) made it possible to vary the structure, morphology, and catalytic properties of the samples. The phase composition of catalysts with Co/Cu = 1 did not change during the catalytic reaction, although the initial catalysts had a less-homogeneous morphology. 5-hydroxymethylfurfural conversion was higher for the samples with Co/Cu = 1. Furfural conversion increased when raising the Co/Cu ratio. The selectivity toward furfuryl alcohol for the catalyst with Co/Cu = 2 under mild conditions of furfural hydrogenation was more than 99%. The results obtained are important for the development of the scientific foundations of the preparation of hydrogenation catalysts with a fine-tunable composition in order to obtain the desired hydrogenation products. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

17 pages, 4298 KiB  
Article
Synthesis of Silver Nanoparticles Using Green Reducing Agent: Ceylon Olive (Elaeocarpus serratus): Characterization and Investigating Their Antimicrobial Properties
by Kumudu M. Fernando, Chamila A. Gunathilake, Chandi Yalegama, Upeka K. Samarakoon, Chacrawarthige A. N. Fernando, Gangani Weerasinghe, Geethi K. Pamunuwa, Ibrahim Soliman, Nomi Ghulamullah, Suranga M. Rajapaksha and Omar Fatani
J. Compos. Sci. 2024, 8(2), 43; https://doi.org/10.3390/jcs8020043 - 24 Jan 2024
Cited by 1 | Viewed by 1476
Abstract
Silver nanoparticles (AgNPs) are widely recognized as a prominent antimicrobial agent and have found applications in the field of medicine. This study focuses on the synthesis of AgNPs utilizing the natural reducing agent of Ceylon olive (Elaeocarpus serratus), presenting an economically [...] Read more.
Silver nanoparticles (AgNPs) are widely recognized as a prominent antimicrobial agent and have found applications in the field of medicine. This study focuses on the synthesis of AgNPs utilizing the natural reducing agent of Ceylon olive (Elaeocarpus serratus), presenting an economically viable and ecologically friendly approach. For the first time, this research demonstrated the synthesis of AgNPs using phytochemicals extracted from Ceylon olive, serving as both natural reducing and stabilizing agents. The synthesized AgNPs were characterized with UV–visible spectroscopy, a particle size analyzer (PSA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectrometer (EDX). The UV–visible spectra primarily indicated the formation of the AgNPs by the surface plasmon resonance band around 434 nm. SEM analysis confirmed the presence of silver nanoparticles within a size range of 50–110 nm, with an average size of approximately 70 nm. FTIR determined that proteins, phenols, and flavonoids may have acted as reducing and capping agents. Experimental parameters were optimized to improve the yield and size of the AgNPs and eventually evaluate their antibacterial properties. The well diffusion method exhibits a significantly larger zone of inhibition for Gram-negative bacterial strains (18.4 ± 0.55 mm for Pseudomonas aeruginosa and 14.4 ± 0.55 mm for Escherichia coli) compared to Gram-positive bacterial strains (11.6 ± 0.55 mm for Staphylococcus aureus and 10.4 ± 0.55 mm for Staphylococcus epidermidis) for 50 µg/mL AgNPs. These findings demonstrate that AgNPs synthesized with Ceylon olive have the potential to develop into novel materials for bacterial-mediated diseases. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 4295 KiB  
Review
Hot-Dip Galvanizing Process and the Influence of Metallic Elements on Composite Coatings
by Qi Liu, Yuqing Cao, Shuai Chen, Xinye Xu, Mutian Yao, Jie Fang, Kuan Lei and Guiqun Liu
J. Compos. Sci. 2024, 8(5), 160; https://doi.org/10.3390/jcs8050160 - 25 Apr 2024
Viewed by 292
Abstract
The corrosion of steel materials has become a global issue, causing significant socio-economic losses and safety concerns. Hot-dip galvanizing is currently one of the most widely used steel anti-corrosion processes. With the rapid advancement of science and technology and emerging industries, the performance [...] Read more.
The corrosion of steel materials has become a global issue, causing significant socio-economic losses and safety concerns. Hot-dip galvanizing is currently one of the most widely used steel anti-corrosion processes. With the rapid advancement of science and technology and emerging industries, the performance of pure galvanized products struggles to meet the demands of practical applications in various environments. Consequently, researchers have begun introducing various metals into the zinc solution to form high-performance alloy coatings. This article primarily explains the process flow of hot-dip galvanizing and the impact of metal elements such as Al, Mg, Sn, and Bi on the coating, as well as outlining the major issues currently faced by the hot-dip galvanizing process. The objective is to offer a more comprehensive introduction to those new to the field of hot-dip galvanizing and to provide theoretical insights for addressing production issues. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

30 pages, 8160 KiB  
Review
A Review on the Recent Trends in Forming Composite Joints Using Spot Welding Variants
by Aravinthan Arumugam and Alokesh Pramanik
J. Compos. Sci. 2024, 8(4), 155; https://doi.org/10.3390/jcs8040155 - 19 Apr 2024
Viewed by 402
Abstract
Traditional resistance spot welding (RSW) has been unsuccessful in forming quality composite joints between steel– or aluminum–polymer-based composites. This has led to the development of spot welding variants such as friction stir spot welding (FFSW), ultrasonic spot welding (USW), and laser spot welding [...] Read more.
Traditional resistance spot welding (RSW) has been unsuccessful in forming quality composite joints between steel– or aluminum–polymer-based composites. This has led to the development of spot welding variants such as friction stir spot welding (FFSW), ultrasonic spot welding (USW), and laser spot welding (LSW). The paper reviewed the differences in the bonding mechanisms, spot weld characteristics, and challenges involved in using these spot welding variants. Variants of RSW use series electrode arrangement, co-axial electrodes, metallic inserts, interlayers, or external energy to produce composite joints. FFSW and USW use nanoparticles, interlayers, or energy directors to create composite spot welds. Mechanical interlocking is the common composite joint mechanism for all variants. Each spot welding variant has different sets of weld parameters and distinct spot weld morphologies. FFSW is the most expensive variant but is commonly used for composite spot weld joints. USW has a shorter welding cycle compared to RSW and FFSW but can only be used for small components. LSW is faster than the other variants, but limited work was found on its use in composite spot weld joining. The use of interlayers in FFSW and USW to form composite joints is a potential research area recommended in this review. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

Back to TopTop