Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cyclic Voltammetry of Electrodes
3.2. SPCE’s Active Region Evaluation
3.3. Optimization of Experimental Results
3.3.1. Electrolyte
3.3.2. Electrodeposition Potential and Time
3.4. Quantitative Analysis of As (III)
3.5. Interference from Copper Ion
3.6. Other Ions’ Interference
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, L.; Ying, D.; Liang, X.; Zhu, M.; Lin, X.; Xu, Q.; Cai, Z.; Xu, X.; Zhang, L. A Novel Cationic Polyelectrolyte Microsphere for Ultrafast and Ultra-Efficient Removal of Heavy Metal Ions and Dyes. Chem. Eng. J. 2021, 410, 128404. [Google Scholar] [CrossRef]
- Gianì, F.; Masto, R.; Trovato, M.A.; Malandrino, P.; Russo, M.; Pellegriti, G.; Vigneri, P.; Vigneri, R. Heavy Metals in the Environment and Thyroid Cancer. Cancers 2021, 13, 4052. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, H.; Sun, R.; Cui, M.; Sun, N.; Zhang, S. Evaluation and Analysis of Heavy Metals in Iron and Steel Industrial Area. Environ. Dev. Sustain. 2022, 24, 10997–11010. [Google Scholar] [CrossRef]
- Shankar, S.; Shanker, U.; Shikha. Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation. Sci. World J. 2014, 2014, 304524. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; WHO: Geneva, Switzerland, 2017; ISBN 978-92-4-155001-7. [Google Scholar]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively Coupled Plasma—Tandem Mass Spectrometry (ICP-MS/MS): A Powerful and Universal Tool for the Interference-Free Determination of (Ultra)Trace Elements—A Tutorial Review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Omeje, K.O.; Ezema, B.O.; Okonkwo, F.; Onyishi, N.C.; Ozioko, J.; Rasaq, W.A.; Sardo, G.; Okpala, C.O.R. Quantification of Heavy Metals and Pesticide Residues in Widely Consumed Nigerian Food Crops Using Atomic Absorption Spectroscopy (AAS) and Gas Chromatography (GC). Toxins 2021, 13, 870. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhou, C.; Li, Y.; Yang, X.; Wen, J.; Song, S.; Li, C.; Sun, C. Speciation Analysis of Arsenic in Edible Mushrooms by High-Performance Liquid Chromatography Hyphenated to Inductively Coupled Plasma Mass Spectrometry. Food Chem. 2020, 327, 127033. [Google Scholar] [CrossRef]
- Gudlavalleti, R.H.; Bose, S.C.; Verma, S.K.; Khatri, P.; Scaria, J.; Dhewa, S.; Chaubey, V.K. A Novel Fluorometric Bio-Sensing-Based Arsenic Detection System for Groundwater. IEEE Sens. J. 2017, 17, 5391–5398. [Google Scholar] [CrossRef]
- Krishnan, S. Review—Electrochemical Sensors for Large and Small Molecules in Biofluids. J. Electrochem. Soc. 2020, 167, 167505. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, M.; Huang, X.-J. Recent Developments in Electrochemical Determination of Arsenic. Curr. Opin. Electrochem. 2017, 3, 130–136. [Google Scholar] [CrossRef]
- Hung, D.Q.; Nekrassova, O.; Compton, R.G. Analytical Methods for Inorganic Arsenic in Water: A Review. Talanta 2004, 64, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-G.; Huang, X.-J. Voltammetric Determination of Inorganic Arsenic. TrAC Trends Anal. Chem. 2014, 60, 25–35. [Google Scholar] [CrossRef]
- Rapini, R.; Marrazza, G. Electrochemical Aptasensors for Contaminants Detection in Food and Environment: Recent Advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yi, Z.; Liang, Q.; Zhen, J.; Wang, R.; Li, M.; Zeng, L.; Li, Y. In Situ Deposition of Gold Nanoparticles and L-Cysteine on Screen-Printed Carbon Electrode for Rapid Electrochemical Determination of As (III) in Water and Tea. Biosensors 2023, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.-N.; Ferdousi, S.; Islam, M.M.; Okajima, T.; Ohsaka, T. Arsenic Detection by Nanogold/Conducting-Polymer-Modified Glassy Carbon Electrodes. J. Appl. Polym. Sci. 2007, 104, 1306–1311. [Google Scholar] [CrossRef]
- Prakash, S.; Chakrabarty, T.; Singh, A.K.; Shahi, V.K. Silver Nanoparticles Built-in Chitosan Modified Glassy Carbon Electrode for Anodic Stripping Analysis of As (III) and Its Removal from Water. Electrochim. Acta 2012, 72, 157–164. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, N.; Li, J.; Chen, Z.; Liao, C.; Chen, J. Synergy of Glutathione, Dithiothreitol and N-Acetyl-l-Cysteine Self-Assembled Monolayers for Electrochemical Assay: Sensitive Determination of Arsenic (Iii) in Environmental and Drinking Water. Analyst 2011, 136, 4526. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Swain, G.M. Total Inorganic Arsenic Detection in Real Water Samples Using Anodic Stripping Voltammetry and a Gold-Coated Diamond Thin-Film Electrode. Anal. Chim. Acta 2007, 593, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Liu, J.; Xie, Q.; Yao, S. Anodic Stripping Voltammetric Analysis of Trace Arsenic (III) Enhanced by Mild Hydrogen-Evolution at a Bimetallic Au–Pt Nanoparticle Modified Glassy Carbon Electrode. Electrochem. Commun. 2015, 59, 28–31. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Xie, F.; Fu, Y.; He, Y.; Ma, M.; Xie, Q.; Yao, S. Au-Supported Pt–Au Mixed Atomic Monolayer Electrocatalyst with Ultrahigh Specific Activity for Oxidation of Formic Acid in Acidic Solution. Chem. Commun. 2012, 48, 12106. [Google Scholar] [CrossRef] [PubMed]
- Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T. Multiple Voltammetric Waves for Reductive Desorption of Cysteine and 4-Mercaptobenzoic Acid Monolayers Self-Assembled on Gold Substrates. Phys. Chem. Chem. Phys. 2003, 5, 3758. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Srivastava, R.; Satpati, B. Simultaneous Detection of Guanine, Adenine, Thymine, and Cytosine at Polyaniline/MnO2 Modified Electrode. Electrochim. Acta 2013, 114, 285–295. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Srivastava, R. Tailoring Properties of Polyaniline for Simultaneous Determination of a Quaternary Mixture of Ascorbic Acid, Dopamine, Uric Acid, and Tryptophan. Sens. Actuators B Chem. 2013, 177, 239–250. [Google Scholar] [CrossRef]
- Lin, T.-H.; Lin, C.-W.; Liu, H.-H.; Sheu, J.-T.; Hung, W.-H. Potential-Controlled Electrodeposition of Gold Dendrites in the Presence of Cysteine. Chem. Commun. 2011, 47, 2044. [Google Scholar] [CrossRef]
- Dong, X.; Li, M.; Feng, N.; Sun, Y.; Yang, C.; Xu, Z. A Nanoporous MgO Based Nonenzymatic Electrochemical Sensor for Rapid Screening of Hydrogen Peroxide in Milk. RSC Adv. 2015, 5, 86485–86489. [Google Scholar] [CrossRef]
- Dai, X.; Compton, R.G. Gold Nanoparticle Modified Electrodes Show a Reduced Interference by Cu (II) in the Detection of As (III) Using Anodic Stripping Voltammetry. Electroanalysis 2005, 17, 1325–1330. [Google Scholar] [CrossRef]
- Cai, X.; Xia, R.-Z.; Ye, J.-J.; Huang, C.-C.; Yang, Y.-F.; Zhang, L.-K.; Liang, B.; Yang, M.; Lin, C.-H.; Li, P.-H.; et al. Practical Strategy for Arsenic (III) Electroanalysis without Modifier in Natural Water: Triggered by Iron Group Ions in Solution. Anal. Chem. 2023, 95, 4104–4112. [Google Scholar] [CrossRef]
- Wang, B.; Deng, C.; Ma, W.; Sun, Y. Modified Nanoscale Zero-Valent Iron in Persulfate Activation for Organic Pollution Remediation: A Review. Environ. Sci. Pollut. Res. 2021, 28, 34229–34247. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Yu, M.; Yuan, Q.; Meng, Y.; Qie, Y.; Shang, Z.; Luan, F.; Zhang, D. Spatial Distribution, Pollution Assessment, and Source Identification of Heavy Metals in the Yellow River. J. Hazard. Mater. 2022, 436, 129309. [Google Scholar] [CrossRef] [PubMed]
- Udayan, A.P.M.; Kachwala, B.; Karthikeyan, K.G.; Gunasekaran, S. Ultrathin Quasi-Hexagonal Gold Nanostructures for Sensing Arsenic in Tap Water. RSC Adv. 2020, 10, 20211–20221. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, N.; Mohapatra, M.; Leung, K.T. Bimetallic Nanoparticles for Arsenic Detection. Anal. Chem. 2015, 87, 5546–5552. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Xing, C.; Tian, J.J.; Zheng, G.; Jin, H.L.; Xing, J.H. Electrochemical Detection of Trace Arsenic(III) by Nanocomposite of Nanorod-Like α-MnO2 Decorated with ∼5 Nm Au Nanoparticles: Considering the Change of Arsenic Speciation. Anal. Chem. 2016, 88, 9720–9728. [Google Scholar] [CrossRef]
- Sawan, S.; Hamze, K.; Youssef, A. The Use of Voltammetry for Sorption Studies of Arsenic (III) Ions by Magnetic Beads Functionalized with Nucleobase Hydrazide Derivatives. Electroanalysis 2021, 7, 1789–1799. [Google Scholar] [CrossRef]
- Andrea, B.; Daniel, M. Arsenic (III) Detection in Water by Flow-through Carbon Nanotube Membrane Decorated by Gold Nanoparticles. Electrochim. Acta 2019, 318, 496–503. [Google Scholar] [CrossRef]
Ref. | Method | Material | Linear Range | LOD (ppb) |
---|---|---|---|---|
[30] | SWASV | Fe2+/Fe3+ (GCE) | 1–15 ppb | 0.487 |
[32] | CV | AuNPs (SPCE) | 0.075–30 ppb | 0.11 |
[33] | SWASV | FePt (GCE) | 1–15 ppb | 0.8 |
[21] | LSASV | AuPt (GCE) | 0.005 to 3.0 μM | 0.28 |
[34] | SWASV | AuNPs/α-MnO2 (CGE) | 1–10 ppb | 0.019 |
[35] | SWASV | Fe3O4NPs/AuNPs (GCE) | 1–100 ppb | 0.22 |
[36] | LSASV | Buckypaper modified by GNP | 0.75–750 ppb | 0.75 ppb |
This work | DPV | AuPt/L-cysteine | 1–50 ppb | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.-Z.; Wang, K.; Bao, N.; Ding, S.-N. Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection. J. Compos. Sci. 2024, 8, 327. https://doi.org/10.3390/jcs8080327
Zhang W-Z, Wang K, Bao N, Ding S-N. Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection. Journal of Composites Science. 2024; 8(8):327. https://doi.org/10.3390/jcs8080327
Chicago/Turabian StyleZhang, Wei-Zhi, Kan Wang, Ning Bao, and Shou-Nian Ding. 2024. "Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection" Journal of Composites Science 8, no. 8: 327. https://doi.org/10.3390/jcs8080327
APA StyleZhang, W.-Z., Wang, K., Bao, N., & Ding, S.-N. (2024). Co-Deposition of Bimetallic Au-Pt with L-Cysteine on Electrodes and Removal of Copper by Iron Powder for Trace Aqueous Arsenic Detection. Journal of Composites Science, 8(8), 327. https://doi.org/10.3390/jcs8080327