Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Fabrication
2.2. Coating Characterization
2.3. Corrosion Resistance Test
3. Results and Discussion
3.1. Synthesis of Composite Coatings
3.2. Phase Analysis of Composite Coatings
3.3. Surface Morphology and Chemical Composition Studies of Composite Coatings
3.4. Corrosion of Composite Coatings in the Harsh Acidic Environment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PEO | Plasma electrolytic oxidation |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction analysis |
WE | Working electrode |
CE | Counter electrode |
RE | Reference electrode |
PDP | Potentio-dynamic polarization test |
References
- Yan, S.; Song, G.-L.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Horynova, M.; Dargusch, M.S.; Zhou, L. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Chen, W.; Wang, K.; Liu, G. Enhancement of high-temperature performance in titanium alloys through rapid heating: A novel boundary engineering approach. J. Mater. Sci. Technol. 2026, 245, 249–255. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Srivastava, M.; Jayakumar, V.; Udayan, Y.; Sathishkumar, M.; Muthu, S.M.; Gautam, P.; Nag, A. Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties. Appl. Mater. Today 2024, 41, 102481. [Google Scholar] [CrossRef]
- Freitas, B.J.M.; Vidilli, A.L.; de Bribean Guerra, A.; Ferreira, D.C.F.; Kasama, A.H.; Paes, M.T.P.; Koga, G.Y.; Bolfarini, C. Ti-6Al-4V and Ti-6Al-4V-0.1Ru alloys in oil and gas exploration: A review of performance and hydrogen embrittlement. J. Alloys Compd. 2025, 1019, 179258. [Google Scholar] [CrossRef]
- Sugiawati, V.A.; Vacandio, F.; Djenizian, T. All-solid-state lithium ion batteries using self-organized TiO2 nanotubes grown from Ti-6Al-4V Alloy. Molecules 2020, 25, 2121. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, J.; Wu, X.-l.; Xu, Y.w.; Chen, H.; Li, X. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. J. Power Sources 2021, 505, 230058. [Google Scholar] [CrossRef]
- Garashchenko, M.; Yuferov, Y.; Borodianskiy, K. Development of PEO in low-temperature ternary nitrate molten salt on Ti6V4Al. Materials 2025, 18, 3603. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Keshavarz, M.K.; Molaei, M.; Gashti, S.O. Plasma Electrolytic Oxidation (PEO) process on commercially pure Ti surface: Effects of electrolyte on the microstructure and corrosion behavior of coatings. Metall. Mater. Trans. A 2018, 49, 4966–4979. [Google Scholar] [CrossRef]
- Yuferov, Y.; Borodianskiy, K. Ca/P in situ introduction for enhancing coating biocompatibility via plasma electrolytic oxidation in low-temperature molten salt. Open Ceram. 2024, 18, 100602. [Google Scholar] [CrossRef]
- Neto, J.R.F.; Ribeiro, R.P.; da Cruz, N.C.; Rangel, E.C.; de Pinto, B.O.; Torrento, J.E.M.; Grandini, C.R.; Kaneko, U.F.; Correa, D.R.N. Effect of Bulk Phase Composition on the Growth of PEO Coatings on the Biomedical Ti-6Al-4V Alloy. Materials 2025, 18, 955. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, B.; Song, R.; Qi, X. Microstructure and corrosion behavior of MAO coatings on annealed Ti6Al4V alloy. Ceram. Int. 2025, 51, 32145–32157. [Google Scholar] [CrossRef]
- Seo, B.; Park, H.-K.; Park, C.-S.; Park, K. Effect of alloying elements on corrosion properties of high corrosion resistant titanium alloys in high concentrated sulfuric acid. Mater. Today Commun. 2023, 34, 105131. [Google Scholar] [CrossRef]
- Qiao, L.; Fang, M.; Liu, S.; Zhang, H.; Ma, X. New-generation iron–titanium flow batteries with low cost and ultrahigh stability for stationary energy storage. Chem. Eng. J. 2022, 434, 134588. [Google Scholar] [CrossRef]
- Tao, W.; Wang, M.; Zhu, B.; Huo, W.; Yang, R.; Xiong, H.; Tang, H.; Wei, Z.; Wang, Y. In-situ synthesized binder-free flocculent TiO2-x film as anode for lithium-ion batteries. Electrochim. Acta 2020, 334, 135569. [Google Scholar] [CrossRef]
- Sun, M.; Wu, J.; Lu, P.; Zhang, Z.; Zhang, Y.; Li, D. Sphere-like MoS2 and porous TiO2 composite film on Ti foil as lithium-ion battery anode synthesized by plasma electrolytic oxidation and magnetron sputtering. J. Alloys Compd. 2022, 892, 162075. [Google Scholar] [CrossRef]
- Dunya, H.; Ashuri, M.; Yue, Z.; Kucuk, K.; Lin, Y.; Alramahi, D.; Segre, C.U.; Mandal, B.K. Rational design of titanium oxide-coated dual Core–Shell sulfur nanocomposite cathode for highly stable lithium–sulfur batteries. J. Phys. Chem. Solids 2021, 149, 109791. [Google Scholar] [CrossRef]
- Wu, T.; Blawert, C.; Serdechnova, M.; Karlova, P.; Dovzhenko, G.; Florian Wieland, D.C.; Stojadinovic, S.; Vasilic, R.; Wang, L.; Wang, C.; et al. Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti6Al4V alloy. Appl. Surf. Sci. 2022, 595, 153523. [Google Scholar] [CrossRef]
- Kostelac, L.; Pezzato, L.; Settimi, A.G.; Franceschi, M.; Gennari, C.; Brunelli, K.; Rampazzo, C.; Dabalà, M. Investigation of hydroxyapatite (HAP) containing coating on grade 2 titanium alloy prepared by plasma electrolytic oxidation (PEO) at low voltage. Surf. Interfaces 2022, 30, 101888. [Google Scholar] [CrossRef]
- Rahumi, O.; Yuferov, Y.; Meshi, L.; Maman, N.; Borodianskiy, K. Ni-doping strategy for perovskite anodes towards high-performance ammonia-fueled SOFCs. J. Power Sources 2025, 631, 236320. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Y.; Chen, C.; Zhong, S.; Yan, Z.; Liu, W.; Wang, Y.; Lai, X.; Zhao, Y.; Zhao, R.; et al. Preparation of HA-containing coating by one-step MAO on titanium alloys through synergistic effect of calcium gluconate and calcium glycerophosphate. Surf. Coat. Technol. 2023, 466, 129655. [Google Scholar] [CrossRef]
- Guo, C.; Li, Y.; Qi, C.; Sun, H.; Xue, Y.; Wan, Y.; Zhang, D. Preparation and corrosion resistance characterization of MAO coating on AZ31B magnesium alloy formed in the mixed silicate and phosphate electrolytes with pectin as an additive. Surf. Coat. Technol. 2024, 476, 130209. [Google Scholar] [CrossRef]
- Jiao, J.; Gu, Y.; Ding, X.; Zhang, J.; Lian, Y.; Gao, P.; Zhang, X.; Han, S.; Zheng, K.; Pan, F. Effect of different metal-reinforcement phases on PEO discharge and coating growth behavior of AZ91 Mg-matrix composites. J. Magnes. Alloy. 2025, in press. [Google Scholar] [CrossRef]
- Sela, S.; Borodianskiy, K. Synthesis of ceramic surface on Zr alloy using plasma electrolytic oxidation in molten salt. Surf. Interfaces 2023, 36, 102533. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Chaharmahali, R.; Keshavarz, M.K.; Babaei, K. Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surf. Interfaces 2021, 25, 101283. [Google Scholar] [CrossRef]
- Pezzato, L.; Gennari, C.; Franceschi, M.; Brunelli, K. Influence of silicon morphology on direct current plasma electrolytic oxidation process in AlSi10Mg alloy produced with laser powder bed fusion. Sci. Rep. 2022, 12, 14329. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, Y.; Xu, X.; Zhang, W.; Feng, R.; Li, H.; Gao, Z. Improving corrosion and wear resistances of 2195 Al–Li alloy by PEO and LDHs composite coating. J. Mater. Res. Technol. 2024, 28, 1044–1061. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Zhang, K.; Sun, X.; Men, B.; Yu, S. Enhanced wear resistance, hydrophobic properties and corrosion resistance of plasma electrolyte oxidation coatings on Ti6Al4V alloys via addition of ZrO2 nanoparticles. J. Mater. Res. Technol. 2025, 34, 463–478. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.; Liu, D.; Du, N. Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy. Surf. Coat. Technol. 2015, 272, 343–349. [Google Scholar] [CrossRef]
- Lopez-Martinez, E.; Mohedano, M.; Matykina, E.; Arrabal, R. PEO of additively manufactured Al10SiMg alloy: Effects of α-Al2O3 particles on energy consumption and wear behaviour. J. Mater. Res. Technol. 2024, 31, 1786–1796. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, C.; Zhao, R.; Si, T.; Li, Y.; Qian, W.; Gao, G.; Chen, Y. Effect of Al2O3 nanoparticles additions on wear resistance of plasma electrolytic oxidation coatings on TC4 alloys. Ceram. Int. 2024, 50, 18484–18496. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, M. Effect of α-Al2O3 additive on the surface micro-arc oxidation coating of Ti6Al4V Alloy. Nanomaterials 2023, 13, 1802. [Google Scholar] [CrossRef]
- Vakili-Azghandi, M.; Fattah-alhosseini, A.; Keshavarz, M.K. Effects of Al2O3 nano-particles on corrosion performance of plasma electrolytic oxidation coatings formed on 6061 aluminum alloy. J. Mater. Eng. Perform. 2016, 25, 5302–5313. [Google Scholar] [CrossRef]
- Rozenblium, I.; Yuferov, Y.; Borodianskiy, K. A comprehensive study of aluminum anodization in transition modes. Materials 2024, 17, 3438. [Google Scholar] [CrossRef] [PubMed]
- Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry; Ali, D.E., Ed.; Wiley: Hoboken, NJ, USA, 2008; pp. 1–116. ISBN 9783527318766. [Google Scholar]
- Yuferov, Y.; Arnautov, A.; Shak, A.; Beketov, A. Forming complex geometry of nanopore by anodic oxidation of aluminum by pulsation method. AIP Conf. Proc. 2018, 2015, 020113. [Google Scholar] [CrossRef]
- Zykov, F.; Selyanin, I.; Shishkin, R.; Kartashov, V.; Borodianskiy, K.; Yuferov, Y. Study of the photocatalytic properties of Ni-doped nanotubular titanium oxide. Coatings 2023, 13, 144. [Google Scholar] [CrossRef]
- Yuferov, Y.V.; Popov, I.D.; Zykov, F.M.; Suntsov, A.Y.; Baklanova, I.V.; Chukin, A.V.; Kukharenko, A.I.; Cholakh, S.O.; Zhidkov, I.S. Study of the influence of anodizing parameters on the photocatalytic activity of preferred oriented TiO2 nanotubes self-doped by carbon. Appl. Surf. Sci. 2022, 573, 151366. [Google Scholar] [CrossRef]
- Pashchanka, M. Conceptual progress for explaining and predicting self-organization on anodized aluminum surfaces. Nanomaterials 2021, 11, 2271. [Google Scholar] [CrossRef]
- Vaughan, J.; Alfantazi, A. Corrosion of titanium and its alloys in sulfuric acid in the presence of chlorides. J. Electrochem. Soc. 2006, 153, B6. [Google Scholar] [CrossRef]
- Dugdale, I.; Cotton, J.B. The anodic polarization of titanium in halide solutions. Corros. Sci. 1964, 4, 397–411. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf. Coat. Technol. 2000, 130, 195–206. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Macdonald, D.D.; Matykina, E.; Parfenov, E.V.; Egorkin, V.S.; Curran, J.A.; Troughton, S.C.; Sinebryukhov, S.L.; Gnedenkov, S.V.; Lampke, T.; et al. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Appl. Surf. Sci. Adv. 2021, 5, 100121. [Google Scholar] [CrossRef]
Sample Name | Porosity [%] | Pore Size [µm] | Thickness [µm] |
---|---|---|---|
[SM, o] | 10.1 ± 3.3 | 1.02 ± 0.35 | 4.9 ± 0.7 |
[SM, a] | 4.3 ± 0.6 | 0.20 ± 0.07 | 2.3 ± 0.3 |
[SS, o] | 2.9 ± 0.7 | 0.17 ± 0.04 | 2.4 ± 0.8 |
[SS, a] | 1.0 ± 0.4 | 0.31 ± 0.08 | 3.4 ± 0.9 |
[SP, o] | 5.7 ± 0.7 | 0.74 ± 0.20 | 3.6 ± 1.1 |
[SP, a] | 2.5 ± 0.6 | 0.61 ± 0.14 | 3.5 ± 0.4 |
Sample Name | Element Content [at.%] | |||||||
---|---|---|---|---|---|---|---|---|
Ti | Al | V | Si | P | S | Na | K | |
[SM, o] | 45.6 ± 7.2 | 4.6 ± 0.8 | 1.9 ± 0.3 | 46.8 ± 8.2 | n.d. | n.d. | 0.6 ± 0.1 | n.d. |
[SM, a] | 74.4 ± 0.6 | 10.9 ± 0.2 | 3.2 ± 0.2 | 9.8 ± 0.5 | n.d. | n.d. | 1.3 ± 0.2 | n.d. |
[SS, o] | 85.6 ± 0.6 | 8.2 ± 0.5 | 3.4 ± 0.2 | n.d. | n.d. | 2.3 ± 0.3 | 0.3 ± 0.2 | n.d. |
[SS, a] | 76.0 ± 1.1 | 18.7 ± 1.2 | 3.2 ± 0.2 | n.d. | n.d. | 1.6 ± 0.1 | 0.4 ± 0.2 | n.d. |
[SP, o] | 70.5 ± 1.2 | 7.4 ± 0.3 | 3.2 ± 0.2 | n.d. | 15.9 ± 0.8 | n.d. | 0.6 ± 0.2 | n.d. |
[SP, a] | 63.6 ± 2.4 | 20.0 ± 1.5 | 2.9 ± 0.2 | n.d. | 10.4 ± 0.6 | n.d. | 0.6 ± 0.2 | n.d. |
Sample Name | Ecorr,tafel [V vs. RE] | Icorr,tafel [nA/cm2] | ba [V/dec] | bc [V/dec] | Rp,s−g [kΩ·cm2] |
---|---|---|---|---|---|
Ti6Al4V | −0.680 ± 0.006 | (9.7 ± 0.8)·104 | 0.341 ± 0.022 | 0.162 ± 0.005 | 0.50 ± 0.04 |
[SM, o] | 0.343 ± 0.095 | 611 ± 464 | 0.164 ± 0.049 | 0.081 ± 0.107 | 25.95 ± 7.90 |
[SM, a] | 0.433 ± 0.040 | 205 ± 62 | 0.162 ± 0.053 | 0.042 ± 0.005 | 71.55 ± 13.03 |
[SS, o] | 0.235 ± 0.059 | 392 ± 60 | 0.174 ± 0.003 | 0.101 ± 0.005 | 71.99 ± 10.36 |
[SS, a] | 0.333 ± 0.036 | 302 ± 33 | 0.172 ± 0.026 | 0.096 ± 0.006 | 89.01 ± 9.53 |
[SP, o] | 0.159 ± 0.056 | 253 ± 121 | 0.159 ± 0.034 | 0.043 ± 0.013 | 70.86 ± 41.15 |
[SP, a] | 0.492 ± 0.003 | 143 ± 22 | 0.218 ± 0.022 | 0.044 ± 0.003 | 113.00 ± 11.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garashchenko, M.; Yuferov, Y.; Borodianskiy, K. Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments. J. Compos. Sci. 2025, 9, 515. https://doi.org/10.3390/jcs9100515
Garashchenko M, Yuferov Y, Borodianskiy K. Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments. Journal of Composites Science. 2025; 9(10):515. https://doi.org/10.3390/jcs9100515
Chicago/Turabian StyleGarashchenko, Michael, Yuliy Yuferov, and Konstantin Borodianskiy. 2025. "Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments" Journal of Composites Science 9, no. 10: 515. https://doi.org/10.3390/jcs9100515
APA StyleGarashchenko, M., Yuferov, Y., & Borodianskiy, K. (2025). Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments. Journal of Composites Science, 9(10), 515. https://doi.org/10.3390/jcs9100515