Special Issue "Powder Metallurgy and Additive Manufacturing/3D Printing of Materials"

Special Issue Editor

Prof. Dr. Konda Gokuldoss Prashanth
Website SciProfiles
Guest Editor
Head of the Additive Manufacturing Laboratory, Professor at the Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
Interests: Powder metallurgy; additive manufacturing; powder bed fusion processes (laser (SLM)/electron beam (EBM)); selective laser sintering (SLS); meta-stable materials (including amorphous materials); light metals; materials joining and structure–property correlation in metals
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Powder metallurgy (PM) and related processes, including additive manufacturing (AM)/3D printing, are revolutionizing the manufacturing sector, especially for the production of the metallic components with added functionalities. Not only can they fabricate near-net-shaped components, but they can also help in the materials saving and weight reduction of components in the automobile and aerospace sectors, and help in reducing fuel consumption and promoting a greener environment.

Both PM and AM are undergoing rapid development, with new improvements and innovations taking place rapidly. However, they still face several industrial challenges, like process capabilities, and material aspects including microstructure formation and properties and the process cycle. It is, therefore, necessary to devote attention to focus research and development activities in these fields, including PM and AM, to promote the industrialization of these processes and new technologies. This includes the production of powder, the properties of powder, AM process developments, the design of alloys for the AM process, and the post-processing of the components. This Special Issue will be devoted to disseminate expert views and article contributions on developments and innovations in the fields of both PM and AM.

Scientific contributions are invited from scientists, researchers, engineers, and industry to disseminate recent inventions and developments in the fields of PM and AM. The potential topics include but are not limited to the following:

  • Powder production;
  • Powder properties;
  • Gas atomization;
  • Mechanical (ball) alloying/milling;
  • Consolidation processes;
  • Alloy Systems and alloy development;
  • Next generation 3D/4D printing;
  • Innovation in processing strategies;
  • Microstructure–property correlation;
  • Innovation and advancement in powder production;
  • Numerical simulation;
  • Industrialization of the process;
  • Defect and failure analysis.

This Special Issue looks forward to receiving submissions in any form, including review articles, regular research articles, and short communications. Both experimental and theoretical studies are of interest.

Prof. Dr. Konda Gokuldoss Prashanth
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • powder metallurgy
  • gas atomization
  • ball milling/alloying
  • additive manufacturing
  • 3D printing
  • selective laser melting
  • electron beam melting

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Vacuum Hot Pressing of Oxide Dispersion Strengthened Ferritic Stainless Steels: Effect of Al Addition on the Microstructure and Properties
J. Manuf. Mater. Process. 2020, 4(3), 93; https://doi.org/10.3390/jmmp4030093 - 14 Sep 2020
Abstract
The present article investigates the fabrication of oxide dispersion strengthened (ODS) ferritic stainless steel (FSS). Three different ODS alloys with three different Al contents were fabricated, where the presence of Al-based oxides play a crucial role in determining the size of the oxide [...] Read more.
The present article investigates the fabrication of oxide dispersion strengthened (ODS) ferritic stainless steel (FSS). Three different ODS alloys with three different Al contents were fabricated, where the presence of Al-based oxides play a crucial role in determining the size of the oxide particles. Due to Ostwald ripening, the samples with Al show coarser oxide particles compared to the alloy without Al, which hampers the density of the fabricated samples and, hence, have reduced hardness levels. The present results suggest that the composition of the oxide present in ODS plays a crucial role in determining the properties of these samples. Full article
(This article belongs to the Special Issue Powder Metallurgy and Additive Manufacturing/3D Printing of Materials)
Show Figures

Figure 1

Open AccessArticle
The Dimensional Accuracy of Thin-Walled Parts Manufactured by Laser-Powder Bed Fusion Process
J. Manuf. Mater. Process. 2020, 4(3), 91; https://doi.org/10.3390/jmmp4030091 - 11 Sep 2020
Abstract
Laser-Powder Bed Fusion brings new possibilities for the design of parts, e.g., cutter shafts with integrated cooling channels close to the contour. However, there are new challenges to dimensional accuracy in the production of thin-walled components, e.g., heat exchangers. High degrees of dimensional [...] Read more.
Laser-Powder Bed Fusion brings new possibilities for the design of parts, e.g., cutter shafts with integrated cooling channels close to the contour. However, there are new challenges to dimensional accuracy in the production of thin-walled components, e.g., heat exchangers. High degrees of dimensional accuracy are necessary for the production of functional components. The aim is to already achieve these during the process, to reduce post-processing costs and time. In this work, thin-walled ring specimens of H13 tool steel are produced and used for the analysis of dimensional accuracy and residual stresses. Two different scanning strategies were evaluated. One is a stripe scan strategy, which was automatically generated and provided by the machine manufacturer, and a (manually designed) sectional scan strategy. The ring segment strategy is designed by manually segmenting the geometry, which results in a longer preparation time. The samples were printed in different diameters and analyzed with respect to the degree of accuracy and residual stresses. The dimensional accuracy of ring specimens could be improved by up to 81% with the introduced sectional strategy compared to the standard approach. Full article
(This article belongs to the Special Issue Powder Metallurgy and Additive Manufacturing/3D Printing of Materials)
Show Figures

Figure 1

Open AccessArticle
Use of Bimodal Particle Size Distribution in Selective Laser Melting of 316L Stainless Steel
J. Manuf. Mater. Process. 2020, 4(1), 8; https://doi.org/10.3390/jmmp4010008 - 01 Feb 2020
Cited by 1
Abstract
Spherical powders with single-mode (D50 = 36.31 µm), and bimodal (D50,L = 36.31 µm, D50,s = 5.52 µm) particle size distribution were used in selective laser melting of 316L stainless steel in nitrogen atmosphere at volumetric energy densities ranging from [...] Read more.
Spherical powders with single-mode (D50 = 36.31 µm), and bimodal (D50,L = 36.31 µm, D50,s = 5.52 µm) particle size distribution were used in selective laser melting of 316L stainless steel in nitrogen atmosphere at volumetric energy densities ranging from 35.7–116.0 J/mm3. Bimodal particle size distribution could provide up to 2% greater tap density than single-mode powder. For low laser power (107–178 W), where relative density was <99%, bimodal feedstock resulted in higher density than single-mode feedstock. However, at higher power (>203 W), the density of bimodal-fed components decreased as the energy density increased due to vaporizing of the fine powder in bimodal distributions. Size of intergranular cell regions did not appear to vary significantly between single-mode and bimodal specimens (0.394–0.531 µm2 at 81–116 J/mm3). Despite higher packing densities in powder feedstock with bimodal particle size distribution, the results of this study suggest that differences in conduction melting and vaporization points between the two primary particle sizes would limit the maximum achievable density of additively manufactured components produced from bimodal powder size distribution. Full article
(This article belongs to the Special Issue Powder Metallurgy and Additive Manufacturing/3D Printing of Materials)
Show Figures

Figure 1

Back to TopTop