- Article
Optimization of Electric Bus Charging and Fleet Sizing Incorporating Traffic Congestion Based on Deep Reinforcement Learning
- Hai Yan,
- Xinyu Sui and
- Ning Chen
- + 1 author
Amid the increasing demand to reduce carbon emissions, replacing diesel buses with electric buses has become a key development direction in public transportation. However, a significant challenge in this transition lies in developing efficient charging strategies and accurately determining the required fleet size, as existing research often fails to adequately account for the impact of real-time traffic congestion on energy consumption. To address this gap, in this study, an optimized charging strategy is proposed, and the necessary fleet size is calculated using a deep reinforcement learning (DRL) approach, which integrates actual route characteristics and dynamic traffic congestion patterns into an electric bus operation model. Modeling is conducted based on Beijing Bus Route 400 to ensure the practical applicability of the proposed method. The results demonstrate that the proposed DRL method ensures operational completion while minimizing charging time, with the algorithm showing rapid and stable convergence. In the multi-route scenarios investigated in this study, the DRL-based charging strategy requires 40% more electric buses, with this figure decreasing to 24% when fast-charging technology is adopted. This study provides bus companies with valuable electric bus procurement and route operation references.
13 January 2026




