Previous Issue
Volume 10, June
 
 

Inventions, Volume 10, Issue 4 (August 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 2407 KiB  
Patent Summary
Automated Calibration Mechanism for Color Filter Integration in Quantitative Schlieren Systems with Rectangular Light Sources
by Emilia Georgiana Prisăcariu and Iulian Vlăducă
Inventions 2025, 10(4), 53; https://doi.org/10.3390/inventions10040053 - 4 Jul 2025
Abstract
This paper introduces an automated calibration system for color filters used in quantitative schlieren imaging, developed in response to prior findings highlighting the need for automation to reduce calibration time, minimize human error, and improve data accuracy and repeatability. Drawing from the authors’ [...] Read more.
This paper introduces an automated calibration system for color filters used in quantitative schlieren imaging, developed in response to prior findings highlighting the need for automation to reduce calibration time, minimize human error, and improve data accuracy and repeatability. Drawing from the authors’ experimental experience and practical application, the system demonstrates a significant enhancement in calibration efficiency—reducing the process from 2–5 h manually to just 15–30 min, representing time savings of up to 90%. Positioning accuracy improves from ±50–100 μm in manual setups to ±1–10 μm through precision-controlled automation, substantially lowering variability and increasing the reliability of pixel calibration curves. While calibration accuracy remains dependent on flow characteristics and post-processing capabilities, the system’s use of larger color filters—validated analytically and experimentally—further increases contrast sensitivity by 10–20%, enhancing the extraction of physical parameters such as velocity, temperature, and pressure fields. The setup features a modular, scalable architecture with a user-friendly interface, making it adaptable to diverse experimental environments and suitable for users at varying levels of expertise. Its iterative optimization and high-throughput capabilities position this system as a robust, flexible solution for advancing schlieren imaging techniques and enabling next-generation optical diagnostics in fluid dynamics research. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

9 pages, 1016 KiB  
Article
TinyML-Based Swine Vocalization Pattern Recognition for Enhancing Animal Welfare in Embedded Systems
by Tung Chiun Wen, Caroline Ferreira Freire, Luana Maria Benicio, Giselle Borges de Moura, Magno do Nascimento Amorim and Késia Oliveira da Silva-Miranda
Inventions 2025, 10(4), 52; https://doi.org/10.3390/inventions10040052 - 4 Jul 2025
Viewed by 64
Abstract
The automatic recognition of animal vocalizations is a valuable tool for monitoring pigs’ behavior, health, and welfare. This study investigates the feasibility of implementing a convolutional neural network (CNN) model for classifying pig vocalizations using tiny machine learning (TinyML) on a low-cost, resource-constrained [...] Read more.
The automatic recognition of animal vocalizations is a valuable tool for monitoring pigs’ behavior, health, and welfare. This study investigates the feasibility of implementing a convolutional neural network (CNN) model for classifying pig vocalizations using tiny machine learning (TinyML) on a low-cost, resource-constrained embedded system. The dataset was collected in 2011 at the University of Illinois at Urbana-Champaign on an experimental pig farm. In this experiment, 24 piglets were housed in environmentally controlled rooms and exposed to gradual thermal variations. Vocalizations were recorded using directional microphones, processed to reduce background noise, and categorized into “agonistic” and “social” behaviors using a CNN model developed on the Edge Impulse platform. Despite hardware limitations, the proposed approach achieved an accuracy of over 90%, demonstrating the potential of TinyML for real-time behavioral monitoring. These findings underscore the practical benefits of integrating TinyML into swine production systems, enabling early detection of issues that may impact animal welfare, reducing reliance on manual observations, and enhancing overall herd management. Full article
Show Figures

Figure 1

28 pages, 1210 KiB  
Article
A Multi-Ray Channel Modelling Approach to Enhance UAV Communications in Networked Airspace
by Fawad Ahmad, Muhammad Yasir Masood Mirza, Iftikhar Hussain and Kaleem Arshid
Inventions 2025, 10(4), 51; https://doi.org/10.3390/inventions10040051 - 1 Jul 2025
Viewed by 4
Abstract
In recent years, the use of unmanned aerial vehicles (UAVs), commonly known as drones, has significantly surged across civil, military, and commercial sectors. Ensuring reliable and efficient communication between UAVs and between UAVs and base stations is challenging due to dynamic factors such [...] Read more.
In recent years, the use of unmanned aerial vehicles (UAVs), commonly known as drones, has significantly surged across civil, military, and commercial sectors. Ensuring reliable and efficient communication between UAVs and between UAVs and base stations is challenging due to dynamic factors such as altitude, mobility, environmental obstacles, and atmospheric conditions, which existing communication models fail to address fully. This paper presents a multi-ray channel model that captures the complexities of the airspace network, applicable to both ground-to-air (G2A) and air-to-air (A2A) communications to ensure reliability and efficiency within the network. The model outperforms conventional line-of-sight assumptions by integrating multiple rays to reflect the multipath transmission of UAVs. The multi-ray channel model considers UAV flights’ dynamic and 3-D nature and the conditions in which UAVs typically operate, including urban, suburban, and rural environments. A technique that calculates the received power at a target UAV within a networked airspace is also proposed, utilizing the reflective characteristics of UAV surfaces along with the multi-ray channel model. The developed multi-ray channel model further facilitates the characterization and performance evaluation of G2A and A2A communications. Additionally, this paper explores the effects of various factors, such as altitude, the number of UAVs, and the spatial separation between them on the power received by the target UAV. The simulation outcomes are validated by empirical data and existing theoretical models, providing comprehensive insight into the proposed channel modelling technique. Full article
Show Figures

Figure 1

19 pages, 3233 KiB  
Article
Mathematical Modeling of the Influence of Electrical Heterogeneity on the Processes of Salt Ion Transfer in Membrane Systems with Axial Symmetry Taking into Account Electroconvection
by Ekaterina Kazakovtseva, Evgenia Kirillova, Anna Kovalenko and Mahamet Urtenov
Inventions 2025, 10(4), 50; https://doi.org/10.3390/inventions10040050 - 30 Jun 2025
Viewed by 1
Abstract
This article proposes a 3D mathematical model of the influence of electrical heterogeneity of the ion exchange membrane surface on the processes of salt ion transfer in membrane systems with axial symmetry; in particular, we investigate an annular membrane disk in the form [...] Read more.
This article proposes a 3D mathematical model of the influence of electrical heterogeneity of the ion exchange membrane surface on the processes of salt ion transfer in membrane systems with axial symmetry; in particular, we investigate an annular membrane disk in the form of a coupled system of Nernst–Planck–Poisson and Navier–Stokes equations in a cylindrical coordinate system. A hybrid numerical–analytical method for solving the boundary value problem is proposed, and a comparison of the results for the annular disk model obtained by the hybrid method and the independent finite element method is carried out. The areas of applicability of each of these methods are determined. The proposed model of an annular disk takes into account electroconvection, which is understood as the movement of an electrolyte solution under the action of an external electric field on an extended region of space charge formed at the solution–membrane boundary under the action of the same electric field. The main regularities and features of the occurrence and development of electroconvection associated with the electrical heterogeneity of the surface of the membrane disk of the annular membrane disk are determined; namely, it is shown that electroconvective vortices arise at the junction of the conductivity and non-conductivity regions at a certain ratio of the potential jump and angular velocity and flow down in the radial direction to the edge of the annular membrane. At a fixed potential jump greater than the limiting one, the formed electroconvective vortices gradually decrease with an increase in the angular velocity of rotation until they disappear. Conversely, at a fixed value of the angular velocity of rotation, electroconvective vortices arise at a certain potential jump, and with its subsequent increase gradually increase in size. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

38 pages, 3183 KiB  
Article
Exploring a Blockchain-Empowered Framework for Enhancing the Distributed Agile Software Development Testing Life Cycle
by Muhammad Shoaib Farooq, Junaid Nasir Qureshi, Fatima Ahmed, Momina Shaheen and Sameena Naaz
Inventions 2025, 10(4), 49; https://doi.org/10.3390/inventions10040049 - 30 Jun 2025
Viewed by 2
Abstract
Revolutionizing distributed agile software testing, we propose BCTestingPlus, a groundbreaking blockchain-based platform. In the traditional distributed agile software testing lifecycle, software testing has suffered from a lack of trust, traceability, and security in communication and collaboration. Furthermore, developers’ failure to complete unit testing [...] Read more.
Revolutionizing distributed agile software testing, we propose BCTestingPlus, a groundbreaking blockchain-based platform. In the traditional distributed agile software testing lifecycle, software testing has suffered from a lack of trust, traceability, and security in communication and collaboration. Furthermore, developers’ failure to complete unit testing has been a significant bottleneck, causing delays and contributing to project failures. Introducing BCTestingPlus, a transformative blockchain-based architecture engineered to overcome these challenges. This framework integrates blockchain technology to establish an inherently transparent and secure environment for software testing. BCTestingPlus operates on a private Ethereum blockchain network, offering superior control and privacy. By implementing smart contracts on this network, BCTestingPlus ensures secure payment verification and efficient acceptance testing. Crucially, it aligns development and testing teams toward shared objectives and guarantees equitable compensation for their efforts. The experimental results and findings conclusively show that this innovative approach demonstrates that BCTestingPlus significantly enhances transparency, bolsters trust, streamlines coordination, accelerates testing, and secures communication channels for all parties involved in the distributed agile software testing lifecycle. It delivers robust security for both development and testing teams, ultimately transforming the efficiency and reliability of distributed agile software testing. Full article
Show Figures

Figure 1

22 pages, 1595 KiB  
Review
Machine Learning Applications for Diagnosing Parkinson’s Disease via Speech, Language, and Voice Changes: A Systematic Review
by Mohammad Amran Hossain, Enea Traini and Francesco Amenta
Inventions 2025, 10(4), 48; https://doi.org/10.3390/inventions10040048 - 27 Jun 2025
Viewed by 176
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder leading to movement impairment, cognitive decline, and psychiatric symptoms. Key manifestations of PD include bradykinesia (the slowness of movement), changes in voice or speech, and gait disturbances. The quantification of neurological disorders through voice analysis [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder leading to movement impairment, cognitive decline, and psychiatric symptoms. Key manifestations of PD include bradykinesia (the slowness of movement), changes in voice or speech, and gait disturbances. The quantification of neurological disorders through voice analysis has emerged as a rapidly expanding research domain, offering the potential for non-invasive and large-scale monitoring. This review explores existing research on the application of machine learning (ML) in speech, voice, and language processing for the diagnosis of PD. It comprehensively analyzes current methodologies, highlights key findings and their associated limitations, and proposes strategies to address existing challenges. A systematic review was conducted following PRISMA guidelines. We searched four databases: PubMed, Web of Science, Scopus, and IEEE Xplore. The primary focus was on the diagnosis, detection, or identification of PD through voice, speech, and language characteristics. We included 34 studies that used ML techniques to detect or classify PD based on vocal features. The most used approaches involved free speech and reading-speech tasks. In addition to widely used feature extraction toolkits, several studies implemented custom-built feature sets. Although nearly all studies reported high classification performance, significant limitations were identified, including challenges in comparability and incomplete integration with clinical applications. Emerging trends in this field include the collection of real-world, everyday speech data to facilitate longitudinal tracking and capture participants’ natural behaviors. Another promising direction involves the incorporation of additional modalities alongside voice analysis, which may enhance both analytical performance and clinical applicability. Further research is required to determine optimal methodologies for leveraging speech and voice changes as early biomarkers of PD, thereby enhancing early detection and informing clinical intervention strategies. Full article
Show Figures

Figure 1

20 pages, 332 KiB  
Article
Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria
by Umberto Lucia and Giulia Grisolia
Inventions 2025, 10(4), 47; https://doi.org/10.3390/inventions10040047 - 26 Jun 2025
Viewed by 84
Abstract
Ammonia is a critical compound for numerous industrial processes; however, the conventional methods for its production present substantial environmental challenges. Co-producing biofuels and ammonia from biomass through anaerobic digestion offers a promising alternative to address these concerns. This study presents a theoretical assessment [...] Read more.
Ammonia is a critical compound for numerous industrial processes; however, the conventional methods for its production present substantial environmental challenges. Co-producing biofuels and ammonia from biomass through anaerobic digestion offers a promising alternative to address these concerns. This study presents a theoretical assessment of the co-production of biomethane and ammonia from microalgae and cyanobacteria, utilising water from abandoned mine and quarry pit-lakes—specifically focusing on the Alessandria district as a case study. The analysis is based on the average values reported in the literature for the anaerobic digestion of selected biomass types. The results highlight Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella spp., and Chlorella pyrenoidosa as the most promising species due to their superior yields of both ammonia and biomethane. This work aims to promote new opportunities for repurposing disused mining pit-lakes, contributing to the development of sustainable pathways for the integrated production of biofuels and ammonia. In this context, exploring integrated biorefinery systems within a bio-based economy represents an auspicious direction for future research, potentially enhancing the process efficiency and reducing costs. Full article
22 pages, 5083 KiB  
Article
Intelligent Mobile-Assisted Language Learning: A Deep Learning Approach for Pronunciation Analysis and Personalized Feedback
by Fengqin Liu, Korawit Orkphol, Natthapon Pannurat, Thanat Sooknuan, Thanin Muangpool, Sanya Kuankid and Montri Phothisonothai
Inventions 2025, 10(4), 46; https://doi.org/10.3390/inventions10040046 - 24 Jun 2025
Viewed by 325
Abstract
This paper introduces an innovative mobile-assisted language-learning (MALL) system that harnesses deep learning technology to analyze pronunciation patterns and deliver real-time, personalized feedback. Drawing inspiration from how the human brain processes speech through neural pathways, our system analyzes multiple speech features using spectrograms, [...] Read more.
This paper introduces an innovative mobile-assisted language-learning (MALL) system that harnesses deep learning technology to analyze pronunciation patterns and deliver real-time, personalized feedback. Drawing inspiration from how the human brain processes speech through neural pathways, our system analyzes multiple speech features using spectrograms, mel-frequency cepstral coefficients (MFCCs), and formant frequencies in a manner that mirrors the auditory cortex’s interpretation of sound. The core of our approach utilizes a convolutional neural network (CNN) to classify pronunciation patterns from user-recorded speech. To enhance the assessment accuracy and provide nuanced feedback, we integrated a fuzzy inference system (FIS) that helps learners identify and correct specific pronunciation errors. The experimental results demonstrate that our multi-feature model achieved 82.41% to 90.52% accuracies in accent classification across diverse linguistic contexts. The user testing revealed statistically significant improvements in pronunciation skills, where learners showed a 5–20% enhancement in accuracy after using the system. The proposed MALL system offers a portable, accessible solution for language learners while establishing a foundation for future research in multilingual functionality and mobile platform optimization. By combining advanced speech analysis with intuitive feedback mechanisms, this system addresses a critical challenge in language acquisition and promotes more effective self-directed learning. Full article
Show Figures

Figure 1

40 pages, 5775 KiB  
Article
Parametric Evaluation of Soil Nail Configurations for Sustainable Excavation Stability Using Finite Element Analysis
by Omid Bahramipour, Reza Moezzi, Farhad Mahmoudi Jalali, Reza Yeganeh Khaksar and Mohammad Gheibi
Inventions 2025, 10(4), 45; https://doi.org/10.3390/inventions10040045 - 24 Jun 2025
Viewed by 235
Abstract
The advancement of sustainable infrastructure relies on innovative design and computational modeling techniques to optimize excavation stability. This study introduces a novel approach to soil nail configuration optimization using finite element analysis (FEA) with Plaxis software (V22). Various soil nail parameters—including length, angle, [...] Read more.
The advancement of sustainable infrastructure relies on innovative design and computational modeling techniques to optimize excavation stability. This study introduces a novel approach to soil nail configuration optimization using finite element analysis (FEA) with Plaxis software (V22). Various soil nail parameters—including length, angle, and spacing—were analyzed to achieve the most efficient stabilization while minimizing costs. Results indicate that a 10-degree nail inclination from the horizontal provides an optimal balance between tensile and shear forces, reducing deformation (18.12 mm at 1 m spacing) and enhancing the safety factor (1.52). Increasing nail length significantly improves stability, but with diminishing returns beyond a threshold, while nail diameter shows minimal impact. Soil type also plays a crucial role, with coarse-grained soils (friction angle 35°) demonstrating superior performance compared to fine-grained soils (friction angle 23°). This research contributes to the field of computational modeling and intelligent design by integrating advanced simulation techniques for geotechnical stability analysis, providing an innovative and data-driven framework for parametric evaluation of soil nail configurations. Full article
Show Figures

Figure 1

17 pages, 5666 KiB  
Article
Mechatronic and Robotic Systems Utilizing Pneumatic Artificial Muscles as Actuators
by Željko Šitum, Juraj Benić and Mihael Cipek
Inventions 2025, 10(4), 44; https://doi.org/10.3390/inventions10040044 - 23 Jun 2025
Viewed by 158
Abstract
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). [...] Read more.
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). Due to their flexibility, low weight, and compliance, fluidic muscles demonstrate substantial potential for integration into various mechatronic systems, robotic platforms, and manipulators. Their capacity to generate smooth and adaptive motion is particularly advantageous in applications requiring natural and human-like movements, such as rehabilitation technologies and assistive devices. Despite the inherent challenges associated with nonlinear behavior in PAM-actuated control systems, their biologically inspired design remains promising for a wide range of future applications. Potential domains include industrial automation, the automotive and aerospace sectors, as well as sports equipment, medical assistive devices, entertainment systems, and animatronics. The integration of self-constructed laboratory systems powered by PAMs into control systems education provides a comprehensive pedagogical framework that merges theoretical instruction with practical implementation. This methodology enhances the skillset of future engineers by deepening their understanding of core technical principles and equipping them to address emerging challenges in engineering practice. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

Previous Issue
Back to TopTop