Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

12 pages, 3405 KiB  
Article
The Optimal Choice of Trap Type for the Recently Spreading Jewel Beetle Pests Lamprodila festiva and Agrilus sinuatus (Coleoptera, Buprestidae)
by Eszter Matula, Gábor Bozsik, József Muskovits, Csenge Ruszák, Laura Jávorszky, Jochem Bonte, Márton Paulin, József Vuts, József Fail, Ágoston Tóth, Ádám Egri, Miklós Tóth and Zoltán Imrei
Insects 2023, 14(12), 961; https://doi.org/10.3390/insects14120961 - 18 Dec 2023
Viewed by 1139
Abstract
BACKGROUND: Two jewel beetle species native to Europe, the cypress jewel beetle, Lamprodila (Palmar, Ovalisia) festiva L. (Buprestidae, Coleoptera), and the sinuate pear tree borer, Agrilus sinuatus Olivier (Buprestidae, Coleoptera), are key pests of ornamental thuja and junipers and of [...] Read more.
BACKGROUND: Two jewel beetle species native to Europe, the cypress jewel beetle, Lamprodila (Palmar, Ovalisia) festiva L. (Buprestidae, Coleoptera), and the sinuate pear tree borer, Agrilus sinuatus Olivier (Buprestidae, Coleoptera), are key pests of ornamental thuja and junipers and of orchard and ornamental rosaceous trees, respectively. Although chemical control measures are available, due to the beetles’ small size, agility, and cryptic lifestyle at the larval stage, efficient tools for their detection and monitoring are missing. Consequently, by the time emerging jewel beetle adults are noticed, the trees are typically significantly damaged. METHODS: Thus, the aim of this study was to initiate the development of monitoring traps. Transparent, light green, and purple sticky sheets and multifunnel traps were compared in field experiments in Hungary. RESULTS: Light green and transparent sticky traps caught more L. festiva and A. sinuatus jewel beetles than non-sticky multifunnel traps, regardless of the larger size of the colored surface of the funnel traps. CONCLUSIONS: Although light green sticky sheets turned out to be optimal for both species, using transparent sheets can reduce catches of non-target insects. The key to the effectiveness of sticky traps, despite their reduced suitability for quantitative comparisons, may lie in the behavioral responses of the beetles to the optical features of the traps. Full article
(This article belongs to the Collection Biology and Control of the Invasive Wood-Boring Beetles)
Show Figures

Graphical abstract

12 pages, 3134 KiB  
Article
Disruptive Effects of Two Curcuminoids (Demethoxycurcumin and Bisdemethoxycurcumin) on the Larval Development of Drosophila melanogaster
by Jun-Hyoung Jeon, Seon-Ah Jeong, Doo-Sang Park, Hong-Hyun Park, Sang-Woon Shin and Hyun-Woo Oh
Insects 2023, 14(12), 959; https://doi.org/10.3390/insects14120959 - 18 Dec 2023
Viewed by 1271
Abstract
Juvenile hormones (JHs) play a central role in insect development, reproduction, and various physiological functions. Curcuminoids generally exhibit a wide range of biological activities, such as antioxidant, anti-inflammatory, antibacterial, and insecticidal, and they exhibit insect growth inhibitory effects. However, research on insecticidal properties [...] Read more.
Juvenile hormones (JHs) play a central role in insect development, reproduction, and various physiological functions. Curcuminoids generally exhibit a wide range of biological activities, such as antioxidant, anti-inflammatory, antibacterial, and insecticidal, and they exhibit insect growth inhibitory effects. However, research on insecticidal properties of curcuminoids has been limited. Moreover, to the best of our knowledge, studies on JHs of insects and curcuminoids are lacking. Therefore, this study aimed to identify the substances that act as JH disruptors (JHDs) from edible plants. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), two curcuminoids from the turmeric plant Curcuma longa L. inhibited the formation of a methoprene-tolerant (Met)–Taiman (Tai) heterodimer complex in Drosophila melanogaster, as shown through in vitro yeast two-hybrid assays. An artificial diet containing 1% (w/v) DMC or BDMC significantly reduced the number of D. melanogaster larvae in a concentration-dependent manner; larval development was disrupted, preventing the progression of larvae to pupal stages, resulting in an absence of adults. Building on the results obtained in this study on curcuminoids, researchers can use our study as a reference to develop eco-friendly pesticides. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 1474 KiB  
Article
The Genomics of Isolated Populations of Gampsocleis glabra (Orthoptera: Tettigoniidae) in Central and Western Europe
by Oliver Hawlitschek, Carsten Bruns, Lara-Sophie Dey, Soňa Nuhlíčková, Rob Felix, Hein van Kleef, Jacqueline Nakel and Martin Husemann
Insects 2023, 14(12), 946; https://doi.org/10.3390/insects14120946 - 14 Dec 2023
Cited by 1 | Viewed by 1124
Abstract
Habitat destruction and fragmentation are among the major current threats to global biodiversity. Fragmentation may also affect species with good dispersal abilities. We study the heath bushcricket Gampsocleis glabra, a specialist of steppe-like habitats across Europe that are highly fragmented, investigating if [...] Read more.
Habitat destruction and fragmentation are among the major current threats to global biodiversity. Fragmentation may also affect species with good dispersal abilities. We study the heath bushcricket Gampsocleis glabra, a specialist of steppe-like habitats across Europe that are highly fragmented, investigating if these isolated populations can be distinguished using population genomics and if there are any traces of admixture or dispersal among them. We try to answer these questions using genome-wide SNP data generated with ddRAD sequencing. We calculated F-statistics and visualized differentiation using STRUCTURE plots. While limited by the difficulty of sampling this threatened species, our results show that all populations except one that was represented by a singleton were clearly distinct, with pairwise FST values between 0.010 and 0.181. STRUCTURE indicated limited but visible admixture across most populations and probably also an exchange of individuals between populations of Germany and The Netherlands. We conclude that in G. glabra, a certain amount of gene flow has persisted, at least in the past, also among populations that are isolated today. We also detect a possibly more recent dispersal event between a population in The Netherlands and one in Germany, which may be human aided. We suggest that the conservation of larger populations should be maintained, that efforts should be taken to restore abandoned habitat, that the preservation even of small habitat fragments may be beneficial for the conservation of this species, and that these habitats should be regularly monitored for possible (re-)colonization. Full article
(This article belongs to the Special Issue Comparative Cytogenetics and Molecular Systematics of Insects)
Show Figures

Figure 1

30 pages, 17908 KiB  
Article
New Species of Paussus, Subgenus Scaphipaussus (Coleoptera: Carabidae: Paussinae), from Southeast Asia Reveal Ambiguities in Species Group Limits and High Species Diversity in the Oriental Region
by Michal Bednařík and Ladislav Bocak
Insects 2023, 14(12), 947; https://doi.org/10.3390/insects14120947 - 14 Dec 2023
Viewed by 1300
Abstract
Paussus, commonly known as ant nest beetles, is the most diverse genus of Paussinae (Coleoptera: Carabidae) with a very complex taxonomic history. Biodiversity research in Southeast and South Asia yields new species that can contribute to a better understanding of the morphological [...] Read more.
Paussus, commonly known as ant nest beetles, is the most diverse genus of Paussinae (Coleoptera: Carabidae) with a very complex taxonomic history. Biodiversity research in Southeast and South Asia yields new species that can contribute to a better understanding of the morphological disparity and species-group or subgenus delimitation. Here, we describe nine new species from Southeast Asia and China: Paussus (Scaphipaussus) fencli sp. nov. (China), P. (S.) mawdsleyi sp. nov. (Borneo), P. (S.) bakeri sp. nov. (Philippines), P. (S.) jendeki sp. nov. (Laos), P. (S.) saueri sp. nov. (India), P. (S.) annamensis sp. nov. (Vietnam), P. (S.) phoupanensis sp. nov. (Laos, Vietnam), P. (S.) bilyi sp. nov. (Thailand), and P. (S.) haucki sp. nov. (Thailand). We also bring new data on P. (S.) corporaali Reichensperger, 1927 (Java) and P. (S.) madurensis Wasmann, 1913 (India). Besides formal descriptions, we provide photographs of the habitus in the dorsal and dorsolateral view, antennal club, head crest, and male genitalia if the male is available. Based on the comparison of new and earlier described species, we show that the antennae are highly diverse within the Scaphipaussus. Considering other characters, some species are placed in Scaphipaussus, but they differ from putative relatives in the antennal morphology. The presence of the frontal protuberances and crests is a more reliable character. Additional species show that Scaphipaussus is most diverse in southeastern Asia, especially in Indo-Burma. Concerning its supposed late Miocene origin, the group underwent rapid radiation. The species diversity of Scaphipaussus almost doubled in the last decade, and it is highly probable that further species will be described in the future. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

19 pages, 4286 KiB  
Article
Aerosolized Insecticide Spray Distributions and Relationships to Efficacy against Stored Product Pests
by Daniel Brabec, Srinivas Lanka, James F. Campbell, Frank H. Arthur, Deanna S. Scheff and Kun Yan-Zhu
Insects 2023, 14(12), 914; https://doi.org/10.3390/insects14120914 - 28 Nov 2023
Viewed by 975
Abstract
Aerosol insecticides are widely used in stored product insect management programs in food facilities. Previous research has shown spatial variation in aerosol efficacy within facilities, but information on how spatial patterns of aerosol droplet concentration, size distribution, dispersal, and deposition contribute to this [...] Read more.
Aerosol insecticides are widely used in stored product insect management programs in food facilities. Previous research has shown spatial variation in aerosol efficacy within facilities, but information on how spatial patterns of aerosol droplet concentration, size distribution, dispersal, and deposition contribute to this variation in efficacy is limited. This study involved two aerosol application systems: a high-pressure cylinder containing TurboCide Py-75® with pyriproxyfen IGR (ChemTech Ltd., Des Moines, IA, USA) and a hand-held fogger containing Pyrocide 100® (MGK, Minneapolis, MN, USA) with Diacon II which contains methoprene IGR (Wellmark, Schaumburg, IL, USA). These systems were used at single or multiple application locations. The spray trials were conducted in a small-scale flour mill, Hall Ross Flour Mill (Kansas State University, Manhattan, KS, USA). The droplet size distributions were monitored at multiple positions within the room using nine aerodynamic particle sizing (APS, TSI Incorp, Shoreview, MN, USA) instruments. The APS data collected over the treatment period were summarized into a mass concentration index (MCI), which ranged from 155 to 2549 mg/m3 for Turbocide and 235–5658 mg/m3 for Pyrocide. A second parameter called the Deposition Index (Dep.Idx) was derived to estimate potential insecticide depositions on the floor and has units of g/m2. The Dep.Idx was below 5.3 g/m2 for most Turbocide applications, while the Dep.Idx was below 8.4 g/m2 for most Pyrocide applications. The MCI and Dep.Idx values varied with APS position and spray application location, with proximity to the aerosol application location and degree of obstruction between the release point and APS position contributing to this variation. We assessed the relationship between aerosol droplet parameters and insect efficacy using Tribolium confusum Jacqueline DuVal, the confused flour beetle. The adults were treated directly, while the larvae were treated two weeks later during the residual test (previously published). For Turbocide, efficacy against adults increased with MCI and Dep.Idx values, but for residual efficacy of the IGR, efficacy was high at all aerosol droplet values, so no relationship was apparent. In contrast, the relationship between Pyrocide deposition and adult insect efficacy was highly variable. But with larval insect efficacy, residual larvae control was directly related to increases in Pyrocide MCI and Dep.Idx. Contour plots of Dep.Idx values were developed, which could be used to predict areas of the mill that are not receiving an adequate application rate, and this could be used to develop more effective application strategies for aerosol insecticides in food facilities. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

28 pages, 332 KiB  
Article
Plant Resource Use and Pattern of Usage by the Naturalized Orchid Bee (Euglossa dilemma: Hymenoptera: Apidae) in Florida
by Robert W. Pemberton
Insects 2023, 14(12), 909; https://doi.org/10.3390/insects14120909 - 27 Nov 2023
Cited by 2 | Viewed by 871
Abstract
The Neotropical orchid bee Euglossa dilemma was found to be naturalized in southern Florida in 2003, and, by 2022, it had colonized the southern half of Florida. Observations of the bee’s collection of plant resources, primarily flowers, were made from 2003 through to [...] Read more.
The Neotropical orchid bee Euglossa dilemma was found to be naturalized in southern Florida in 2003, and, by 2022, it had colonized the southern half of Florida. Observations of the bee’s collection of plant resources, primarily flowers, were made from 2003 through to 2022 to document its plant usage and understand the patterns of its plant usage. The bee utilized 259 plant taxa, 237 species, and 22 horticultural forms, in 156 genera and 56 families in 263 total uses. Of 247 taxa of flowers, 120 were visited primarily for nectar, 46 for both nectar and pollen, 60 for pollen, including 42 buzz-pollinated flowers, 15 for fragrance chemicals for the males, and 5 for resin rewards by females for nesting. Fragrance chemicals were also collected by males from the leaves of 12 plant species. These extensive resource use data allowed the following predictions to be made. (1) The bee’s presence in Florida, distant from its native region of Mexico and Central America and the geographical ranges of other orchid bees, would result the usage of many new taxa of plants. True, half, 74/148 (50%), of the genera and one third, 16/51(31%), of the plant families of the plants with flowers used by the bee were not previously recorded as being utilized by Euglossine bees. (2) Like other naturalized bees, it would use relatively more plants from its native range or congeners of these plants. True, 113/148 (76%) of genera with species bearing collected floral rewards are native or congeners with species native to the bee’s native range. (3) Given the bee’s long tongue, ability to buzz pollen from poricidal anthers, and ability to collect and use specialized rewards, it would disproportionately use plants with protected or highly specialized floral rewards. True, 180/247 (72%) utilized species bear rewards which were protected and unavailable to, or of no interest to, most other flower visitors. Full article
(This article belongs to the Special Issue Pollinator Biodiversity and Ecosystem Services)
20 pages, 5384 KiB  
Article
Accumulation of Fungal Pathogens Infecting the Invasive Spotted Lanternfly, Lycorma delicatula
by Ann E. Hajek, Thomas A. Everest and Eric H. Clifton
Insects 2023, 14(12), 912; https://doi.org/10.3390/insects14120912 - 27 Nov 2023
Cited by 1 | Viewed by 1181
Abstract
In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, are abundant and spreading. Four species of naturally occurring entomopathogenic fungi have previously been reported as infecting these planthoppers, with two of these causing epizootics. Nymphal- and adult-stage lanternflies [...] Read more.
In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, are abundant and spreading. Four species of naturally occurring entomopathogenic fungi have previously been reported as infecting these planthoppers, with two of these causing epizootics. Nymphal- and adult-stage lanternflies in Pennsylvania and New York were surveyed for entomopathogenic fungal infections from October 2021 to November 2023, and assays were conducted to confirm the pathogenicity of species that were potentially pathogenic. Beauveria bassiana was the most abundant pathogen, but we report an additional 15 previously unreported species of entomopathogenic fungi infecting spotted lanternflies, all in the order Hypocreales (Ascomycota). The next most common pathogens were Fusarium fujikuroi and Sarocladium strictum. While infection prevalence by species was often low, probably impacted to some extent by the summer drought in 2022, together these pathogens caused a total of 6.7% mortality. A significant trend was evident over time within a season, with low levels of infection among nymphs and higher infection levels in mid- and late-stage adults, the stages when mating and oviposition occur. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

16 pages, 13385 KiB  
Article
Occurrence and Population Density of the Endemic Species Cordulegaster buchholzi (Anisoptera: Cordulegastridae) on the Cyclades Islands in Greece
by Otakar Holuša and Kateřina Holušová
Insects 2023, 14(11), 896; https://doi.org/10.3390/insects14110896 - 20 Nov 2023
Viewed by 809
Abstract
Our research was focused on determining the geomorphological characteristics of streams, characteristics of sediment in streams, habitat, emergence sites and flight period. Larvae were recorded in 19 streams (altitude of 35–680 m a.s.l.), with an average minimum width of 44.2 cm, an average [...] Read more.
Our research was focused on determining the geomorphological characteristics of streams, characteristics of sediment in streams, habitat, emergence sites and flight period. Larvae were recorded in 19 streams (altitude of 35–680 m a.s.l.), with an average minimum width of 44.2 cm, an average maximum width of 352.9 cm, an average minimum depth of 9 cm and an average maximum depth (in pools) of 55 cm, with an average stream gradient of 12 grades (range 0.6–45 grades). In terms of grain size, the sediment in these biotopes can be characterized as sandy gravel, medium-grained gravel with an admixture of fine sand and an admixture of coarse-grained gravel prevails (with dominancy of fraction 2–5 mm with a representation of 47%). The larval density reached 0.1–62.2 larvae per 1 m2 of suitable sediment. Exuviae (100 exuviae found in total) occurred at an average of 66 cm horizontal distance from the shore and an average vertical height of 124 cm above the ground. The average total distance of larval movement was 190 cm. The emergence site was categorized as larvae-dominated tree trunks (57% of cases), rocks (51%) and overhanging rocks (11%). The flight period was recorded from 17th May to 15th July (literary record—to 15th August) with peak flight activity noted in the third quarter of June. Considering the size of the area—extent of occurrence, the population of C. buchholzi is strongly threatened; according to the IUCN categories it should be classified as endangered (EN). Full article
Show Figures

Figure 1

11 pages, 4514 KiB  
Article
Earwig Releases Provide Accumulative Biological Control of the Woolly Apple Aphid over the Years
by Georgina Alins, Jaume Lordan, Neus Rodríguez-Gasol, Judit Arnó and Ainara Peñalver-Cruz
Insects 2023, 14(11), 890; https://doi.org/10.3390/insects14110890 - 18 Nov 2023
Viewed by 1284
Abstract
Nature-based solutions, such as biological control, can strongly contribute to reducing the use of plant protection products. In our study, we assessed the effect of augmentative releases of the European earwig (Forficula auricularia) to control the woolly apple aphid (Eriosoma [...] Read more.
Nature-based solutions, such as biological control, can strongly contribute to reducing the use of plant protection products. In our study, we assessed the effect of augmentative releases of the European earwig (Forficula auricularia) to control the woolly apple aphid (Eriosoma lanigerum), a worldwide pest that causes serious damage to apple trees. The trials were carried out in two organic apple orchards located in Catalonia (NE Spain) from 2017 to 2020. Two treatments were compared: with vs. without earwig release. For the treatment, 30 earwigs per tree were released by means of a corrugated cardboard shelter. These releases were performed once per season and were repeated every year. We periodically assessed the length of the woolly apple aphid colonies, the number of colonies per tree, the percentage of aphids parasitized by Aphelinus mali, and the number of earwigs per shelter. Our results showed that earwig releases reduced the length of the colonies, but this effect was noticeable only for the second year onwards. Moreover, we found that those releases were compatible with A. mali. Overall, we demonstrated the positive impact of earwig releases on the woolly apple aphid control and the importance of considering time on augmentative biological control strategies. Full article
(This article belongs to the Special Issue Biological Control in Temperate Orchards)
Show Figures

Figure 1

15 pages, 1566 KiB  
Article
Complex Effects of a Land-Use Gradient on Pollinators and Natural Enemies: Natural Habitats Mitigate the Effects of Aphid Infestation on Pollination Services
by Tal Shapira, Tohar Roth, Adi Bar, Moshe Coll and Yael Mandelik
Insects 2023, 14(11), 872; https://doi.org/10.3390/insects14110872 - 13 Nov 2023
Viewed by 1109
Abstract
Pollinators and natural enemies are essential ecosystem service providers influenced by land-use and by interactions between them. However, the understanding of the combined impacts of these factors on pollinator and natural enemy activities and their ultimate effects on plant productivity remains limited. We [...] Read more.
Pollinators and natural enemies are essential ecosystem service providers influenced by land-use and by interactions between them. However, the understanding of the combined impacts of these factors on pollinator and natural enemy activities and their ultimate effects on plant productivity remains limited. We investigated the effects of local and landscape vegetation characteristics and the presence of herbivorous pests on pollination and biological control services and their combined influence on phytometer seed set. The study was conducted in a Mediterranean agro-ecosystem, encompassing ten shrubland plots spanning a land-use gradient. Within each plot, we placed caged and uncaged potted phytometer plants that were either aphid-infested or aphid-free. We quantified insect flower visitation, aphid predation and parasitism rates, and fruit and seed set. We found scale-dependent responses of pollinators and natural enemies to land-use characteristics. Flower species richness had a positive impact on aphid parasitism rates but a negative effect on pollinator activity. Notably, we found a more pronounced positive effect of natural areas on pollinator activity in aphid-infested compared to aphid-free plants, indicating a potentially critical role of natural habitats in mitigating the adverse effects of aphid infestation on pollination services. These results highlight the complex and interactive effects of land-use on pollinators and natural enemies, with significant implications for plant productivity. Full article
(This article belongs to the Topic Arthropod Biodiversity: Ecological and Functional Aspects)
Show Figures

Figure 1

12 pages, 4638 KiB  
Article
Identification of a Male-Produced Aggregation Sex Pheromone in Rosalia batesi, an Endemic Japanese Longhorn Beetle
by Midori Fukaya, Satoshi Kiriyama, Saki Yagami, Ryûtarô Iwata, Hiroe Yasui, Masahiko Tokoro, Yunfan Zou and Jocelyn G. Millar
Insects 2023, 14(11), 867; https://doi.org/10.3390/insects14110867 - 10 Nov 2023
Viewed by 1318
Abstract
The longhorned beetle Rosalia batesi Harold (Coleoptera; Cerambycidae) is endemic to Japan, where its range extends from Hokkaido to Kyushu. The colorful adults are well-known to entomologists and collectors worldwide. It is a hardwood-boring species with larvae that develop in dead broad-leaf trees. [...] Read more.
The longhorned beetle Rosalia batesi Harold (Coleoptera; Cerambycidae) is endemic to Japan, where its range extends from Hokkaido to Kyushu. The colorful adults are well-known to entomologists and collectors worldwide. It is a hardwood-boring species with larvae that develop in dead broad-leaf trees. In laboratory bioassays, females were attracted to males, which suggested that males produce a sex pheromone. The congeneric species R. alpina is native to Europe, and another congener, R. funebris, is distributed in North America. The pheromone components produced by males of these species had been previously identified as two compounds from different biosynthetic pathways. In the present study, volatiles were collected from beetles of both sexes, and the analyses of the resulting extracts revealed a single male-specific compound, which was identified as 3,5-dimethyl-6-(1-methylbutyl)-pyran-2-one; this is the same compound as the pheromone of the European R. alpina. This alkylated pyrone structure is, so far, unique among known cerambycid pheromones. In field bioassays with traps baited with the racemic synthetic pheromone, significant numbers of both sexes of R. batesi were attracted in an approximately equal ratio, indicating that the compound is an aggregation-sex pheromone rather than a sex pheromone. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 1068 KiB  
Article
Power Bars: Mormon Crickets Get Immunity Boost from Eating Grasshoppers
by Robert B. Srygley and David H. Branson
Insects 2023, 14(11), 868; https://doi.org/10.3390/insects14110868 - 10 Nov 2023
Viewed by 1026
Abstract
In addition to feeding on plants, Mormon crickets Anabrus simplex Haldeman, 1852 predate on invertebrates, including one another, which effectively drives their migration. Carnivory derives from lack of dietary protein, with Mormon crickets deprived of protein having less phenoloxidase (PO) available to combat [...] Read more.
In addition to feeding on plants, Mormon crickets Anabrus simplex Haldeman, 1852 predate on invertebrates, including one another, which effectively drives their migration. Carnivory derives from lack of dietary protein, with Mormon crickets deprived of protein having less phenoloxidase (PO) available to combat foreign invaders, such as fungal pathogens. Because Mormon crickets commonly occur with grasshoppers that feed on the same plants, we investigated interactions between grasshoppers and Mormon crickets, and hypothesized that if Mormon crickets are predatory on grasshoppers, grasshopper abundance would influence the protein available to Mormon crickets and their immunity. In a field setting, we varied densities of Mormon crickets (0, 10, or 20 per cage) and grasshoppers Melanoplus borealis (0, 15, 30, or 45) in 68 1-m2 cages. After one month, we measured Mormon cricket dietary preferences and PO activity. As predicted, artificial diet consumption shifted away from protein as grasshopper density increased, and immunocompetence, as measured by PO activity, also increased with grasshopper availability. Although nitrogen availability in the vegetation decreased with increasing insect density, predation became an important source of protein for Mormon crickets that enhanced immunity. Grasshoppers can be an important source of dietary protein for Mormon crickets, with prey availability affecting Mormon cricket immunity to diseases. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 1303 KiB  
Article
Use of Insect Exclusion Row Cover and Reflective Silver Plastic Mulching to Manage Whitefly in Zucchini Production
by Thiago Rutz, Timothy Coolong, Rajagopalbabu Srinivasan, Alton Sparks, Bhabesh Dutta, Clarence Codod, Alvin M. Simmons and Andre Luiz Biscaia Ribeiro da Silva
Insects 2023, 14(11), 863; https://doi.org/10.3390/insects14110863 - 09 Nov 2023
Viewed by 1038
Abstract
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study [...] Read more.
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study was to evaluate the use of a reflective plastic mulch and an insect row cover as alternative methods to the current grower practices to manage whiteflies in zucchini (Cucurbita pepo) production. Field experiments were conducted with a two-level factorial experimental design of cover and plastic mulch treatments arranged in a randomized complete block design, with four replications in Georgia in 2020 and 2021, and in Alabama in 2021. Cover treatments consisted of an insect row cover installed on zucchini beds at transplanting and removed at flowering and a no-cover treatment, while plastic mulch treatments consisted of reflective silver plastic mulching and white plastic mulching. During all growing seasons, weather conditions were monitored, whitefly populations were sampled weekly, zucchini biomass accumulation was measured at five stages of crop development, and fruit yield was determined at harvesting. Warm and dry weather conditions early in the growing season resulted in increased whitefly populations, regardless of location and year. In general, the reflective silver plastic mulching reduced whitefly populations compared to the conventional white plastic by 87% in Georgia in 2020, 33% in Georgia in 2021, and 30% in Alabama in 2021. The insect row cover treatment reduced whitefly populations to zero until its removal. Consequently, zucchini plants grown with the insect row cover and reflective silver plastic mulching had an increased rate of biomass accumulation due to the lower insect pressure in all locations. Zucchini grown using silver reflective plastic mulch and row covers had an overall increase of 17% and 14% in total yield compared to white plastic mulch and no-cover treatments, respectively. Significant differences in yield among locations were likely due to severe whitefly pressure early in the fall season, and total yields in Georgia in 2020 (11,451 kg ha−1) were 25% lower than in Georgia in 2021 (15,177 kg ha−1) and in Alabama in 2021 (15,248 kg ha−1). In conclusion, silver plastic mulching and row covers reduced the whitefly population and increased biomass accumulation and total yield. These treatments can be considered ready-to-use integrated pest management practices for growers. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
Show Figures

Figure 1

11 pages, 1185 KiB  
Article
Characterization of Olive Fruit Damage Induced by Invasive Halyomorpha halys
by Elissa Daher, Elena Chierici, Stefania Urbani, Nicola Cinosi, Gabriele Rondoni, Maurizio Servili, Franco Famiani and Eric Conti
Insects 2023, 14(11), 848; https://doi.org/10.3390/insects14110848 - 31 Oct 2023
Viewed by 1236
Abstract
The brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive species causing economic crop losses. This species was recently detected attacking olive fruits. The aim of this study was to characterize feeding damage. Olive samples were initially collected from a field where [...] Read more.
The brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive species causing economic crop losses. This species was recently detected attacking olive fruits. The aim of this study was to characterize feeding damage. Olive samples were initially collected from a field where H. halys was reported to cause damage to olive fruits. Hence, we conducted a field trial on the Moraiolo variety using sleeve cages to test the effect of H. halys feeding pressure on olive fruit drop and evaluated the effect of feeding on fruit quality. We tested two densities of H. halys (two or eight adults/cage) at two different stages of olive development, pre- and post-pit hardening. High pressure of H. halys before pit hardening caused a significant fruit drop compared to the control. In addition, chemical analysis of damaged and infested fruits revealed higher levels of total phenols compared to healthy fruits. These findings indicate that feeding by H. halys induced a stress response in the plants that could translate in quality variations in the olive drupes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1498 KiB  
Article
Contact Efficacy of Two Amorphous Silica Powders against the Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
by Selladurai Manivannan and Bhadriraju Subramanyam
Insects 2023, 14(11), 833; https://doi.org/10.3390/insects14110833 - 24 Oct 2023
Cited by 2 | Viewed by 1056
Abstract
The contact efficacy of two amorphous silica powders 1 and 2 procured from Imery’s chemicals, Lompoc, CA, USA, were evaluated against the red flour beetle, Tribolium castaneum (Herbst). The efficacy of the silica two powders was evaluated by exposing 10 adults of T. [...] Read more.
The contact efficacy of two amorphous silica powders 1 and 2 procured from Imery’s chemicals, Lompoc, CA, USA, were evaluated against the red flour beetle, Tribolium castaneum (Herbst). The efficacy of the silica two powders was evaluated by exposing 10 adults of T. castaneum to twelve different concentrations of silica powder 1 and 2 for 12, 24, 36, and 48 h. Mortality assessments were made after 14 d, and data on adult progeny production were recorded at 42 d. Complete mortality of T. castaneum was observed when adults were exposed for 36 h to concentrations of 1.5 to 5 g/m2 of silica powder 1. Conversely, in tests with silica powder 2, complete mortality was only achieved when adults were exposed for 48 h to concentrations ranging from 0.75 to 5 g/m2. Silica powder 1 exhibited greater efficacy in inhibiting adult progeny production in T. castaneum, particularly at a concentration of 2.0 g/m2 after 24 h exposure. Overall, silica powder 1 displayed superior performance in terms of adult mortality and the suppression of T. castaneum adult progeny production. This advantage can be attributed to the smaller particle size of silica powder 1 when compared to silica powder 2. Full article
(This article belongs to the Collection Integrated Management and Impact of Stored-Product Pests)
Show Figures

Figure 1

18 pages, 1993 KiB  
Article
Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing
by Wael Yakti, Nadja Förster, Marcus Müller, Inga Mewis and Christian Ulrichs
Insects 2023, 14(2), 183; https://doi.org/10.3390/insects14020183 - 13 Feb 2023
Cited by 6 | Viewed by 2780
Abstract
The proper treatment of cannabis agricultural wastes can reduce the environmental impact of its cultivation and generate valuable products. This study aimed to test the potential of cannabis agricultural wastes as a substrate for the rearing of black soldier fly larvae (BSFL) and [...] Read more.
The proper treatment of cannabis agricultural wastes can reduce the environmental impact of its cultivation and generate valuable products. This study aimed to test the potential of cannabis agricultural wastes as a substrate for the rearing of black soldier fly larvae (BSFL) and yellow mealworms (MW). In the case of BSFL, replacing the fibre component (straw) in the substrate with the hemp waste can increase the nutritional value of the substrate and led to bigger larvae. The bigger larvae had lower P and Mg, and higher Fe and Ca. Crude protein also varied based on the size of larvae and/or the content of protein in the initial substrate, which was boosted by replacing straw with hemp material. No other cannabinoids than cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and cannabidiol (CBD) were found in significant amounts in the larvae. In the case of MW, the larvae grew less on the hemp material in comparison to wheat bran. Replacing wheat bran with the hemp material led to smaller larvae with higher Ca, Fe, K, and crude protein content, but lower Mg and P values. No cannabinoids were detected in the MW fed with the hemp material. Full article
(This article belongs to the Special Issue Insects at the Center of the Green Transition)
Show Figures

Figure 1

21 pages, 2309 KiB  
Article
Precision Monitoring of Honey Bee (Hymenoptera: Apidae) Activity and Pollen Diversity during Pollination to Evaluate Colony Health
by Aimee C. McKinnon, Luke Collins, Jennifer L. Wood, Nick Murphy, Ashley E. Franks and Martin J. Steinbauer
Insects 2023, 14(1), 95; https://doi.org/10.3390/insects14010095 - 16 Jan 2023
Viewed by 2709
Abstract
Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination [...] Read more.
Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination efficiency. In Australia, field studies are required to monitor honey bee health and to ascertain whether factors associated with colony decline are impacting hives. We monitored honey bee colonies during and after pollination services of almond. Video surveillance technology was used to quantify bee activity, and bee-collected pollen was periodically tested for pesticide residues. Plant species diversity was also assessed using DNA metabarcoding of the pollen. Results showed that bee activity increased in almond but not in bushland. Residues detected included four fungicides, although the quantities were of low risk of oral toxicity to bees. Floral diversity was lower in the pollen collected by bees from almonds compared to bushland. However, diversity was higher at the onset and conclusion of the almond bloom, suggesting that bees foraged more widely when availability was low. Our findings suggest that commercial almond orchards may sustain healthier bee colonies compared to bushland in early spring, although the magnitude of the benefit is likely landscape-dependent. Full article
(This article belongs to the Section Insect Societies and Sociality)
Show Figures

Figure 1

13 pages, 2761 KiB  
Article
Use of a Sprayable Sex Pheromone Formulation in Landscape-Level Control of Choristoneura fumiferana Populations
by Lucas E. Roscoe, Wayne MacKinnon, Jacques Régnière, Glen Forbes, Matt Brophy and Rosanna Lamb
Insects 2022, 13(12), 1175; https://doi.org/10.3390/insects13121175 - 17 Dec 2022
Cited by 3 | Viewed by 1484
Abstract
Choristoneura fumiferana (SBW) is a major defoliating pest of balsam fir and spruce in eastern North America. As part of an integrated management strategy for SBW, we evaluated the effectiveness of mating disruption as a landscape-level population control tactic. Using a sprayable formulation [...] Read more.
Choristoneura fumiferana (SBW) is a major defoliating pest of balsam fir and spruce in eastern North America. As part of an integrated management strategy for SBW, we evaluated the effectiveness of mating disruption as a landscape-level population control tactic. Using a sprayable formulation (CONFOUNDSBW) containing a synthetic sex pheromone blend, we treated five 300 ha blocks in Northern New Brunswick with an aerially applied microencapsulated mixture. There were significant reductions in adult trap catches in treated blocks compared to untreated control blocks. Branch sampling in treated blocks showed uniform distribution of CONFOUNDSBW deposition throughout the blocks. Population densities following treatment were not significantly affected when compared to densities in control blocks, or prior to treatment. Analysis of egg:adult ratios indicates that no immigration events occurred within treatment or control blocks. The lack of population reduction following treatment strongly suggests that widespread application of CONFOUNDSBW at a rate of 50 g of active ingredient per hectare is not an effective tool in controlling SBW populations. Full article
(This article belongs to the Special Issue Chemical Communication in Insects: New Advances in IPM Strategies)
Show Figures

Figure 1

11 pages, 921 KiB  
Article
Cuticle Modifications and Over-Expression of the Chitin-Synthase Gene in Diflubenzuron-Resistant Phenotype
by Valentina Lucchesi, Lorenzo Grimaldi, Valentina Mastrantonio, Daniele Porretta, Letizia Di Bella, Tania Ruspandini, Martino Luigi Di Salvo, John Vontas, Romeo Bellini, Agata Negri, Sara Epis, Silvia Caccia, Claudio Bandi and Sandra Urbanelli
Insects 2022, 13(12), 1109; https://doi.org/10.3390/insects13121109 - 30 Nov 2022
Cited by 3 | Viewed by 1855
Abstract
Insecticide resistance is a major threat challenging the control of harmful insect species. The study of resistant phenotypes is, therefore, pivotal to understand molecular mechanisms underpinning insecticide resistance and plan effective control and resistance management strategies. Here, we further analysed the diflubenzuron (DFB)-resistant [...] Read more.
Insecticide resistance is a major threat challenging the control of harmful insect species. The study of resistant phenotypes is, therefore, pivotal to understand molecular mechanisms underpinning insecticide resistance and plan effective control and resistance management strategies. Here, we further analysed the diflubenzuron (DFB)-resistant phenotype due to the point-mutation I1043M in the chitin-synthase 1 gene (chs1) in the mosquito Culex pipiens. By comparing susceptible and resistant strains of Cx. pipiens through DFB bioassays, molecular analyses and scanning electron microscopy, we showed that the I1043M-resistant mosquitoes have: (i) a striking level of DFB resistance (i.e., resistance ratio: 9006); (ii) a constitutive 11-fold over-expression of the chs1 gene; (iii) enhanced cuticle thickness and cuticular chitin content. Culex pipiens is one of the most important vector species in Europe and the rapid spread of DFB resistance can threaten its control. Our results, by adding new data about the DFB-resistant phenotype, provide important information for the control and management of insecticide resistance. Full article
(This article belongs to the Special Issue The Evolution of Pesticide Resistance)
Show Figures

Figure 1

15 pages, 2498 KiB  
Article
Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in Agricultural and Forest Ecosystems with Laurel Wilt
by Kevin R. Cloonan, Wayne S. Montgomery, Teresa I. Narvaez, Daniel Carrillo and Paul E. Kendra
Insects 2022, 13(11), 971; https://doi.org/10.3390/insects13110971 - 22 Oct 2022
Cited by 5 | Viewed by 2175
Abstract
Redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring pest first detected in the USA in 2002 in Georgia. The beetle’s dominant fungal symbiont, Harringtonialauricola, causes laurel wilt, a lethal disease of trees in the Lauraceae. Over the past 20 [...] Read more.
Redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring pest first detected in the USA in 2002 in Georgia. The beetle’s dominant fungal symbiont, Harringtonialauricola, causes laurel wilt, a lethal disease of trees in the Lauraceae. Over the past 20 years, X. glabratus and laurel wilt have spread to twelve southeastern states, resulting in high mortality of native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Laurel wilt also threatens avocado (P. americana) in south Florida, but in contrast to the situation in forests, X. glabratus is detected at very low levels in affected groves. Moreover, other species of ambrosia beetle have acquired H. lauricola and now function as secondary vectors. To better understand the beetle communities in different ecosystems exhibiting laurel wilt, parallel field tests were conducted in an avocado grove in Miami-Dade County and a swampbay forest in Highlands County, FL. Sampling utilized ethanol lures (the best general attractant for ambrosia beetles) and essential oil lures (the best attractants for X. glabratus), alone and in combination, resulting in detection of 20 species. This study documents host-related differences in beetle diversity and population levels, and species-specific differences in chemical ecology, as reflected in efficacy of lures and lure combinations. Full article
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Floral Volatile Organic Compounds and a List of Pollinators of Fallopia baldschuanica (Polygonaceae)
by Anna Jakubska-Busse, Mariusz Dziadas, Iwona Gruss and Michał J. Kobyłka
Insects 2022, 13(10), 904; https://doi.org/10.3390/insects13100904 - 05 Oct 2022
Cited by 3 | Viewed by 2344
Abstract
Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) [...] Read more.
Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) emitted by the flowers of F. baldchuanica and identified by headspace gas chromatography/mass spectrometry (HS-GC/MS) analyzes, and a list of flower-visiting and pollinating insects that have been observed in the city center of Wrocław (SW Poland). β-ocimene, heptanal, nonanal, α-pinene, 3-thujene, and limonene, were detected as the floral scent’s most important aroma compounds. F. baldschuanica also produces the aphid alarm pheromones, i.e., β-farnesene and limonene, that repels aphids. Additionally, the pollinators of F. baldschuanica were indicated, based on two years of observations in five sites in the urban area. It was found, that the pollinators of this plant with the highest species stability are: Diptera from families Syrphidae (Chrysotoxum bicinctum, Eristalis pertinax, Eupeodes corollae, Episyrphus balteatus, Eristalis tenax, Syrphus ribesii, Eristalis intricaria), Muscidae (Musca domestica), Sarcophagidae (Sarcophaga spp.), Calliphoridae (Lucilia sericata, Lucilia caesar), Hymenoptera from families Vespidae (Vespula vulgaris), and Apidae (Apis sp., Bombus sp.). The key role of VOCs in adaptation to plant expansion is discussed. Full article
(This article belongs to the Special Issue Physical and Chemical Interactions between Insects and Plants)
Show Figures

Figure 1

18 pages, 2338 KiB  
Article
Effects of a Mealworm (Tenebrio molitor) Extract on Metabolic Syndrome-Related Pathologies: In Vitro Insulin Sensitivity, Inflammatory Response, Hypolipidemic Activity and Oxidative Stress
by Joaquín Navarro del Hierro, Emma Cantero-Bahillo, M. Teresa Fernández-Felipe, Mónica R. García-Risco, Tiziana Fornari, Patricia Rada, Laura Doblado, Vitor Ferreira, Ana B. Hitos, Ángela M. Valverde, María Monsalve and Diana Martin
Insects 2022, 13(10), 896; https://doi.org/10.3390/insects13100896 - 30 Sep 2022
Cited by 4 | Viewed by 2913
Abstract
The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. [...] Read more.
The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. Furthermore, the incidence of metabolic syndrome-related pathologies keeps increasing, hence the importance of seeking novel natural sources for reducing the impact of certain risk factors. The aim was to study the potential of a non-protein mealworm extract on metabolic syndrome-related pathologies, obtained with ethanol:water (1:1, v/v) by ultrasound-assisted extraction. We characterized the extract by gas-chromatography mass-spectrometry and assessed its hypolipidemic potential, its ability to scavenger free radicals, to attenuate the inflammatory response in microglial cells, to affect mitochondrial respiration and to enhance insulin sensitivity in mouse hepatocytes. The extract contained fatty acids, monoglycerides, amino acids, certain acids and sugars. The mealworm extract caused a 30% pancreatic lipase inhibition, 80% DPPH· scavenging activity and 55.9% reduction in the bioaccessibility of cholesterol (p = 0.009). The extract was effective in decreasing iNOS levels, increasing basal, maximal and ATP coupled respiration as well as enhancing insulin-mediated AKT phosphorylation at low insulin concentrations (p < 0.05). The potential of a non-protein bioactive mealworm extract against metabolic syndrome-related pathologies is shown, although further studies are needed to elucidate the mechanisms and relationship with compounds. Full article
(This article belongs to the Special Issue Insects as Food and Feed: Opportunities and Risks)
Show Figures

Figure 1

10 pages, 907 KiB  
Article
Meta-Analysis of Transcriptomes in Insects Showing Density-Dependent Polyphenism
by Kouhei Toga, Kakeru Yokoi and Hidemasa Bono
Insects 2022, 13(10), 864; https://doi.org/10.3390/insects13100864 - 23 Sep 2022
Cited by 3 | Viewed by 6238
Abstract
With increasing public data, a statistical analysis approach called meta-analysis, which combines transcriptome results obtained from multiple studies, has succeeded in providing novel insights into targeted biological processes. Locusts and aphids are representative of insect groups that exhibit density-dependent plasticity. Although the physiological [...] Read more.
With increasing public data, a statistical analysis approach called meta-analysis, which combines transcriptome results obtained from multiple studies, has succeeded in providing novel insights into targeted biological processes. Locusts and aphids are representative of insect groups that exhibit density-dependent plasticity. Although the physiological mechanisms underlying density-dependent polyphenism have been identified in aphids and locusts, the underlying molecular mechanisms remain largely unknown. In this study, we performed a meta-analysis of public transcriptomes to gain additional insights into the molecular underpinning of density-dependent plasticity. We collected RNA sequencing data of aphids and locusts from public databases and detected differentially expressed genes (DEGs) between crowded and isolated conditions. Gene set enrichment analysis was performed to reveal the characteristics of the DEGs. DNA replication (GO:0006260), DNA metabolic processes (GO:0006259), and mitotic cell cycle (GO:0000278) were enriched in response to crowded conditions. To date, these processes have scarcely been the focus of research. The importance of the oxidative stress response and neurological system modifications under isolated conditions has been highlighted. These biological processes, clarified by meta-analysis, are thought to play key roles in the regulation of density-dependent plasticity. Full article
(This article belongs to the Special Issue Insect Genome and Transcriptome Data)
Show Figures

Figure 1

20 pages, 3688 KiB  
Article
Identification and Spread of the Ghost Silverfish (Ctenolepisma calvum) among Museums and Homes in Europe
by Pascal Querner, Nikolaus Szucsich, Bill Landsberger, Sven Erlacher, Lukasz Trebicki, Michał Grabowski and Peter Brimblecombe
Insects 2022, 13(9), 855; https://doi.org/10.3390/insects13090855 - 19 Sep 2022
Cited by 9 | Viewed by 6472
Abstract
Ctenolepisma calvum was first described in Sri Lanka (Ceylon) in 1910, and this island is probably the origin of this species. Later, it was also found in the Caribbean (Cuba and Trinidad and Tobago). Up until the present, it has only been identified [...] Read more.
Ctenolepisma calvum was first described in Sri Lanka (Ceylon) in 1910, and this island is probably the origin of this species. Later, it was also found in the Caribbean (Cuba and Trinidad and Tobago). Up until the present, it has only been identified within buildings (a synanthropic species), and its natural habitat is unknown. In 2007, it was discovered in Germany and was considered a neobiotic species of Lepismatidae in Europe. It has rapidly spread throughout Europe and beyond in recent years. This led us to analyze the available data of the first occurrences in Germany, Austria, and other European countries. Furthermore, we compared the spread inside of museums in Vienna (Austria) and Berlin (Germany). These museums have been monitored for a long period with sticky traps, representing the best source of information on the dispersion dynamics of Ctenolepisma calvum. We found a scattered occurrence of this species in 18 countries in Europe (including Russia and Ukraine). The first record for Poland has not previously been published; however, this species has been present there since 2014. Surprisingly, it was found in Hungary in 2003, but a record was only published online in 2021. Additionally, in Germany and Austria, where most data are available, the spread of the species does not follow any clear pattern. In museums in Berlin, the species has only been found in one location. In contrast, the species rapidly spread in museums in Vienna between 2014 and 2021, from four to 30 locations, and it is now a well-established species with occasional high abundance. We examined the spread of the species at three spatial scales: (i) Europe, (ii) national, and (iii) regional. Our observations indicate that it is possibly distributed with materials (packaging material, hygiene articles, paper, cardboard, and collection items). Little is yet known about the biology of this introduced pest. We describe its preferred habitat within buildings, its climate requirements, and its potential to act as a new museum pest in Central Europe. This species seems to thrive at room temperature in buildings. Further impact on the species due to climate change in the future is also discussed. We offer a simple morphological key and a detailed identification table to help correct species identification. Full article
(This article belongs to the Special Issue Advances in Urban Pest Management in Europe)
Show Figures

Figure 1

15 pages, 14914 KiB  
Article
Artificial Nesting Hills Promote Wild Bees in Agricultural Landscapes
by Ulrich Neumüller, Hannah Burger, Antonia V. Mayr, Sebastian Hopfenmüller, Sabrina Krausch, Nadine Herwig, Ronald Burger, Olaf Diestelhorst, Katrin Emmerich, Mare Haider, Manuel Kiefer, Jonas Konicek, Johann-Christoph Kornmilch, Marina Moser, Christoph Saure, Arno Schanowski, Erwin Scheuchl, Julia Sing, Max Wagner, Julia Witter, Hans R. Schwenninger and Manfred Ayasseadd Show full author list remove Hide full author list
Insects 2022, 13(8), 726; https://doi.org/10.3390/insects13080726 - 14 Aug 2022
Cited by 5 | Viewed by 3974
Abstract
The availability of nesting resources influences the persistence and survival of bee communities. Although a positive effect of artificial nesting structures has frequently been shown for aboveground cavity-nesting wild bees, studies on below ground-nesting bees are rare. Artificial nesting hills designed to provide [...] Read more.
The availability of nesting resources influences the persistence and survival of bee communities. Although a positive effect of artificial nesting structures has frequently been shown for aboveground cavity-nesting wild bees, studies on below ground-nesting bees are rare. Artificial nesting hills designed to provide nesting habitats for ground-nesting bees were therefore established within the BienABest project in 20 regions across Germany. Wild bee communities were monitored for two consecutive years, accompanied by recordings of landscape and abiotic nest site variables. Bee activity and species richness increased from the first to the second year after establishment; this was particularly pronounced in landscapes with a low cover of semi-natural habitat. The nesting hills were successively colonized, indicating that they should exist for many years, thereby promoting a species-rich bee community. We recommend the construction of nesting hills on sun-exposed sites with a high thermal gain of the substrate because the bees prefer south-facing sites with high soil temperatures. Although the soil composition of the nesting hills plays a minor role, we suggest using local soil to match the needs of the local bee community. We conclude that artificial nesting structures for ground-nesting bees act as a valuable nesting resource for various bee species, particularly in highly degraded landscapes. We offer a construction and maintenance guide for the successful establishment of nesting hills for bee conservation. Full article
Show Figures

Graphical abstract

11 pages, 7570 KiB  
Article
Mechanical Acaricides Active against the Blacklegged Tick, Ixodes scapularis
by Elise A. Richardson, Loganathan Ponnusamy and R. Michael Roe
Insects 2022, 13(8), 672; https://doi.org/10.3390/insects13080672 - 26 Jul 2022
Cited by 2 | Viewed by 2826
Abstract
Cases of Lyme disease in humans are on the rise in the United States and Canada. The vector of the bacteria that causes this disease is the blacklegged tick, Ixodes scapularis. Current control methods for I. scapularis mainly involve chemical acaricides. Unfortunately, [...] Read more.
Cases of Lyme disease in humans are on the rise in the United States and Canada. The vector of the bacteria that causes this disease is the blacklegged tick, Ixodes scapularis. Current control methods for I. scapularis mainly involve chemical acaricides. Unfortunately, ticks are developing resistance to these chemicals, and more and more, the public prefers non-toxic alternatives to chemical pesticides. We discovered that volcanic glass, ImergardTM WP, and other industrial minerals such as Celite 610 were efficacious mechanical insecticides against mosquitoes, filth flies, and agricultural pests. In this report, when 6–10- and 50–70-day old unfed I. scapularis nymphs were dipped for 1–2 s into Celite, the time to 50% mortality (LT50) was 66.8 and 81.7 min, respectively, at 30 °C and 50% relative humidity (RH). The LT50 was actually shorter at a higher 70% RH, 43.8 min. Scanning electron microscopy showed that the ticks were coated over most of their body surface, including partial to almost total coverage of the opening to their respiratory system. The other mechanical insecticide, Imergard, had similar efficacy against blacklegged unfed nymphs with an LT50 at 30 °C and 50% RH of 70.4 min. Although more research is needed, this study suggests that industrial minerals could be used as an alternative to chemical pesticides to control ticks and Lyme disease. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

39 pages, 15099 KiB  
Article
Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper
by Russanne D. Low, Theresa G. Schwerin, Rebecca A. Boger, Cassie Soeffing, Peder V. Nelson, Dan Bartlett, Prachi Ingle, Matteo Kimura and Andrew Clark
Insects 2022, 13(7), 624; https://doi.org/10.3390/insects13070624 - 13 Jul 2022
Cited by 5 | Viewed by 3799
Abstract
The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper is a no-cost citizen scientist data collection tool compatible with Android and iOS devices. Available in 14 languages and 126 countries, it supports mosquito vector surveillance, mitigation, and education by interested individuals and as part [...] Read more.
The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper is a no-cost citizen scientist data collection tool compatible with Android and iOS devices. Available in 14 languages and 126 countries, it supports mosquito vector surveillance, mitigation, and education by interested individuals and as part of participatory community surveillance programs. For low-resource communities where mosquito control services are inadequate, the Mosquito Habitat Mapper supports local health action, empowerment, and environmental justice. The tangible benefits to human health supported by the Mosquito Habitat Mapper have encouraged its wide adoption, with more than 32,000 observations submitted from 84 countries. The Mosquito Habitat Mapper surveillance and data collection tool is complemented by an open database, a map visualization interface, data processing and analysis tools, and a supporting education and outreach campaign. The mobile app tool and associated research and education assets can be rapidly deployed in the event of a pandemic or local disease outbreak, contributing to global readiness and resilience in the face of mosquito-borne disease. Here, we describe the app, the Mosquito Habitat Mapper information system, examples of Mosquito Habitat Mapper deployment in scientific research, and the outreach campaign that supports volunteer training and STEM education of students worldwide. Full article
(This article belongs to the Special Issue Citizen Science Approaches to Vector Surveillance)
Show Figures

Figure 1

14 pages, 1191 KiB  
Article
Systematic Functional Annotation Workflow for Insects
by Hidemasa Bono, Takuma Sakamoto, Takeya Kasukawa and Hiroko Tabunoki
Insects 2022, 13(7), 586; https://doi.org/10.3390/insects13070586 - 27 Jun 2022
Cited by 4 | Viewed by 4527
Abstract
Next-generation sequencing has revolutionized entomological study, rendering it possible to analyze the genomes and transcriptomes of non-model insects. However, use of this technology is often limited to obtaining the nucleotide sequences of target or related genes, with many of the acquired sequences remaining [...] Read more.
Next-generation sequencing has revolutionized entomological study, rendering it possible to analyze the genomes and transcriptomes of non-model insects. However, use of this technology is often limited to obtaining the nucleotide sequences of target or related genes, with many of the acquired sequences remaining unused because other available sequences are not sufficiently annotated. To address this issue, we have developed a functional annotation workflow for transcriptome-sequenced insects to determine transcript descriptions, which represents a significant improvement over the previous method (functional annotation pipeline for insects). The developed workflow attempts to annotate not only the protein sequences obtained from transcriptome analysis but also the ncRNA sequences obtained simultaneously. In addition, the workflow integrates the expression-level information obtained from transcriptome sequencing for application as functional annotation information. Using the workflow, functional annotation was performed on the sequences obtained from transcriptome sequencing of the stick insect (Entoria okinawaensis) and silkworm (Bombyx mori), yielding richer functional annotation information than that obtained in our previous study. The improved workflow allows the more comprehensive exploitation of transcriptome data and is applicable to other insects because the workflow has been openly developed on GitHub. Full article
(This article belongs to the Special Issue Insect Genome and Transcriptome Data)
Show Figures

Figure 1

14 pages, 3378 KiB  
Article
Exploring Honeybee Abdominal Anatomy through Micro-CT and Novel Multi-Staining Approaches
by Jessica Carreira De Paula, Kevin Doello, Cristina Mesas, Garyfalia Kapravelou, Alberto Cornet-Gómez, Francisco José Orantes, Rosario Martínez, Fátima Linares, Jose Carlos Prados, Jesus María Porres, Antonio Osuna and Luis Miguel de Pablos
Insects 2022, 13(6), 556; https://doi.org/10.3390/insects13060556 - 18 Jun 2022
Cited by 5 | Viewed by 2803
Abstract
Continuous improvements in morphological and histochemical analyses of Apis mellifera could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on [...] Read more.
Continuous improvements in morphological and histochemical analyses of Apis mellifera could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on the abdomen of worker bees: (i) Micro-computed tomography (Micro-CT), which allows the identification of small-scale structures (micrometers) with adequate/optimal resolution and avoids sample damage and, (ii) histochemical multi-staining with Periodic Acid-Schiff-Alcian blue, Lactophenol-Saphranin O and pentachrome staining to precisely characterize the histological structures of the midgut and hindgut. Micro-CT allowed high-resolution imaging of anatomical structures of the honeybee abdomen with particular emphasis on the proventriculus and pyloric valves, as well as the connection of the sting apparatus with the terminal abdominal ganglia. Furthermore, the histochemical analyses have allowed for the first-time description of ventricular telocytes in honeybees, a cell type located underneath the midgut epithelium characterized by thin and long cytoplasmic projections called telopodes. Overall, the analysis of these images could help the detailed anatomical description of the cryptic structures of honeybees and also the characterization of changes due to abiotic or biotic stress conditions. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

23 pages, 2147 KiB  
Article
Reviewing the WHO Tube Bioassay Methodology: Accurate Method Reporting and Numbers of Mosquitoes Are Key to Producing Robust Results
by Giorgio Praulins, Daniel P. McDermott, Angus Spiers and Rosemary Susan Lees
Insects 2022, 13(6), 544; https://doi.org/10.3390/insects13060544 - 14 Jun 2022
Cited by 9 | Viewed by 3170
Abstract
Accurately monitoring insecticide resistance in target mosquito populations is important for combating malaria and other vector-borne diseases, and robust methods are key. The “WHO susceptibility bioassay” has been available from the World Health Organization for 60+ years: mosquitoes of known physiological status are [...] Read more.
Accurately monitoring insecticide resistance in target mosquito populations is important for combating malaria and other vector-borne diseases, and robust methods are key. The “WHO susceptibility bioassay” has been available from the World Health Organization for 60+ years: mosquitoes of known physiological status are exposed to a discriminating concentration of insecticide. Several changes to the test procedures have been made historically, which may seem minor but could impact bioassay results. The published test procedures and literature for this method were reviewed for methodological details. Areas where there was room for interpretation in the test procedures or where the test procedures were not being followed were assessed experimentally for their impact on bioassay results: covering or uncovering of the tube end during exposure; the number of mosquitoes per test unit; and mosquito age. Many publications do not cite the most recent test procedures; methodological details are reported which contradict the test procedures referenced, or methodological details are not fully reported. As a result, the precise methodology is unclear. Experimental testing showed that using fewer than the recommended 15–30 mosquitoes per test unit significantly reduced mortality, covering the exposure tube had no significant effect, and using mosquitoes older than 2–5 days old increased mortality, particularly in the resistant strain. Recommendations are made for improved reporting of experimental parameters Full article
(This article belongs to the Special Issue Insecticides for Mosquito Control: Strengthening the Evidence Base)
Show Figures

Figure 1

15 pages, 1465 KiB  
Article
Technological Performance of Cricket Powder (Acheta domesticus L.) in Wheat-Based Formulations
by Andrea Bresciani, Gaetano Cardone, Costanza Jucker, Sara Savoldelli and Alessandra Marti
Insects 2022, 13(6), 546; https://doi.org/10.3390/insects13060546 - 14 Jun 2022
Cited by 11 | Viewed by 2853
Abstract
The recent socio-economic situation requires producers to change the composition of basic foods. The aim of this study was to assess the technological properties of wheat flour enriched with cricket powder (CP) (at 5%, 10%, and 20% levels) for the development of bread [...] Read more.
The recent socio-economic situation requires producers to change the composition of basic foods. The aim of this study was to assess the technological properties of wheat flour enriched with cricket powder (CP) (at 5%, 10%, and 20% levels) for the development of bread and pasta. The hydration (i.e., water absorption capacity, oil absorption capacity, water absorption index, water solubility index, and swelling power), foaming (i.e., foaming capacity and stability),emulsifying (emulsifying activity and emulsion stability), and rheological (during gluten aggregation, mixing, extension, and leavening) properties were investigated. Finally, bread and fresh pasta were prepared and characterized. Emulsifying activity, stability, and foaming capacity decreased in the presence of CP, whereas foaming stability and water solubility increased. The results on dough rheology highlighted the need to increase the amount of water, and to decrease the mixing and leavening time, to keep an acceptable bread volume. Indeed, 10% CP enrichment led to a product characterized by a similar volume and crumb hardness to the control (wheat flour). Despite the decrease in extensibility caused by CP, it was possible to produce fresh pasta enriched with CP, with the best cooking behavior obtained at a 5% replacement level. Full article
(This article belongs to the Collection Edible Insects and Circular Economy)
Show Figures

Figure 1

16 pages, 12629 KiB  
Article
Microscopic Identification of Anatomical Elements and Chemical Analysis of Secondary Nests of Vespa velutina nigrithorax du Buyson
by Nazaret Crespo, José Louzada, Lisete S. Fernandes, Pedro B. Tavares and José Aranha
Insects 2022, 13(6), 537; https://doi.org/10.3390/insects13060537 - 10 Jun 2022
Cited by 5 | Viewed by 2664
Abstract
Vespa velutina accidentally arrived in Europe (France) in 2004, and rapidly expanded throughout the entire country. Its presence in mainland Portugal was first noticed in 2011. Being an invasive species with no natural predators in the region to control it, it has caused [...] Read more.
Vespa velutina accidentally arrived in Europe (France) in 2004, and rapidly expanded throughout the entire country. Its presence in mainland Portugal was first noticed in 2011. Being an invasive species with no natural predators in the region to control it, it has caused enormous environmental and economic damage, particularly on Apis mellifera (honeybee) colonies. Although there is already some research on this species’ biology, little is known about its adaption to European ecological conditions, specifically in terms of nest building. This type of hornet builds a primary nest in the spring to start a colony. During the summer, they build a secondary nest to develop the main colony. These secondary nests are ovoid-shaped and range in size from 18.7 cm to 45.0 cm in diameter and from 19.2 cm to 65.0 cm in length, attaining their highest development in late summer. The external appearance of these nests is characterized by alternating stripes that are beige and brown in color. The main objective of this study is to identify the composition and the origin of the materials that are used by Vespa velutina nigrithorax to build the outer envelope of these secondary nests. This information could be very interesting and will not only increase our knowledge on the biology of the species in regions far from its original area, but will also be relevant for the future implementation of new policies to control this invasive species by means biological control. Several samples were taken from each nest and were observed under different optical magnifying devices. In the second stage, their chemical composition was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDS). It was noticed that almost all of the materials used in the nests’ construction were lignocellulose from woody materials from both softwood (gymnosperm) and hardwood (angiosperm) forest species as well from leaves and small particles of agricultural origin (grasses). The beige strips were formed almost exclusively from woody softwood cells, while the brown strips were composed of hardwood cells, leaf tissues, and grasses. Chemically, it was noticed that this material mainly consisted of cellulose, with more than 99% being composed of C and O and very little mineral material from elements such as Na, Al, Si, K, and Ca. The achieved results allow us to state that in the construction of these secondary nests, these hornets only used organic materials that are then probably agglomerated through their mouths. Full article
(This article belongs to the Topic Arthropod Biodiversity: Ecological and Functional Aspects)
Show Figures

Figure 1

17 pages, 1934 KiB  
Article
Biological Control Options for the Golden Twin-Spot Moth, Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae) in Banana Crops of the Canary Islands
by Modesto del Pino, Tomás Cabello and Estrella Hernández-Suárez
Insects 2022, 13(6), 516; https://doi.org/10.3390/insects13060516 - 31 May 2022
Cited by 2 | Viewed by 2327
Abstract
Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae) is a significant pest in banana plantations in the Canary Islands. Field surveys were carried out to identify its naturally occurring parasitoids and estimate their parasitism rates between September 2007 and October 2010. Ch. chalcites was parasitized by [...] Read more.
Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae) is a significant pest in banana plantations in the Canary Islands. Field surveys were carried out to identify its naturally occurring parasitoids and estimate their parasitism rates between September 2007 and October 2010. Ch. chalcites was parasitized by six different larval/pupal parasitoid species: Cotesia sp., C. glomerata L. (Hym.: Braconidae), Aplomyia confinis Fallén (Dip.: Tachinidae), Hyposoter rufiventris Perez, Ctenochares bicolorus L. (Hym.: Ichneumonidae) and Aleiodes sp. (Hym.: Braconidae). Among them, Cotesia sp. was the most frequent species, accounting for 8.18% of parasitized larvae. High levels of egg parasitism were detected, with Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae) being the most widely distributed egg parasitoid. A greenhouse assay was also carried out on a commercial banana crop with the aim of evaluating the potential of T. achaeae as a biological control agent and compared with a chemical control. Five periodic inundative releases of 35 adults/m2 every 21 days were necessary to achieve an adequate parasitism level (56.25 ± 1.61%). Moreover, there was 15.75% less foliar damage in the biological control plot compared to the chemical control plot. These results indicate that T. achaeae could be a promising biocontrol agent of Ch. chalcites in greenhouse banana crops. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

26 pages, 7619 KiB  
Article
Insects in Art during an Age of Environmental Turmoil
by Barrett Anthony Klein and Tierney Brosius
Insects 2022, 13(5), 448; https://doi.org/10.3390/insects13050448 - 09 May 2022
Cited by 5 | Viewed by 6781
Abstract
Humans are reshaping the planet in impressive, and impressively self-destructive, ways. Evidence and awareness of our environmental impact has failed to elicit meaningful change in reversing our behavior. A multifaceted approach to communicating human-induced environmental destruction is critical, and art can affect our [...] Read more.
Humans are reshaping the planet in impressive, and impressively self-destructive, ways. Evidence and awareness of our environmental impact has failed to elicit meaningful change in reversing our behavior. A multifaceted approach to communicating human-induced environmental destruction is critical, and art can affect our behavior by its power to evoke emotions. Artists often use insects in their works because of our intimate and varied relationship with this diverse, abundant lineage of animals. We surveyed work by 73 artists featuring insects or insect bodily products to gauge how extensively artists are addressing anthropogenic environmental distress, and what insects they are choosing as subjects in the process. Categories often cited as contributing to species extinction are (1) habitat destruction, (2) invasive species, (3) pollution, (4) human population, and (5) overharvesting. After adding insect-specific categories of (6) decline of insect pollinators and (7) the intentional modification or extermination of insects, we categorized our surveyed works, confirming categorizations with 53 of the living artists. Forty-seven percent of the artists addressed habitat destruction or climate change, but some other categories were severely underrepresented, with almost no work explicitly addressing overpopulation or overharvesting. Artists favored Hymenoptera (62%) over potentially more species-rich orders. Recognizing these biases could alert scientists, artists, and others to more effectively communicate messages of universal importance. Full article
(This article belongs to the Collection Cultural Entomology: Our Love-hate Relationship with Insects)
Show Figures

Graphical abstract

31 pages, 764 KiB  
Article
Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens
by Christoph Sandrock, Simon Leupi, Jens Wohlfahrt, Cengiz Kaya, Maike Heuel, Melissa Terranova, Wolf U. Blanckenhorn, Wilhelm Windisch, Michael Kreuzer and Florian Leiber
Insects 2022, 13(5), 424; https://doi.org/10.3390/insects13050424 - 30 Apr 2022
Cited by 7 | Viewed by 3133
Abstract
Further advancing black soldier fly (BSF) farming for waste valorisation and more sustainable global protein supplies critically depends on targeted exploitation of genotype-phenotype associations in this insect, comparable to conventional livestock. This study used a fully crossed factorial design of rearing larvae of [...] Read more.
Further advancing black soldier fly (BSF) farming for waste valorisation and more sustainable global protein supplies critically depends on targeted exploitation of genotype-phenotype associations in this insect, comparable to conventional livestock. This study used a fully crossed factorial design of rearing larvae of four genetically distinct BSF strains (FST: 0.11–0.35) on three nutritionally different diets (poultry feed, food waste, poultry manure) to investigate genotype-by-environment interactions. Phenotypic responses included larval growth dynamics over time, weight at harvest, mortality, biomass production with respective contents of ash, fat, and protein, including amino acid profiles, as well as bioconversion and nitrogen efficiency, reduction of dry matter and relevant fibre fractions, and dry matter loss (emissions). Virtually all larval performance and body composition traits were substantially influenced by diet but also characterised by ample BSF genetic variation and, most importantly, by pronounced interaction effects between the two. Across evaluated phenotypes, variable diet-dependent rankings and the lack of generally superior BSF strains indicate the involvement of trade-offs between traits, as their relationships may even change signs. Conflicting resource allocation in light of overall BSF fitness suggests anticipated breeding programs will require complex and differential selection strategies to account for pinpointed trait maximisation versus multi-purpose resilience. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

15 pages, 6265 KiB  
Article
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding
by Ilektra Sperdouli, Stefanos S. Andreadis, Ioannis-Dimosthenis S. Adamakis, Julietta Moustaka, Eleni I. Koutsogeorgiou and Michael Moustakas
Insects 2022, 13(5), 409; https://doi.org/10.3390/insects13050409 - 24 Apr 2022
Cited by 16 | Viewed by 2913
Abstract
Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic [...] Read more.
Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

18 pages, 2469 KiB  
Article
The Early Season Community of Flower-Visiting Arthropods in a High-Altitude Alpine Environment
by Marco Bonelli, Elena Eustacchio, Daniele Avesani, Verner Michelsen, Mattia Falaschi, Marco Caccianiga, Mauro Gobbi and Morena Casartelli
Insects 2022, 13(4), 393; https://doi.org/10.3390/insects13040393 - 16 Apr 2022
Cited by 5 | Viewed by 3482
Abstract
In mountain ecosystems, climate change can cause spatiotemporal shifts, impacting the composition of communities and altering fundamental biotic interactions, such as those involving flower-visiting arthropods. On of the main problems in assessing the effects of climate change on arthropods in these environments is [...] Read more.
In mountain ecosystems, climate change can cause spatiotemporal shifts, impacting the composition of communities and altering fundamental biotic interactions, such as those involving flower-visiting arthropods. On of the main problems in assessing the effects of climate change on arthropods in these environments is the lack of baseline data. In particular, the arthropod communities on early flowering high-altitude plants are poorly investigated, although the early season is a critical moment for possible mismatches. In this study, we characterised the flower-visiting arthropod community on the early flowering high-altitude Alpine plant, Androsace brevis (Primulaceae). In addition, we tested the effect of abiotic factors (temperature and wind speed) and other variables (time, i.e., hour of the day, and number of flowers per plant) on the occurrence, abundance, and diversity of this community. A. brevis is a vulnerable endemic species growing in the Central Alps above 2000 m asl and flowering for a very short period immediately after snowmelt, thus representing a possible focal plant for arthropods in this particular moment of the season. Diptera and Hymenoptera were the main flower visitors, and three major features of the community emerged: an evident predominance of anthomyiid flies among Diptera, a rare presence of bees, and a relevant share of parasitoid wasps. Temperature and time (hour of the day), but not wind speed and number of flowers per plant, affected the flower visitors’ activity. Our study contributes to (1) defining the composition of high-altitude Alpine flower-visiting arthropod communities in the early season, (2) establishing how these communities are affected by environmental variables, and (3) setting the stage for future evaluation of climate change effects on flower-visiting arthropods in high-altitude environments in the early season. Full article
(This article belongs to the Collection Insects in Mountain Ecosystems)
Show Figures

Graphical abstract

18 pages, 2731 KiB  
Article
Field Suppression of Spotted Wing Drosophila (SWD) (Drosophila suzukii Matsumura) Using the Sterile Insect Technique (SIT)
by Rafael A. Homem, Zeus Mateos-Fierro, Rory Jones, Daniel Gilbert, Andrew R. Mckemey, Glen Slade and Michelle T. Fountain
Insects 2022, 13(4), 328; https://doi.org/10.3390/insects13040328 - 26 Mar 2022
Cited by 7 | Viewed by 3979
Abstract
Drosophila suzukii (spotted wing drosophila—SWD) is an economically important pest of soft and stone fruit worldwide. Control relies on broad-spectrum insecticides, which are neither fully effective nor environmentally sustainable. The sterile insect technique (SIT) is a proven, effective and environmentally friendly pest-management tool. [...] Read more.
Drosophila suzukii (spotted wing drosophila—SWD) is an economically important pest of soft and stone fruit worldwide. Control relies on broad-spectrum insecticides, which are neither fully effective nor environmentally sustainable. The sterile insect technique (SIT) is a proven, effective and environmentally friendly pest-management tool. Here, we investigated, for the first time, the potential of using SIT to control D. suzukii in field conditions without physical barriers that limit insect invasion. A proprietary method of rearing and irradiation with X-rays was used to obtain males that were > 99% sterile. Sterile males were released twice per week from April to October 2021 on a site in Kent, UK, where everbearing strawberries were grown in open polytunnels. The infestation of wild female D. suzukii was monitored weekly using red sticky traps with dry lure at the treated site and at two similar control sites that did not receive sterile male releases. Releases of sterile males suppressed the wild female D. suzukii population by up to 91% in comparison with the control sites. We thus demonstrated the feasibility of SIT to achieve season-long control of D. suzukii using early, sustained and dynamically targeted releases of sterile males. This provides a promising environmentally friendly method to control this important pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

8 pages, 946 KiB  
Article
Effect of Temperature and Photoperiod on Development, Survival, and Growth Rate of Mealworms, Tenebrio molitor
by Stephan Eberle, Lisa-Marie Schaden, Johannes Tintner, Christian Stauffer and Martin Schebeck
Insects 2022, 13(4), 321; https://doi.org/10.3390/insects13040321 - 24 Mar 2022
Cited by 22 | Viewed by 5806
Abstract
Insects are a potential substitute for conventional meat and can be part of a sustainable human diet due to their valuable nutrients and relatively low environmental production impact. One species that is already produced for human consumption and livestock feed is the mealworm, [...] Read more.
Insects are a potential substitute for conventional meat and can be part of a sustainable human diet due to their valuable nutrients and relatively low environmental production impact. One species that is already produced for human consumption and livestock feed is the mealworm, i.e., larvae of Tenebrio molitor. Knowledge of the effects of temperature, and particularly photoperiod, on mealworm development is scarce, but crucial for the improvement of rearing. Therefore, the effects of three temperatures (20 °C, 25 °C, and 30 °C), in combination with three photoperiods (long-day—16 h:8 h light:dark; short-day—8 h:16 h light:dark, and constant darkness) on mealworm survival, developmental time, and growth rate were tested. We describe a significant effect of temperature on survival rate, developmental time, and growth rate. Furthermore, significant effects of photoperiod on developmental time and growth rate were found. At 25 and 30 °C and constant darkness, the highest survival and growth rate, along with the shortest developmental time, were observed. Our data can be used to improve the mass rearing of mealworms for an efficient production of food and feed. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

14 pages, 3472 KiB  
Article
A Practical Insecticide Resistance Monitoring Bioassay for Orally Ingested Dinotefuran in Anopheles Malaria Vectors
by George John Ian Parsons, Rosemary Susan Lees, Sofia Balaska and John Vontas
Insects 2022, 13(4), 311; https://doi.org/10.3390/insects13040311 - 22 Mar 2022
Cited by 4 | Viewed by 2864
Abstract
Attractive Toxic Sugar Baits (ATSB) deployed outdoors are likely to be particularly effective against outdoor biting mosquitoes and, if they contain insecticides with a different mode of action, mosquitoes resistant to pyrethroids. One such ATSB based on the neonicotinoid dinotefuran is currently under [...] Read more.
Attractive Toxic Sugar Baits (ATSB) deployed outdoors are likely to be particularly effective against outdoor biting mosquitoes and, if they contain insecticides with a different mode of action, mosquitoes resistant to pyrethroids. One such ATSB based on the neonicotinoid dinotefuran is currently under evaluation in Africa. As with any insecticide-based intervention, it will be important to monitor for the possible emergence of vector resistance. While methods for detecting resistance to insecticides via tarsal contact are recommended by the World Health Organization (WHO), these may not be applicable for orally ingested insecticides. Here, a new ingestion assay, appropriate for a controlled laboratory setting, is described using fluorescein sodium salt (uranine) as a feeding marker. Conventional topical application bioassays, more appropriate for routine deployment, have also been used to apply dinotefuran to the thorax of adult Anopheles mosquitoes with an organic carrier to bypass lipid cuticle barriers. The two methods were compared by establishing lethal doses (LD) in several Anopheles strains. The similarity of the ratios of susceptibility to dinotefuran between pairs of pyrethroid susceptible and resistant strains validates topical application as a suitable, more practical and field applicable method for monitoring for the emergence of resistance to orally ingested dinotefuran. A discriminating dose is proposed, which will be further validated against field populations and used to routinely monitor for the emergence of resistance alongside ATSB trials. Full article
(This article belongs to the Special Issue Insecticides for Mosquito Control: Strengthening the Evidence Base)
Show Figures

Figure 1

14 pages, 1766 KiB  
Article
Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti
by Erick J. Martínez Rodríguez, Parker Evans, Megha Kalsi, Noah Rosenblatt, Morgan Stanley and Peter M. Piermarini
Insects 2022, 13(3), 307; https://doi.org/10.3390/insects13030307 - 20 Mar 2022
Cited by 4 | Viewed by 5045
Abstract
The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic [...] Read more.
The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic effects on mosquito larvae and offer a potential alternative to chemical insecticides such as pyrethroids, for which mosquitoes have evolved resistance. However, CNPs derived from industrial sources, such as carbon black, have not previously been evaluated as larvicides. Here, we evaluate the effects of a commercially-available carbon black, EMPEROR® 1800 (E1800), on mortality and development of pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Ae. aegypti. We found that E1800 exhibited concentration-dependent mortality against 1st instar larvae of both strains within the first 120 h after exposure, but after this period, surviving larvae did not show delays in their development to adults. Physical characterization of E1800 suspensions suggests that they form primary particles of ~30 nm in diameter that fuse into fundamental aggregates of ~170 nm in diameter. Notably, larvae treated with E1800 showed internal accumulation of E1800 in the gut and external accumulation on the respiratory siphon, anal papillae, and setae, suggesting a physical mode of toxic action. Taken together, our results suggest that E1800 has potential use as a larvicide with a novel mode of action for controlling PS and PR mosquitoes. Full article
(This article belongs to the Special Issue Integrated Management of Public Health Pests)
Show Figures

Figure 1

19 pages, 1110 KiB  
Article
Interactions between Rice Resistance to Planthoppers and Honeydew-Related Egg Parasitism under Varying Levels of Nitrogenous Fertilizer
by Ainara Peñalver-Cruz and Finbarr G. Horgan
Insects 2022, 13(3), 251; https://doi.org/10.3390/insects13030251 - 01 Mar 2022
Cited by 5 | Viewed by 3528
Abstract
Host plant resistance is the most researched method for the management of planthoppers and leafhoppers in tropical rice. For optimal effects, resistance should be resilient to fertilizer inputs and work in synergy with natural enemies. In field plot experiments, we examined how rice [...] Read more.
Host plant resistance is the most researched method for the management of planthoppers and leafhoppers in tropical rice. For optimal effects, resistance should be resilient to fertilizer inputs and work in synergy with natural enemies. In field plot experiments, we examined how rice resistance and fertilizer inputs affect mortality of planthopper and leafhopper eggs by hymenopteran parasitoids. We used IR62 as a variety with resistance to Nilaparvata lugens (Stål) [BPH], Sogatella furcifera (Horváth) [WBPH] and Nephotettix virescens (Distant) [GLH], and IR64 as a susceptible control. The herbivores were more abundant during wet season sampling in low-nitrogen plots. During this study, parasitoids killed between 31 and 38% of BPH eggs and 24 and 52% of WBPH eggs during four days of field exposure. Parasitism, mainly due to Oligosita spp., was generally higher in high-nitrogen and IR64 plots. Similar densities of eggs in exposed plants suggest that these trends were mediated by semiochemicals and therefore support the Optimal Defense Hypothesis. Honeydew from BPH on IR62 had more xylem-derived wastes than honeydew on IR64. We applied honeydew from both varieties to sentinel plants. Parasitism by Anagrus spp. was higher on plants of either variety treated with honeydew derived from IR62; however, the effect was only apparent in high-nitrogen plots. Results suggest that Anagrus spp., by responding to honeydew, will counter the nitrogen-induced enhancement of planthopper fitness on resistant rice. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Designing a Pest and Disease Outbreak Warning System for Farmers, Agronomists and Agricultural Input Distributors in East Africa
by Molly E. Brown, Stephen Mugo, Sebastian Petersen and Dominik Klauser
Insects 2022, 13(3), 232; https://doi.org/10.3390/insects13030232 - 26 Feb 2022
Cited by 6 | Viewed by 4074
Abstract
Early warnings of the risks of pest and disease outbreaks are becoming more urgent, with substantial increases in threats to agriculture from invasive pests. With geospatial data improvements in quality and timeliness, models and analytical systems can be used to estimate potential areas [...] Read more.
Early warnings of the risks of pest and disease outbreaks are becoming more urgent, with substantial increases in threats to agriculture from invasive pests. With geospatial data improvements in quality and timeliness, models and analytical systems can be used to estimate potential areas at high risk of yield impacts. The development of decision support systems requires an understanding of what information is needed, when it is needed, and at what resolution and accuracy. Here, we report on a professional review conducted with 53 professional agronomists, retailers, distributors, and growers in East Africa working with the Syngenta Foundation for Sustainable Agriculture. The results showed that respondents reported fall armyworm, stemborers and aphids as being among the most common pests, and that crop diversification was a key strategy to reduce their impact. Chemical and cultural controls were the most common strategies for fall armyworm (FAW) control, and biological control was the least known and least used method. Of the cultural control methods, monitoring and scouting, early planting, and crop rotation with non-host crops were most used. Although pests reduced production, only 55% of respondents were familiar with early warning tools, showing the need for predictive systems that can improve farmer response. Full article
Show Figures

Figure 1

16 pages, 1535 KiB  
Article
Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to Be Used against Invasive Fall Armyworm, Spodoptera frugiperda
by Patrick Fallet, Lara De Gianni, Ricardo A. R. Machado, Pamela Bruno, Julio S. Bernal, Patrick Karangwa, Joelle Kajuga, Bancy Waweru, Didace Bazagwira, Thomas Degen, Stefan Toepfer and Ted C. J. Turlings
Insects 2022, 13(2), 205; https://doi.org/10.3390/insects13020205 - 16 Feb 2022
Cited by 15 | Viewed by 3333
Abstract
The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond. Full article
(This article belongs to the Special Issue Entomopathogenic Nematodes: Lethal Parasites of Insects)
Show Figures

Figure 1

8 pages, 1411 KiB  
Article
The Effect of Resistance to Bt Corn on the Reproductive Output of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Natália de Souza Ribas, Jeremy N. McNeil, Hernane Dias Araújo, Bruna de Souza Ribas and Eraldo Lima
Insects 2022, 13(2), 196; https://doi.org/10.3390/insects13020196 - 14 Feb 2022
Cited by 2 | Viewed by 2694
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is the most significant lepidopteran corn pest in South American countries. Transgenic Bt corn, producing the Cry1Fa toxins, has been used to control this pest, but there is clear evidence that some FAW populations have developed resistance. [...] Read more.
The fall armyworm (FAW) Spodoptera frugiperda is the most significant lepidopteran corn pest in South American countries. Transgenic Bt corn, producing the Cry1Fa toxins, has been used to control this pest, but there is clear evidence that some FAW populations have developed resistance. To determine if there are costs associated with resistance, we compared the mass of adults, the duration of mating, and the mass of the first spermatophore produced, as well as the lifetime fecundity and fertility of once-mated susceptible (SS) and resistant (RR) females. Adult mass was affected by both sex and strain, with SS females being significantly larger than RR ones, while the inverse was true for males. RR pairs took significantly longer to mate than SS pairs, yet the mass of spermatophores produced by RR males was significantly less than those of SS males. The total number of eggs laid did not differ but the fertility of eggs from once-mated RR pairs was significantly lower than that of SS pairs. Our data provided clear evidence that the development of Bt resistance affected the reproductive capacity of resistant FAW. Full article
(This article belongs to the Special Issue Applied Insect Reproductive Biology)
Show Figures

Figure 1

14 pages, 825 KiB  
Article
Imported Dengue Case Numbers and Local Climatic Patterns Are Associated with Dengue Virus Transmission in Florida, USA
by Caroline Stephenson, Eric Coker, Samantha Wisely, Song Liang, Rhoel R. Dinglasan and John A. Lednicky
Insects 2022, 13(2), 163; https://doi.org/10.3390/insects13020163 - 03 Feb 2022
Cited by 7 | Viewed by 3430
Abstract
Aedes aegypti mosquitoes are the main vector of dengue viruses globally and are present throughout much of the state of Florida (FL) in the United States of America. However, local transmission of dengue viruses in FL has mainly occurred in the southernmost counties; [...] Read more.
Aedes aegypti mosquitoes are the main vector of dengue viruses globally and are present throughout much of the state of Florida (FL) in the United States of America. However, local transmission of dengue viruses in FL has mainly occurred in the southernmost counties; specifically Monroe and Miami-Dade counties. To get a better understanding of the ecologic risk factors for dengue fever incidence throughout FL, we collected and analyzed numerous environmental factors that have previously been connected to local dengue cases in disease-endemic regions. We analyzed these factors for each county-year in FL, between 2009–2019, using negative binomial regression. Monthly minimum temperature of 17.5–20.8 °C, an average temperature of 26.1–26.7 °C, a maximum temperature of 33.6–34.7 °C, rainfall between 11.4–12.7 cm, and increasing numbers of imported dengue cases were associated with the highest risk of dengue incidence per county-year. To our knowledge, we have developed the first predictive model for dengue fever incidence in FL counties and our findings provide critical information about weather conditions that could increase the risk for dengue outbreaks as well as the important contribution of imported dengue cases to local establishment of the virus in Ae. aegypti populations. Full article
Show Figures

Figure 1

10 pages, 461 KiB  
Article
Could Sterile Aedes albopictus Male Releases Interfere with Aedes aegypti Population in Reunion Island?
by Harilanto Felana Andrianjakarivony, David Damiens, Lucie Marquereau, Benjamin Gaudillat, Nausicaa Habchi-Hanriot and Louis-Clément Gouagna
Insects 2022, 13(2), 146; https://doi.org/10.3390/insects13020146 - 29 Jan 2022
Cited by 2 | Viewed by 2268
Abstract
In Reunion Island, the feasibility of an Aedes albopictus control program using the Sterile Insect Technique (SIT) is studied. Because, in some regions, Ae. albopictus is living in sympatry with Aedes aegypti, the impact of releasing millions of sterile male Ae. albopictus [...] Read more.
In Reunion Island, the feasibility of an Aedes albopictus control program using the Sterile Insect Technique (SIT) is studied. Because, in some regions, Ae. albopictus is living in sympatry with Aedes aegypti, the impact of releasing millions of sterile male Ae. albopictus on female Ae. aegypti reproduction needs to be assessed. Thus, to study the potential heterospecific matings, a marking technique using rhodamine B has been used. Rhodamine is given in solution to male mosquitoes to be incorporated into the male body and seminal fluid and transferred during mating into the bursa inseminalis and spermathecae of females. The presence of rhodamine in females occurred in 15% of cases when Ae. aegypti females were offered non-irradiated Ae. albopictus males, 5% when offered irradiated Ae. albopictus males and 18% of cases in the inverse heterospecific matings. Moreover, our results also showed that these matings gave few eggs but were not viable. Finally, the results showed that whatever the type of mating crosses, females in cages previously crossed with males of another species can re-mate with males of their species and produce an equivalent amount of egg compared to females only mated with conspecific males. Despite the promiscuity of the males and females in small cages for three days, heterospecific mating between sterile male Ae. albopictus and female Ae aegypti, 95% of the females have not been inseminated suggesting that in the field the frequency satyrization would be very low. Full article
(This article belongs to the Special Issue Mosquito Handling, Transport, Release and Male Trapping Methods)
Show Figures

Figure 1

0 pages, 2904 KiB  
Article
Quick Spreading of Populations of an Exotic Firefly throughout Spain and Their Recent Arrival in the French Pyrenees
by Marcel Koken, José Ramón Guzmán-Álvarez, Diego Gil-Tapetado, Miguel Angel Romo Bedate, Geneviève Laurent, Lucas Ezequiel Rubio, Segimon Rovira Comas, Nicole Wolffler, Fabien Verfaillie and Raphaël De Cock
Insects 2022, 13(2), 148; https://doi.org/10.3390/insects13020148 - 29 Jan 2022
Cited by 4 | Viewed by 5650
Abstract
In August 2018, a firefly (Coleoptera: Lampyridae) of American origin was observed in several localities in Girona (Catalonia, Spain) and was described as Photinus immigrans by Zaragoza-Caballero and Vinolas, 2018. Here, we show that this species dispersed very quickly throughout northeastern [...] Read more.
In August 2018, a firefly (Coleoptera: Lampyridae) of American origin was observed in several localities in Girona (Catalonia, Spain) and was described as Photinus immigrans by Zaragoza-Caballero and Vinolas, 2018. Here, we show that this species dispersed very quickly throughout northeastern Spain and was, in 2020, observed in the French Pyrenees. The animal’s quick progress is documented, and part of its biology is described (dispersion speed, land use, phenology, identification of all life stages). An additional population was localized in Extremadura, and its special status is discussed. We were able to determine its Argentinian–Uruguayan origin and propose, therefore, to consider Photinus immigrans as a synonym of Photinus signaticollis (Blanchard, 1846) (=Photinus immigrans Zaragoza-Caballero and Viñolas, 2018, syn. nov.). Our data clearly show that at least the Catalan and French populations are spreading very quickly and are able to settle permanently if adequate ecosystems are found. The species is highly expansive and may well be invasive; our citizen science platforms are ideally suited to monitor their progress throughout Spain and France. This is important for avoiding future ecological problems with diverse native faunas, such as glow-worms, fireflies and earthworms. If no ways are found to stop the species’ progression, the animals will quite probably invade substantial areas of France, Spain and the rest of Europe in the years to come. Full article
(This article belongs to the Special Issue Reproductive Behaviour in Insects and other Non-Marine Arthropods)
Show Figures

Graphical abstract

26 pages, 821 KiB  
Article
Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura
by Pavle Erić, Aleksandra Patenković, Katarina Erić, Marija Tanasković, Slobodan Davidović, Mina Rakić, Marija Savić Veselinović, Marina Stamenković-Radak and Mihailo Jelić
Insects 2022, 13(2), 139; https://doi.org/10.3390/insects13020139 - 28 Jan 2022
Cited by 5 | Viewed by 20688
Abstract
The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of [...] Read more.
The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species. Full article
Show Figures

Figure 1

17 pages, 2046 KiB  
Article
Peering into the Darkness: DNA Barcoding Reveals Surprisingly High Diversity of Unknown Species of Diptera (Insecta) in Germany
by Caroline Chimeno, Axel Hausmann, Stefan Schmidt, Michael J. Raupach, Dieter Doczkal, Viktor Baranov, Jeremy Hübner, Amelie Höcherl, Rosa Albrecht, Mathias Jaschhof, Gerhard Haszprunar and Paul D. N. Hebert
Insects 2022, 13(1), 82; https://doi.org/10.3390/insects13010082 - 12 Jan 2022
Cited by 24 | Viewed by 8028
Abstract
Determining the size of the German insect fauna requires better knowledge of several megadiverse families of Diptera and Hymenoptera that are taxonomically challenging. This study takes the first step in assessing these “dark taxa” families and provides species estimates for four challenging groups [...] Read more.
Determining the size of the German insect fauna requires better knowledge of several megadiverse families of Diptera and Hymenoptera that are taxonomically challenging. This study takes the first step in assessing these “dark taxa” families and provides species estimates for four challenging groups of Diptera (Cecidomyiidae, Chironomidae, Phoridae, and Sciaridae). These estimates are based on more than 48,000 DNA barcodes (COI) from Diptera collected by Malaise traps that were deployed in southern Germany. We assessed the fraction of German species belonging to 11 fly families with well-studied taxonomy in these samples. The resultant ratios were then used to estimate the species richness of the four “dark taxa” families (DT families hereafter). Our results suggest a surprisingly high proportion of undetected biodiversity in a supposedly well-investigated country: at least 1800–2200 species await discovery in Germany in these four families. As this estimate is based on collections from one region of Germany, the species count will likely increase with expanded geographic sampling. Full article
(This article belongs to the Special Issue Diptera Diversity in Space and Time)
Show Figures

Figure 1

Back to TopTop