Integrated Pest Management Strategies for Horticultural Crops

A topical collection in Insects (ISSN 2075-4450). This collection belongs to the section "Insect Pest and Vector Management".

Viewed by 66336

Editor


E-Mail Website
Collection Editor
Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
Interests: vegetables; Brassica; lettuce; integrated pest management; decision support; forecasting
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

The high-quality standards required by retailers and their customers present a particular challenge to those who manage the pests of horticultural crops. This is exacerbated by the great diversity of crops grown, each on a relatively small area, leading to a limited ‘market’ for anyone developing novel methods of pest control. However, there is an undoubted need for effective IPM strategies on a range of horticultural crops to reduce reliance on chemical pesticides, manage pesticide resistance, and address the expectations of a market which is increasingly demanding ‘perfect’ but residue-free produce. This Special Issue will collect original and review articles that focus on Integrated Pest Management in horticultural crops, with a particular emphasis on approaches that are being integrated successfully into commercial practice.

Prof. Rosemary Collier
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Integrated Pest Management
  • horticultural crops
  • fruit
  • vegetables
  • ornamental crops

Published Papers (22 papers)

2024

Jump to: 2023, 2022, 2021, 2020, 2019

19 pages, 2634 KiB  
Article
Biological Control and Habitat Management for the Control of Onion Thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in Onion Production in Quebec, Canada
by Annie-Ève Gagnon, Anne-Marie Fortier and Carolane Audette
Insects 2024, 15(4), 232; https://doi.org/10.3390/insects15040232 - 27 Mar 2024
Viewed by 558
Abstract
Onion thrips (Thrips tabaci) can pose a significant threat to onion crops, causing leaf damage, reduced bulb size and quality, and yield loss during severe infestations. Conventional insecticide use has been the primary method for managing this pest species, but the [...] Read more.
Onion thrips (Thrips tabaci) can pose a significant threat to onion crops, causing leaf damage, reduced bulb size and quality, and yield loss during severe infestations. Conventional insecticide use has been the primary method for managing this pest species, but the efficacy of this approach is inconsistent. Furthermore, emerging pest resistance is a growing concern in some regions. This two-year field study aimed to assess the effectiveness of several pest management strategies in controlling onion thrips populations and limiting their impact on onion yields. The strategies tested consisted of habitat manipulations (including flower strips and straw mulch), biological control agents (Stratiolaelaps scimitus, Neoseiulus cucumeris, Amblyseius swirskii, and Beauveria bassiana), as well as physical barrier control methods (exclusion nets, kaolin, and mineral oil). Habitat manipulation techniques, particularly the use of flower strips, reduced thrips populations by up to 50% and increased onion yields by 25%. In contrast, exclusion nets had a detrimental effect on onion yields, and the other alternative control methods produced results comparable to those obtained for untreated controls. When used alone, biological control agents were not effective at maintaining thrips populations below economically damaging levels. This study offers valuable insights into effective and sustainable pest management practices for the onion industry. Full article
Show Figures

Figure 1

2023

Jump to: 2024, 2022, 2021, 2020, 2019

11 pages, 1303 KiB  
Article
Use of Insect Exclusion Row Cover and Reflective Silver Plastic Mulching to Manage Whitefly in Zucchini Production
by Thiago Rutz, Timothy Coolong, Rajagopalbabu Srinivasan, Alton Sparks, Bhabesh Dutta, Clarence Codod, Alvin M. Simmons and Andre Luiz Biscaia Ribeiro da Silva
Insects 2023, 14(11), 863; https://doi.org/10.3390/insects14110863 - 09 Nov 2023
Viewed by 984
Abstract
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study [...] Read more.
The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study was to evaluate the use of a reflective plastic mulch and an insect row cover as alternative methods to the current grower practices to manage whiteflies in zucchini (Cucurbita pepo) production. Field experiments were conducted with a two-level factorial experimental design of cover and plastic mulch treatments arranged in a randomized complete block design, with four replications in Georgia in 2020 and 2021, and in Alabama in 2021. Cover treatments consisted of an insect row cover installed on zucchini beds at transplanting and removed at flowering and a no-cover treatment, while plastic mulch treatments consisted of reflective silver plastic mulching and white plastic mulching. During all growing seasons, weather conditions were monitored, whitefly populations were sampled weekly, zucchini biomass accumulation was measured at five stages of crop development, and fruit yield was determined at harvesting. Warm and dry weather conditions early in the growing season resulted in increased whitefly populations, regardless of location and year. In general, the reflective silver plastic mulching reduced whitefly populations compared to the conventional white plastic by 87% in Georgia in 2020, 33% in Georgia in 2021, and 30% in Alabama in 2021. The insect row cover treatment reduced whitefly populations to zero until its removal. Consequently, zucchini plants grown with the insect row cover and reflective silver plastic mulching had an increased rate of biomass accumulation due to the lower insect pressure in all locations. Zucchini grown using silver reflective plastic mulch and row covers had an overall increase of 17% and 14% in total yield compared to white plastic mulch and no-cover treatments, respectively. Significant differences in yield among locations were likely due to severe whitefly pressure early in the fall season, and total yields in Georgia in 2020 (11,451 kg ha−1) were 25% lower than in Georgia in 2021 (15,177 kg ha−1) and in Alabama in 2021 (15,248 kg ha−1). In conclusion, silver plastic mulching and row covers reduced the whitefly population and increased biomass accumulation and total yield. These treatments can be considered ready-to-use integrated pest management practices for growers. Full article
Show Figures

Figure 1

9 pages, 1063 KiB  
Communication
Selectivity of Insecticides to a Pupal Parasitoid, Trichospilus diatraeae (Hymenoptera: Eulophidae), of Soybean Caterpillars
by Helter Carlos Pereira, Fabricio Fagundes Pereira, Vitor Bortolanza Insabrald, Augusto Rodrigues, Jéssica Terilli Lucchetta, Farley William Souza Silva, Winnie Cezario Fernandes, Zenilda de Fatima Carneiro, Pedro Henrique Breda Périgo and José Cola Zanuncio
Insects 2023, 14(3), 217; https://doi.org/10.3390/insects14030217 - 22 Feb 2023
Viewed by 1239
Abstract
Selectivity is an important aspect of modern insecticides to be able to target pests whilst maintaining beneficial entomofauna in the crop. The present objective was to assess the selectivity of different insecticides for the pupal parasitoid of soybean caterpillars, i.e., Trichospilus diatraeae Cherian [...] Read more.
Selectivity is an important aspect of modern insecticides to be able to target pests whilst maintaining beneficial entomofauna in the crop. The present objective was to assess the selectivity of different insecticides for the pupal parasitoid of soybean caterpillars, i.e., Trichospilus diatraeae Cherian & Margabandhu, 1942 (Hymenoptera: Eulophidae). Acephate, azadirachtin, Bacillus thuringiensis (Bt), deltamethrin, lufenuron, teflubenzuron and thiamethoxam + lambda-cyhalothrin at the highest recommended concentrations for the soybean looper Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae), as well as water in the control, were used against the pupal parasitoid T. diatraeae. The insecticides and the control were sprayed on the soybean leaves, which were left to dry naturally and placed in cages with T. diatraeae females in each one. Survival data were submitted to analysis of variance (ANOVA) and the means were compared using Tukey’s HSD test (α = 0.05). Survival curves were plotted according to the Kaplan–Meier method, and the pairs of curves were compared using the log-rank test at 5% probability. The insecticides azadirachtin, Bt, lufenuron and teflubenzuron did not affect T. diatraeae survival, while deltamethrin and thiamethoxam + lambda-cyhalothrin presented low toxicity and acephate was highly toxic, causing 100% mortality in the parasitoid. Azadirachtin, Bt, lufenuron and teflubenzuron are selective for T. diatraeae and could be used in IPM programs. Full article
Show Figures

Figure 1

10 pages, 1559 KiB  
Article
Efficacy and Residual Toxicity of Insecticides on Plutella xylostella and Their Selectivity to the Predator Solenopsis saevissima
by Daiane G. do Carmo, Thiago L. Costa, Paulo A. Santana Júnior, Weyder C. Santana, Alberto L. Marsaro Júnior, Poliana S. Pereira, Abraão A. Santos and Marcelo C. Picanço
Insects 2023, 14(2), 98; https://doi.org/10.3390/insects14020098 - 17 Jan 2023
Cited by 3 | Viewed by 1546
Abstract
We evaluated the efficacy and residual toxicity of nine commercial insecticides on Plutella xylostella and their selectivity to the predator ant Solenopsis saevissima under laboratory and field conditions. First, to test the insecticides’ effectiveness and selectivity, we conducted concentration-response bioassays on both species [...] Read more.
We evaluated the efficacy and residual toxicity of nine commercial insecticides on Plutella xylostella and their selectivity to the predator ant Solenopsis saevissima under laboratory and field conditions. First, to test the insecticides’ effectiveness and selectivity, we conducted concentration-response bioassays on both species and the mortalities were recorded 48 h after exposure. Next, rapeseed plants were sprayed following label rate recommendations in the field. Finally, insecticide-treated leaves were removed from the field up to 20 days after application and both organisms were exposed to them as in the first experiment. Our concentration-response bioassay indicated that seven insecticides caused mortality ≥80% of P. xylostella: bifenthrin, chlorfenapyr, chlorantraniliprole, cyantraniliprole, indoxacarb, spinetoram, and spinosad. However, only chlorantraniliprole and cyantraniliprole caused mortality ≤30% of S. saevissima. The residual bioassay indicated that four insecticides had a long-lasting effect, causing mortality of 100% to P. xylostella 20 days after application: chlorantraniliprole, cyantraniliprole, spinetoram, and spinosad. For S. saevissima, bifenthrin caused mortality of 100% during the evaluated period. Additionally, mortality rates below 30% occurred four days after the application of spinetoram and spinosad. Thus, chlorantraniliprole and cyantraniliprole are safe options for P. xylostella management since their efficacy favor S. saevissima. Full article
Show Figures

Figure 1

2022

Jump to: 2024, 2023, 2021, 2020, 2019

19 pages, 2402 KiB  
Review
Integrated Pest Management Strategies for Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) and Huanglongbing in Citrus for Sarawak, East Malaysia, Borneo
by Sui S. Leong, Stephen C. T. Leong and George A. C. Beattie
Insects 2022, 13(10), 960; https://doi.org/10.3390/insects13100960 - 20 Oct 2022
Cited by 4 | Viewed by 3375
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits ‘Candidatus Liberibacter asiaticus’ (CLas), a phloem-limited bacterium associated with the severe Asian form of huanglongbing (HLB), and the most destructive disease of citrus. The pathogen and the psyllid, both of South [...] Read more.
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits ‘Candidatus Liberibacter asiaticus’ (CLas), a phloem-limited bacterium associated with the severe Asian form of huanglongbing (HLB), and the most destructive disease of citrus. The pathogen and the psyllid, both of South Asian origin, are now widespread in citrus regions of Asia and the Americas. There is no cure for the disease. Application of synthetic pesticides, in some instances more frequently than fortnightly, to minimise incidence of ACP in citrus orchards, has not prevented inevitable impacts of the disease in regions of Asia where CLas is present. Despite the inevitable spread of the disease, significant progress has been made in Sarawak since the mid-1990s towards effectively implementing integrated pest management (IPM) programs for stemming the impact of the disease and detrimental consequences of over-reliance on synthetic pesticides. Growers are encouraged to plant pathogen-free trees, remove diseased trees, monitor incidence of the psyllid, and to use pesticides judiciously to reduce their detrimental impacts on natural enemies. Knowledge has been enhanced through research on seasonal incidence of the psyllid, use of mineral oils, development of protocols and iodine–starch test kits for detecting infected trees, PCR for confirming the presence of CLas in symptomatic leaves, methods for monitoring incidence the psyllid, and training extension staff and growers. However, major impediments to increasing the average longevity of trees beyond <5 years in poorly managed orchards, based on marcotting (air layering), and >12 years in well-managed orchards, based on pathogen-free trees, still need to be addressed. These include grower knowledge, marcotting, aggressive marketing of synthetic pesticides, high prices of mineral oils, spray application procedures, and better reliance on natural enemies of the psyllid. Full article
Show Figures

Figure 1

14 pages, 477 KiB  
Article
The Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana for Management of the Melon Fly Zeugodacus cucurbitae: Pathogenicity, Horizontal Transmission, and Compatability with Cuelure
by Susan K. Onsongo, Samira A. Mohamed, Komivi S. Akutse, Bernard M. Gichimu and Thomas Dubois
Insects 2022, 13(10), 859; https://doi.org/10.3390/insects13100859 - 21 Sep 2022
Cited by 6 | Viewed by 2064
Abstract
In the laboratory, the pathogenicity of thirteen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin against the melon fly Zeugodacus cucurbitae (Coquillett) were assessed by exposing adults to 0.3 g of dry conidia (~3 × 109 [...] Read more.
In the laboratory, the pathogenicity of thirteen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin against the melon fly Zeugodacus cucurbitae (Coquillett) were assessed by exposing adults to 0.3 g of dry conidia (~3 × 109 conidia) of each isolate for 5 min and monitoring mortality for up to 5 days. Compatibility with a male pheromone, cuelure, (4-(p-acetoxyphenyl)-2-butanone), was determined by testing conidial germination and germ tube growth of the most promising isolate, M. anisopliae ICIPE 69, in the presence of cuelure at different temperatures. For horizontal transmission, the flies were separated by sex, separately exposed to M. anisopliae ICIPE 69, and subsequently mixed with non-exposed flies from the other sex. The most pathogenic isolates were M. anisopliae ICIPE 69, 18, and 30, causing mortalities of 94, 87, and 81%, with 5 days post-exposure, respectively. Metarhizium anisopliae ICIPE 69 caused the highest pupal mortality of 74%, with 15 days post-exposure. Horizontal transmission of M. anisopliae ICIPE 69 among male and female Z. cucurbitae was confirmed by 59 and 67% mortality after exposure to infected donor males and females, respectively. Metarhizium anisopliae ICIPE 69 affected the oviposition, but not hatchability, of infected Z. cucurbitae females. Metarhizium anisopliae ICIPE 69 is, therefore, a potential isolate for biopesticide development for Z. cucurbitae management in cucurbit production systems. Full article
Show Figures

Graphical abstract

10 pages, 1340 KiB  
Communication
Exclusion and Repulsion of Popillia japonica (Coleoptera: Scarabaeidae) Using Selected Coverings on High Tunnel Structures for Primocane Red Raspberry
by Eric C. Burkness, Dominique N. Ebbenga, Adam G. Toninato and William D. Hutchison
Insects 2022, 13(9), 771; https://doi.org/10.3390/insects13090771 - 26 Aug 2022
Cited by 3 | Viewed by 1502
Abstract
In temperate climates, there has been an increasing interest by fruit growers to implement the use of high tunnels, using a variety of coverings, to extend the season for fruit production. High tunnels also provide an opportunity to enhance insect pest management, via [...] Read more.
In temperate climates, there has been an increasing interest by fruit growers to implement the use of high tunnels, using a variety of coverings, to extend the season for fruit production. High tunnels also provide an opportunity to enhance insect pest management, via physical exclusion, and thus support reductions in insecticide use. Due to increasing pest pressure by the Japanese beetle, Popillia japonica Newman, in Midwest U.S. raspberry, a 3-year study (2017–2019) was conducted to evaluate the efficacy of selected high tunnel coverings to suppress adult beetle populations and minimize adult feeding injury. During each year of the study, P. japonica adult beetles were significantly reduced under poly-based coverings, with the ends open, and when a fine, nylon-mesh was used to cover the ends (p < 0.05). The poly-based covering also resulted in moderately higher ambient temperatures, which may have influenced beetle movement, including a “repellency effect” that encouraged beetles to exit the high tunnel structures. Although P. japonica adults are known to feed on raspberry flower clusters, including fruit, the majority (73–92%) of beetle feeding in this study was observed on the foliage. The impact of high tunnels on P. japonica are discussed within the context of developing sustainable Integrated Pest Management (IPM) programs for raspberry production. Full article
Show Figures

Figure 1

9 pages, 1003 KiB  
Article
Life Table Construction under Different Temperatures and Insecticide Susceptibility Analysis of Uroleucon formosanum (Hemiptera: Aphididae)
by Tian-Xing Jing, Chu-Chu Qi, Ao Jiao, Xiao-Qiang Liu, Shuai Zhang, Hong-Hua Su and Yi-Zhong Yang
Insects 2022, 13(8), 693; https://doi.org/10.3390/insects13080693 - 01 Aug 2022
Viewed by 1704
Abstract
Uroleucon formosanum is an important aphid pest of lettuce, but basic information on its biology is scarce. In this study, effects of three constant temperatures (17, 21, and 25 °C, simulating the mean temperature range in greenhouses) on the development and fecundity of [...] Read more.
Uroleucon formosanum is an important aphid pest of lettuce, but basic information on its biology is scarce. In this study, effects of three constant temperatures (17, 21, and 25 °C, simulating the mean temperature range in greenhouses) on the development and fecundity of U. formosanum were analyzed by constructing a life table. U. formosanum could develop and reproduce under all three temperatures, but the survival rate, development, and fecundity of U. formosanum were affected by temperature. The intrinsic rate of increase was lowest at 17 °C (0.17) and it was significantly less than at 21 °C (0.20) and 25 °C (0.23). Furthermore, U. formosanum had the lowest finite rate of increase (1.19) and the largest mean generation time (20.21) at 17 °C. These results mean that U. formosanum is less adapted to the lower temperatures (17 °C) among these three set temperatures. To screen insecticides for control, susceptibility of U. formosanum to six insecticides including chlorpyrifos, abamectin, beta-cypermethrin, imidacloprid, nitenpyram, and thiamethoxam was evaluated. U. formosanum was relatively sensitive to all six test insecticides. Chlorpyrifos had the highest toxicity to U. formosanum (LC50 = 3.08 mg/L). These data may help to develop integrated management strategies for better population control of U. formosanum. Full article
Show Figures

Figure 1

12 pages, 1384 KiB  
Article
Optimising Vine Weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), Monitoring Tool Design
by Eugenia Fezza, Joe M. Roberts, Toby J. A. Bruce, Lael E. Walsh, Michael T. Gaffney and Tom W. Pope
Insects 2022, 13(1), 80; https://doi.org/10.3390/insects13010080 - 12 Jan 2022
Cited by 3 | Viewed by 2383
Abstract
Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important insect pest of horticultural crops. To identify an effective and reliable monitoring system for adult vine weevil, this study investigated the influence of colour, height and entrance position on the efficacy of [...] Read more.
Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important insect pest of horticultural crops. To identify an effective and reliable monitoring system for adult vine weevil, this study investigated the influence of colour, height and entrance position on the efficacy of a model monitoring tool using modified paper cups as refuges. Vine weevil preferences were determined by the number of individuals recorded within a refuge. When provided with a binary choice between black or white refuges, vine weevil adults showed a preference for black refuges. Vine weevils provided with a range of coloured refuges (blue, green, red and yellow) in addition to black and white refuges showed a preference for black and blue over the other colours and white refuges in group choice experiments. Refuge height and entrance position also influenced vine weevil behaviour with individuals exhibiting a preference for taller refuges and those with entrance openings around the refuge base. These results provide insights into refuge selection by adult vine weevils, which can be exploited to improve monitoring tool design. The importance of developing an effective monitoring tool for vine weevil adults as part of an integrated pest management programme is discussed. Full article
Show Figures

Figure 1

2021

Jump to: 2024, 2023, 2022, 2020, 2019

27 pages, 1198 KiB  
Review
Organic Control Strategies for Use in IPM of Invertebrate Pests in Apple and Pear Orchards
by Bethan Shaw, Csaba Nagy and Michelle T. Fountain
Insects 2021, 12(12), 1106; https://doi.org/10.3390/insects12121106 - 11 Dec 2021
Cited by 11 | Viewed by 4311
Abstract
Growers of organic tree fruit face challenges in controlling some pests more easily suppressed by broad-spectrum insecticides in conventionally managed orchards. In recent decades, there has been a move towards organically growing varieties normally reliant on synthetic chemical pesticides (e.g., Gala), often to [...] Read more.
Growers of organic tree fruit face challenges in controlling some pests more easily suppressed by broad-spectrum insecticides in conventionally managed orchards. In recent decades, there has been a move towards organically growing varieties normally reliant on synthetic chemical pesticides (e.g., Gala), often to meet retailer/consumer demands. This inevitably makes crop protection in organic orchards more challenging, as modern varieties can be less tolerant to pests. In addition, there have been substantial reductions in plant protection product (PPP) approvals, resulting in fewer chemical options available for integrated pest management (IPM)-maintained orchards. Conversely, the organic management of fruit tree pests involves many practices that could be successfully implemented in conventionally grown crops, but which are currently not. These practices could also be more widely used in IPM-maintained orchards, alleviating the reliance on broad-spectrum PPP. In this review, we evaluate organic practices, with a focus on those that could be incorporated into conventional apple and pear production. The topics cover cultural control, biological control, physical and pest modifications. While the pests discussed mainly affect European species, many of the methods could be used to target other global pests for more environmentally sustainable practices. Full article
Show Figures

Figure 1

13 pages, 324 KiB  
Article
Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1
by Claudia Aparecida de Lima Toledo, Franciely da Silva Ponce, Moisés Daniel Oliveira, Eduardo Santana Aires, Santino Seabra Júnior, Giuseppina Pace Pereira Lima and Regiane Cristina de Oliveira
Insects 2021, 12(12), 1105; https://doi.org/10.3390/insects12121105 - 10 Dec 2021
Cited by 13 | Viewed by 2636
Abstract
Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of [...] Read more.
Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants ‘Santa Adélia Super’ infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase—SOD, peroxidase—POD, and polyphenol oxidase—PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance. Full article
18 pages, 8440 KiB  
Article
Encapsulation of Basil Essential Oil by Paste Method and Combined Application with Mechanical Trap for Oriental Fruit Fly Control
by Tibet Tangpao, Patcharin Krutmuang, Wilawan Kumpoun, Pensak Jantrawut, Tonapha Pusadee, Ratchadawan Cheewangkoon, Sarana Rose Sommano and Bajaree Chuttong
Insects 2021, 12(7), 633; https://doi.org/10.3390/insects12070633 - 13 Jul 2021
Cited by 6 | Viewed by 4416
Abstract
In this work, the chemical compositions of basils oils, including those of lemon basil, white holy basil, Thai basil, tree basil and red holy basil, were analysed. Methyl eugenol was detected in all types of basils. The essential oils of red and white [...] Read more.
In this work, the chemical compositions of basils oils, including those of lemon basil, white holy basil, Thai basil, tree basil and red holy basil, were analysed. Methyl eugenol was detected in all types of basils. The essential oils of red and white holy basils possessed a comparable ability (~25%) to attract male Oriental fruit fly to the synthesised fruit fly attractant in the laboratory experiment. To control the release of the active ingredients, the white holly basil oil (WBO) was encapsulated with maltodextrin (MD) and gum arabic (GA) by paste method. The essential oil is retained in the wall complex much longer with the addition of MD. The results also revealed that the combination of the MD:GA (25:75) had the highest loading efficiency of the oil (9.40%) as observed by the numerous porous structures by scanning electron microscopy. Fourier-transform infrared spectra of the encapsulated polymer confirmed traces of essential oil functional groups. The field test study advised that WBO-encapsulated products improved fruit fly attractive efficiency by maintaining the release rate of basil essential oil. Full article
Show Figures

Figure 1

18 pages, 22964 KiB  
Article
Endophytic Isaria javanica pf185 Persists after Spraying and Controls Myzus persicae (Hemiptera: Aphididae) and Colletotrichum acutatum (Glomerellales: Glomerellaceae) in Pepper
by Roland Bocco, Moran Lee, Dayeon Kim, Seongho Ahn, Jin-Woo Park, Sang-Yeob Lee and Ji-Hee Han
Insects 2021, 12(7), 631; https://doi.org/10.3390/insects12070631 - 12 Jul 2021
Cited by 2 | Viewed by 2927
Abstract
This study endeavored to sustainably control aphids and anthracnose after spraying endophytic Isaria javanica pf185 under field conditions. Under two different tents; one batch of seedlings was sprayed with a 107 conidia/mL I. javanica pf185 suspension; while another was sprayed with 0.05% [...] Read more.
This study endeavored to sustainably control aphids and anthracnose after spraying endophytic Isaria javanica pf185 under field conditions. Under two different tents; one batch of seedlings was sprayed with a 107 conidia/mL I. javanica pf185 suspension; while another was sprayed with 0.05% Tween 80® in distilled water. Six leaf discs from the top; middle; and bottom part of the plant canopy were weekly collected and placed on moistened filter paper in a Petri dish for insecticidal and antifungal bioassays against Myzus persicae and Colletotrichum acutatum. Differences were noticed from the 18th day after spraying with mortality (86.67 ± 0.57% versus 36.67 ± 0.64%) and leaf damage (13.45 ± 0.03% versus 41.18 ± 0.06%) on fungus-treated and controlled, respectively. The corrected insecticidal efficacy was 20.43, 39.82, 72.32, 66.43 and 70.04%, while the corrected fungicidal efficacy was 26.07, 38.01, 53.35, 29.08 and 41.81% during five successive weeks. A positive correlation was evident between insecticidal efficacy and relative humidity (r2 = 0.620) and temperature (r2 = 0.424), respectively. No correlation was found between antifungal activity and relative humidity (r2 = 0.061) and temperature (r2 = 0), respectively. The entomopathogenic fungus survived on leaf surface area and in tissues after spraying. Full article
Show Figures

Figure 1

12 pages, 1948 KiB  
Article
More Power with Flower for the Pupal Parasitoid Trichopria drosophilae: A Candidate for Biological Control of the Spotted Wing Drosophila
by Annette Herz, Eva Dingeldey and Camilla Englert
Insects 2021, 12(7), 628; https://doi.org/10.3390/insects12070628 - 10 Jul 2021
Cited by 7 | Viewed by 2340
Abstract
Parasitoids are currently considered for biological control of the spotted wing drosophila (SWD) in berry crops. Releases of mass-reared parasitoids require the presence of all resources necessary to ensure their effectiveness in the crop system. The use of floral resources to feed Trichopria [...] Read more.
Parasitoids are currently considered for biological control of the spotted wing drosophila (SWD) in berry crops. Releases of mass-reared parasitoids require the presence of all resources necessary to ensure their effectiveness in the crop system. The use of floral resources to feed Trichopria drosophilae, one of the candidate species, was investigated in a laboratory study. The life expectancy of males and females increased by three to four times when they had access to flowers of buckwheat or of two cultivars of sweet alyssum. Female realized lifetime fecundity increased from 27 offspring/female exposed to water only to 69 offspring/female exposed to buckwheat flowers. According to this almost threefold increase in parasitoid fitness, it is advisable to introduce flowering plants into the crop system, when parasitoid releases are carried out. Sweet alyssum offers the advantage of not growing too tall in combination with an extended blooming. However, adult SWD were also able to feed on flowers of both plants and survived for at least 27 days, much longer than starving flies. The introduction of flowering plants to promote natural enemies therefore requires further consideration of the risk–benefit balance under field conditions to prevent unintended reinforcement of this pest. Full article
Show Figures

Figure 1

13 pages, 1185 KiB  
Article
Intercropping Rosemary (Rosmarinus officinalis) with Sweet Pepper (Capsicum annum) Reduces Major Pest Population Densities without Impacting Natural Enemy Populations
by Xiao-wei Li, Xin-xin Lu, Zhi-jun Zhang, Jun Huang, Jin-ming Zhang, Li-kun Wang, Muhammad Hafeez, G. Mandela Fernández-Grandon and Yao-bin Lu
Insects 2021, 12(1), 74; https://doi.org/10.3390/insects12010074 - 15 Jan 2021
Cited by 7 | Viewed by 4025
Abstract
Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. [...] Read more.
Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control. Full article
Show Figures

Graphical abstract

2020

Jump to: 2024, 2023, 2022, 2021, 2019

16 pages, 1203 KiB  
Review
The Potential for Decision Support Tools to Improve the Management of Root-Feeding Fly Pests of Vegetables in Western Europe
by Rosemary Collier, Dominique Mazzi, Annette Folkedal Schjøll, Quentin Schorpp, Gunda Thöming, Tor J. Johansen, Richard Meadow, Nicolai V. Meyling, Anne-Marie Cortesero, Ute Vogler, Michael T. Gaffney and Martin Hommes
Insects 2020, 11(6), 369; https://doi.org/10.3390/insects11060369 - 13 Jun 2020
Cited by 7 | Viewed by 4654
Abstract
Several important vegetable crops grown outdoors in temperate climates in Europe can be damaged by the root-feeding larvae of Diptera (Delia radicum, Delia floralis, Chamaepsila rosae, Delia platura, Delia florilega, Delia antiqua). Knowledge of pest insect [...] Read more.
Several important vegetable crops grown outdoors in temperate climates in Europe can be damaged by the root-feeding larvae of Diptera (Delia radicum, Delia floralis, Chamaepsila rosae, Delia platura, Delia florilega, Delia antiqua). Knowledge of pest insect phenology is a key component of any Integrated Pest Management (IPM) strategy, and this review considers the methods used to monitor and forecast the occurrence of root-feeding flies as a basis for decision-making by growers and the ways that such information can be applied. It has highlighted some current management approaches where such information is very useful for decision support, for example, the management of C. rosae with insecticidal sprays and the management of all of these pests using crop covers. There are other approaches, particularly those that need to be applied at sowing or transplanting, where knowledge of pest phenology and abundance is less necessary. Going forward, it is likely that the number of insecticidal control options available to European vegetable growers will diminish and they will need to move from a strategy which often involves using a single ‘silver bullet’ to a combination of approaches/tools with partial effects (applied within an IPM framework). For the less-effective, combined methods, accurate information about pest phenology and abundance and reliable decision support are likely to be extremely important. Full article
Show Figures

Figure 1

12 pages, 1119 KiB  
Article
Oviposition Preference of the Cabbage Root Fly towards Some Chinese Cabbage Cultivars: A Search for Future Trap Crop Candidates
by Fabrice Lamy, Laura Bellec, Amélie Rusu-Stievenard, Pauline Clin, Claire Ricono, Diane Olivier, Solène Mauger, Denis Poinsot, Vincent Faloya, Loïc Daniel and Anne Marie Cortesero
Insects 2020, 11(2), 127; https://doi.org/10.3390/insects11020127 - 17 Feb 2020
Cited by 7 | Viewed by 3402
Abstract
The development of integrated pest management strategies becomes more and more pressing in view of potential harmful effects of synthetic pesticides on the environment and human health. A promising alternative strategy against Delia radicum is the use of trap crops. Chinese cabbage ( [...] Read more.
The development of integrated pest management strategies becomes more and more pressing in view of potential harmful effects of synthetic pesticides on the environment and human health. A promising alternative strategy against Delia radicum is the use of trap crops. Chinese cabbage (Brassica rapa subsp. pekinensis and subsp. chinensis) is a highly sensitive Brassicaceae species previously identified as a good candidate to attract the cabbage root fly away from other crops. Here, we carried out multi-choice experiments both in the laboratory and in field conditions to measure the oviposition susceptibilities of different subspecies and cultivars of Chinese cabbages as compared to a broccoli reference. We found large differences among subspecies and cultivars of the Chinese cabbage, which received three to eleven times more eggs than the broccoli reference in field conditions. In laboratory conditions, the chinensis subspecies did not receive more eggs than the broccoli reference. We conclude that D. radicum largely prefers to lay eggs on the pekinensis subspecies of Chinese cabbage compared to the chinensis subspecies or broccoli. Some pekinensis cultivars, which received over ten times more eggs than broccoli in the field, appear especially promising candidates to further develop trap crop strategies against the cabbage root fly. Full article
Show Figures

Figure 1

16 pages, 2921 KiB  
Article
Phenology of the Diamondback Moth (Plutella xylostella) in the UK and Provision of Decision Support for Brassica Growers
by Charlotte Wainwright, Sascha Jenkins, Daniel Wilson, Marian Elliott, Andrew Jukes and Rosemary Collier
Insects 2020, 11(2), 118; https://doi.org/10.3390/insects11020118 - 11 Feb 2020
Cited by 9 | Viewed by 4781
Abstract
In the UK, severe infestations by Plutella xylostella occur sporadically and are due mainly to the immigration of moths. The aim of this study was to develop a more detailed understanding of the phenology of P. xylostella in the UK and investigate methods [...] Read more.
In the UK, severe infestations by Plutella xylostella occur sporadically and are due mainly to the immigration of moths. The aim of this study was to develop a more detailed understanding of the phenology of P. xylostella in the UK and investigate methods of monitoring moth activity, with the aim of providing warnings to growers. Plutella xylostella was monitored using pheromone traps, by counting immature stages on plants, and by accessing citizen science data (records of sightings of moths) from websites and Twitter. The likely origin of migrant moths was investigated by analysing historical weather data. The study confirmed that P. xylostella is a sporadic but important pest, and that very large numbers of moths can arrive suddenly, most often in early summer. Their immediate sources are countries in the western part of continental Europe. A network of pheromone traps, each containing a small camera sending images to a website, to monitor P. xylostella remotely provided accessible and timely information, but the particular system tested did not appear to catch many moths. In another approach, sightings by citizen scientists were summarised on a web page. These were accessed regularly by growers and, at present, this approach appears to be the most effective way of providing timely warnings. Full article
Show Figures

Figure 1

7 pages, 549 KiB  
Communication
Photosynthesis Inhibiting Effects of Pesticides on Sweet Pepper Leaves
by Miguel Giménez–Moolhuyzen, Jan van der Blom, Pilar Lorenzo–Mínguez, Tomás Cabello and Eduardo Crisol–Martínez
Insects 2020, 11(2), 69; https://doi.org/10.3390/insects11020069 - 21 Jan 2020
Cited by 22 | Viewed by 5155
Abstract
Although a large number of pesticides of different compositions are regularly used in agriculture, the impact of pesticides on the physiology of field crops is not well understood. Pesticides can produce negative effects on crop physiology―especially on photosynthesis―leading to a potential decrease in [...] Read more.
Although a large number of pesticides of different compositions are regularly used in agriculture, the impact of pesticides on the physiology of field crops is not well understood. Pesticides can produce negative effects on crop physiology―especially on photosynthesis―leading to a potential decrease in both the growth and the yield of crops. To investigate these potential effects in greenhouse sweet peppers, the effect of 20 insecticides and 2 fungicides (each sprayed with a wetting agent) on the photosynthesis of sweet pepper leaves was analyzed. Among these pesticides, nine caused significant reductions in photosynthetic activity. The effects were observed in distinctive ways—either as a transitory drop of the photosynthetic-rate values, which was observed at two hours after the treatment and was found to have recovered after 24 h, or as a sustained reduction of these values, which remained substantial over a number of days. The results of this study suggest that the production of a crop may substantially benefit when the frequent use of pesticides can be substituted with alternative pest control methods (e.g., biological control). Our results advocate further investigation of the potential impact of pesticides, either alone or in combination, on the photosynthesis of crop plants. Full article
Show Figures

Figure 1

16 pages, 865 KiB  
Article
Importance of Antixenosis and Antibiosis Resistance to the Cabbage Whitefly (Aleyrodes proletella) in Brussels Sprout Cultivars
by Peter Hondelmann, Christina Paul, Monika Schreiner and Rainer Meyhöfer
Insects 2020, 11(1), 56; https://doi.org/10.3390/insects11010056 - 17 Jan 2020
Cited by 11 | Viewed by 3411
Abstract
The cabbage whitefly Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae) is an important pest of a wide range of vegetable Brassicas. Since the control of this pest is still challenging, new approaches such as the use of resistant cultivars are required. For this, we screened [...] Read more.
The cabbage whitefly Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae) is an important pest of a wide range of vegetable Brassicas. Since the control of this pest is still challenging, new approaches such as the use of resistant cultivars are required. For this, we screened 16 commercialised Brussels sprout cultivars for resistance against this species. Antibiosis was tested with no-choice experiments in a climate chamber, using reproduction, mortality, longevity, developmental time and weight as parameters. Antixenosis was screened in three choice experiments with circular design in a greenhouse to detect cultivar preferences. A field trial with both antibiosis and antixenosis tests was done to verify results under natural conditions. Finally, for several cultivars, also the leaf glucosinolate concentrations were analysed. Cabbage whiteflies showed on certain cultivars significantly increased mortality, prolonged developmental times and reduced weights. Besides, some cultivars were significantly less infested. However, the incidence of antibiosis and antixenosis as well as the glucosinolate patterns were partly inconsistent. Although a number of moderately resistant cultivars could be identified, the detected resistance is certainly not strong and consistent enough as an exclusive measure of a plant protection strategy but might become a component of a multi-layered strategy against cabbage whiteflies. Full article
Show Figures

Figure 1

16 pages, 250 KiB  
Article
Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to Fungal Biopesticides in Laboratory and Field Experiments
by Gill Prince and Dave Chandler
Insects 2020, 11(1), 55; https://doi.org/10.3390/insects11010055 - 17 Jan 2020
Cited by 11 | Viewed by 3750
Abstract
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and [...] Read more.
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and Akanthomyces dipterigenus (Vertalec) were evaluated in a laboratory bioassay against peach-potato aphid Myzus persicae, cabbage aphid Brevicoryne brassicae, and currant-lettuce aphid Nasonovia ribisnigri. There was significant variation in the spore dose provided by the products, with Botanigard ES producing the highest dose (639 viable spores per mm2). Botanigard ES also caused more mortality than the other products. Combining Vertalec with the vegetable oil-based adjuvant Addit had an additive effect on the mortality of B. brassicae. All fungal products reduced the number of progeny produced by M. persicae but there was no effect with B. brassicae or N. ribisnigri. When aphid nymphs were treated with Botanigard ES and Preferal WG, both products reduced population development, with up to 86% reduction occurring for Botanigard ES against M. persicae. In a field experiment, Botanigard ES sprayed twice, at seven-day intervals, against B. brassicae on cabbage plants, reduced aphid numbers by 73%. In a second field experiment with B. brassicae, M. persicae, and N. ribisnigri, Botanigard ES reduced populations of B. brassicae and N. ribisnigri but there was no significant effect on M. persicae. Full article

2019

Jump to: 2024, 2023, 2022, 2021, 2020

13 pages, 2335 KiB  
Article
Long-Lasting Insecticide Netting for Protecting Tree Stems from Attack by Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae)
by Christopher M. Ranger, Christopher T. Werle, Peter B. Schultz, Karla M. Addesso, Jason B. Oliver and Michael E. Reding
Insects 2020, 11(1), 8; https://doi.org/10.3390/insects11010008 - 20 Dec 2019
Cited by 8 | Viewed by 2551
Abstract
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from [...] Read more.
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated ‘standard mesh’ netting of 24 holes/cm2; (4) flooded tree with treated ‘fine mesh’ netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017–2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks. Full article
Show Figures

Figure 1

Back to TopTop