Journal Description
ISPRS International Journal of Geo-Information
ISPRS International Journal of Geo-Information
is an international, peer-reviewed, open access journal on geo-information. The journal is owned by the International Society for Photogrammetry and Remote Sensing (ISPRS) and is published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), GeoRef, PubAg, dblp, Astrophysics Data System, Inspec, and other databases.
- Journal Rank: JCR - Q2 (Geography, Physical) / CiteScore - Q1 (Earth and Planetary Sciences (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 34.2 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).
- Rejection Rate: a rejection rate of 76% in 2024.
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.8 (2024);
5-Year Impact Factor:
3.3 (2024)
Latest Articles
Diffusion Model-Based Cartoon Style Transfer for Real-World 3D Scenes
ISPRS Int. J. Geo-Inf. 2025, 14(8), 303; https://doi.org/10.3390/ijgi14080303 - 4 Aug 2025
Abstract
Traditional map style transfer methods are mostly based on GAN,which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with semantic
[...] Read more.
Traditional map style transfer methods are mostly based on GAN,which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with semantic preservation and lack consistency in their transfer effects. In recent years, diffusion models have made significant progress in the field of image processing and have shown great potential in image-style transfer tasks. Inspired by these advances, this paper presents a method for transferring real-world 3D scenes to a cartoon style without the need for additional input condition guidance. The method combines pre-trained LDM with LoRA models to achieve stable and high-quality style infusion. By integrating DDIM Inversion, ControlNet, and MultiDiffusion strategies, it achieves the cartoon style transfer of real-world 3D scenes through initial noise control, detail redrawing, and global coordination. Qualitative and quantitative analyses, as well as user studies, indicate that our method effectively injects a cartoon style while preserving the semantic content of the real-world 3D scene, maintaining a high degree of consistency in style transfer. This paper offers a new perspective for map style transfer.
Full article
Open AccessArticle
Predicting the Next Location of Urban Individuals Via a Representation-Enhanced Multi-View Learning Network
by
Maoqi Lun, Peixiao Wang, Sheng Wu, Hengcai Zhang, Shifen Cheng and Feng Lu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 302; https://doi.org/10.3390/ijgi14080302 - 2 Aug 2025
Abstract
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction.
[...] Read more.
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. Despite notable advances, current methods still face challenges in effectively capturing non-spatial proximity of regional preferences, complex temporal periodicity, and the ambiguity of location semantics. To address these challenges, we propose a representation-enhanced multi-view learning network (ReMVL-Net) for location prediction. Specifically, we propose a community-enhanced spatial representation that transcends geographic proximity to capture latent mobility patterns. In addition, we introduce a multi-granular enhanced temporal representation to model the multi-level periodicity of human mobility and design a rule-based semantic recognition method to enrich location semantics. We evaluate the proposed model using mobile phone data from Fuzhou. Experimental results show a 2.94% improvement in prediction accuracy over the best-performing baseline. Further analysis reveals that community space plays a key role in narrowing the candidate location set. Moreover, we observe that prediction difficulty is strongly influenced by individual travel behaviors, with more regular activity patterns being easier to predict.
Full article
(This article belongs to the Special Issue Advances in AI-Driven Geospatial Analysis and Data Generation (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
An Aspect-Based Emotion Analysis Approach on Wildfire-Related Geo-Social Media Data — A Case Study of the 2020 California Wildfires
by
Christina Zorenböhmer, Shaily Gandhi, Sebastian Schmidt and Bernd Resch
ISPRS Int. J. Geo-Inf. 2025, 14(8), 301; https://doi.org/10.3390/ijgi14080301 - 1 Aug 2025
Abstract
Natural disasters like wildfires pose significant threats to communities, which necessitates timely and effective disaster response strategies. While Aspect-based Sentiment Analysis (ABSA) has been widely used to extract sentiment-related information at the sub-sentence level, the corresponding field of Aspect-based Emotion Analysis (ABEA) remains
[...] Read more.
Natural disasters like wildfires pose significant threats to communities, which necessitates timely and effective disaster response strategies. While Aspect-based Sentiment Analysis (ABSA) has been widely used to extract sentiment-related information at the sub-sentence level, the corresponding field of Aspect-based Emotion Analysis (ABEA) remains underexplored due to dataset limitations and the increased complexity of emotion classification. In this study, we used EmoGRACE, a fine-tuned BERT-based model for ABEA, which we applied to georeferenced tweets of the 2020 California wildfires. The results for this case study reveal distinct spatio-temporal emotion patterns for wildfire-related aspect terms, with fear and sadness increasing near wildfire perimeters. This study demonstrates the feasibility of tracking emotion dynamics across disaster-affected regions and highlights the potential of ABEA in real-time disaster monitoring. The results suggest that ABEA can provide a nuanced understanding of public sentiment during crises for policymakers.
Full article
Open AccessArticle
Optimizing Advertising Billboard Coverage in Urban Networks: A Population-Weighted Greedy Algorithm with Spatial Efficiency Enhancements
by
Jiaying Fu and Kun Qin
ISPRS Int. J. Geo-Inf. 2025, 14(8), 300; https://doi.org/10.3390/ijgi14080300 - 1 Aug 2025
Abstract
►▼
Show Figures
The strategic allocation of advertising billboards has become a critical aspect of urban planning and resource management. While previous studies have explored site selection based on road network and population data, they have often overlooked the diminishing marginal returns of overlapping coverage and
[...] Read more.
The strategic allocation of advertising billboards has become a critical aspect of urban planning and resource management. While previous studies have explored site selection based on road network and population data, they have often overlooked the diminishing marginal returns of overlapping coverage and neglected to efficiently process large-scale urban datasets. To address these challenges, this study proposes two complementary optimization methods: an enhanced greedy algorithm based on geometric modeling and spatial acceleration techniques, and a reinforcement learning approach using Proximal Policy Optimization (PPO). The enhanced greedy algorithm incorporates population-weighted road coverage modeling, employs a geometric series to capture diminishing returns from overlapping coverage, and integrates spatial indexing and parallel computing to significantly improve scalability and solution quality in large urban networks. Meanwhile, the PPO-based method models billboard site selection as a sequential decision-making process in a dynamic environment, where agents adaptively learn optimal deployment strategies through reward signals, balancing coverage gains and redundancy penalties and effectively handling complex multi-step optimization tasks. Experiments conducted on Wuhan’s road network demonstrate that both methods effectively optimize population-weighted billboard coverage under budget constraints while enhancing spatial distribution balance. Quantitatively, the enhanced greedy algorithm improves coverage effectiveness by 18.6% compared to the baseline, while the PPO-based method further improves it by 4.3% with enhanced spatial equity. The proposed framework provides a robust and scalable decision-support tool for urban advertising infrastructure planning and resource allocation.
Full article

Figure 1
Open AccessArticle
Mutation Interval-Based Segment-Level SRDet: Side Road Detection Based on Crowdsourced Trajectory Data
by
Ying Luo, Fengwei Jiao, Longgang Xiang, Xin Chen and Meng Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 299; https://doi.org/10.3390/ijgi14080299 - 31 Jul 2025
Abstract
►▼
Show Figures
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side
[...] Read more.
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side road detection method based on crowdsourced trajectory data: First, considering the geometric and dynamic characteristics of trajectories, SRDet introduces a trajectory lane-change pattern recognition method based on mutation intervals to distinguish the heterogeneity of lane-change behaviors between main and side roads. Secondly, combining geometric features with spatial statistical theory, SRDet constructs multimodal features for trajectories and road segments, and proposes a potential side road segment classification model based on random forests to achieve precise detection of side road segments. Finally, based on mutation intervals and potential side road segments, SRDet utilizes density peak clustering to identify main and side road access points, completing the fitting of side roads. Experiments were conducted using 2021 Beijing trajectory data. The results show that SRDet achieves precision and recall rates of 84.6% and 86.8%, respectively. This demonstrates the superior performance of SRDet in side road detection across different areas, providing support for the precise updating of urban road navigation information.
Full article

Figure 1
Open AccessArticle
Statistical Depth Measures in Density-Based Clustering with Automatic Adjustment for Skewed Data
by
Mark McKenney and Daniel Tucek
ISPRS Int. J. Geo-Inf. 2025, 14(8), 298; https://doi.org/10.3390/ijgi14080298 - 30 Jul 2025
Abstract
►▼
Show Figures
Statistical data depth measures have been applied to density-based clustering techniques in an effort to achieve robustness in parameter selection via the affine invariant property of the depth measure. Specifically, the Mahalanobis depth measure is used in the application of DBSCAN. In this
[...] Read more.
Statistical data depth measures have been applied to density-based clustering techniques in an effort to achieve robustness in parameter selection via the affine invariant property of the depth measure. Specifically, the Mahalanobis depth measure is used in the application of DBSCAN. In this paper, we examine properties of the Mahalanobis depth measure that lead to instances where it fails to detect clusters in DBSCAN, whereas Euclidean distance is able to differentiate the clusters. We propose two solutions to the problems induced by these properties. The first re-examines clusters to determine if data shape is causing multiple clusters to be grouped into a single cluster. The second examines the use of a different measure as an alternate depth function. Experiments are provided.
Full article

Figure 1
Open AccessArticle
A Novel Method for Estimating Building Height from Baidu Panoramic Street View Images
by
Shibo Ge, Jiping Liu, Xianghong Che, Yong Wang and Haosheng Huang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 297; https://doi.org/10.3390/ijgi14080297 - 30 Jul 2025
Abstract
►▼
Show Figures
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their
[...] Read more.
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their easy collection and low cost. However, existing studies on building height estimation primarily utilize remote sensing images, with little exploration of height estimation from street-view images. In this study, we proposed a deep learning-based method for estimating the height of a single building in Baidu panoramic street view imagery. Firstly, the Segment Anything Model was used to extract the region of interest image and location features of individual buildings from the panorama. Subsequently, a cross-view matching algorithm was proposed by combining Baidu panorama and building footprint data with height information to generate building height samples. Finally, a Two-Branch feature fusion model (TBFF) was constructed to combine building location features and visual features, enabling accurate height estimation for individual buildings. The experimental results showed that the TBFF model had the best performance, with an RMSE of 5.69 m, MAE of 3.97 m, and MAPE of 0.11. Compared with two state-of-the-art methods, the TBFF model exhibited robustness and higher accuracy. The Random Forest model had an RMSE of 11.83 m, MAE of 4.76 m, and MAPE of 0.32, and the Pano2Geo model had an RMSE of 10.51 m, MAE of 6.52 m, and MAPE of 0.22. The ablation analysis demonstrated that fusing building location and visual features can improve the accuracy of height estimation by 14.98% to 69.99%. Moreover, the accuracy of the proposed method meets the LOD1 level 3D modeling requirements defined by the OGC (height error ≤ 5 m), which can provide data support for urban research.
Full article

Figure 1
Open AccessArticle
Exploring the Spatial Association Between Spatial Categorical Data Using a Fuzzy Geographically Weighted Colocation Quotient Method
by
Ling Li, Lian Duan, Meiyi Li and Xiongfa Mai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 296; https://doi.org/10.3390/ijgi14080296 - 29 Jul 2025
Abstract
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to
[...] Read more.
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to define the scale effect, which can lead to scale sensitivity and discontinuity results. To address these limitations, this study introduces the Fuzzy Geographically Weighted Colocation Quotient (FGWCLQ) method. By integrating fuzzy theory, FGWCLQ replaces binary distance cutoffs with continuous membership functions, providing a more flexible and stable approach to spatial association mining. Using Point of Interest (POI) data from the Beijing urban area, FGWCLQ was applied to explore both intra- and inter-category spatial association patterns among star hotels, transportation facilities, and tourist attractions at different fuzzy neighborhoods. The results indicate that FGWCLQ can reliably discover global prevalent spatial associations among diverse facility types and visualize the spatial heterogeneity at various spatial scales. Compared to the deterministic GWCLQ method, FGWCLQ delivers more stable and robust results across varying spatial scales and generates more continuous association surfaces, which enable clear visualization of hierarchical clustering. Empirical findings provide valuable insights for optimizing the location of star hotels and supporting decision-making in urban planning. The method is available as an open-source Matlab package, providing a practical tool for diverse spatial association investigations.
Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
►▼
Show Figures

Figure 1
Open AccessArticle
A Spatio-Temporal Evolutionary Embedding Approach for Geographic Knowledge Graph Question Answering
by
Chunju Zhang, Chaoqun Chu, Kang Zhou, Shu Wang, Yunqiang Zhu, Jianwei Huang, Zhaofu Wu and Fei Gao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 295; https://doi.org/10.3390/ijgi14080295 - 28 Jul 2025
Abstract
In recent years, geographic knowledge graphs (GeoKGs) have shown great promise in representing spatio-temporal and event-driven knowledge. However, existing knowledge graph embedding approaches mainly focus on structural patterns and often overlook the dynamic evolution of entities in both time and space, which limits
[...] Read more.
In recent years, geographic knowledge graphs (GeoKGs) have shown great promise in representing spatio-temporal and event-driven knowledge. However, existing knowledge graph embedding approaches mainly focus on structural patterns and often overlook the dynamic evolution of entities in both time and space, which limits their effectiveness in downstream reasoning tasks. To address this, we propose a spatio-temporal evolutionary knowledge embedding approach (ST-EKA) that enhances entity representations by modeling their evolution through type-aware encoding, temporal and spatial decay mechanisms, and context aggregation. ST-EKA integrates four core components, including an entity encoder constrained by relational type consistency, a temporal encoder capable of handling both time points and intervals through unified sampling and feedforward encoding, a multi-scale spatial encoder that combines geometric coordinates with semantic attributes, and an evolutionary knowledge encoder that employs attention-based spatio-temporal weighting to capture contextual dynamics. We evaluate ST-EKA on three representative GeoKG datasets—GDELT, ICEWS, and HAD. The results demonstrate that ST-EKA achieves an average improvement of 6.5774% in AUC and 5.0992% in APR on representation learning tasks. In question answering tasks, it yields a maximum average increase of 1.7907% in AUC and 0.5843% in APR. Notably, it exhibits superior performance in chain queries and complex spatio-temporal reasoning, validating its strong robustness, good interpretability, and practical application value.
Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing Spatial Digital Twins for Oil and Gas Projects: An Informed Argument Approach Using ISO/IEC 25010 Model
by
Sijan Bhandari and Dev Raj Paudyal
ISPRS Int. J. Geo-Inf. 2025, 14(8), 294; https://doi.org/10.3390/ijgi14080294 - 28 Jul 2025
Abstract
►▼
Show Figures
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development
[...] Read more.
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development of spatial digital twins to build digital mining models. Existing studies commonly adopt surveys and case studies as their evaluation approach to validate the feasibility of spatial digital twins and related technologies. However, this approach requires high costs and resources. To address this gap, this study explores the feasibility of the informed argument method within the design science framework. A land survey data model (LSDM)-based digital twin prototype for O & G field design, along with 3D spatial datasets located in Lot 2 on RP108045 at petroleum lease 229 under the Department of Resources, Queensland Government, Australia, was selected as a case for this study. The ISO/IEC 25010 model was adopted as a methodology for this study to evaluate the prototype and Digital Twin Victoria (DTV). It encompasses eight metrics, such as functional suitability, performance efficiency, compatibility, usability, security, reliability, maintainability, and portability. The results generated from this study indicate that the prototype encompasses a standard level of all parameters in the ISO/IEC 25010 model. The key significance of the study is its methodological contribution to evaluating the spatial digital twin models through cost-effective means, particularly under circumstances with strict regulatory requirements and low information accessibility.
Full article

Figure 1
Open AccessArticle
Automating Three-Dimensional Cadastral Models of 3D Rights and Buildings Based on the LADM Framework
by
Ratri Widyastuti, Deni Suwardhi, Irwan Meilano, Andri Hernandi and Juan Firdaus
ISPRS Int. J. Geo-Inf. 2025, 14(8), 293; https://doi.org/10.3390/ijgi14080293 - 28 Jul 2025
Abstract
►▼
Show Figures
Before the development of 3D cadastre, cadastral systems were based on 2D representations, which now require transformation or updating. In this context, the first issue is that existing 2D rights are not aligned with recent 3D data acquired using advanced technologies such as
[...] Read more.
Before the development of 3D cadastre, cadastral systems were based on 2D representations, which now require transformation or updating. In this context, the first issue is that existing 2D rights are not aligned with recent 3D data acquired using advanced technologies such as Unmanned Aerial Vehicle–Light Detection and Ranging (UAV-LiDAR). The second issue is that point clouds of objects captured by UAV-LiDAR, such as fences and exterior building walls—are often neglected. However, these point cloud objects can be utilized to adjust 2D rights to correspond with recent 3D data and to update 3D building models with a higher level of detail. This research leverages such point cloud objects to automatically generate 3D rights and building models. By combining several algorithms, such as Iterative Closest Point (ICP), Random Forest (RF), Gaussian Mixture Model (GMM), Region Growing, the Polyfit method, and the orthogonality concept—an automatic workflow for generating 3D cadastral models is developed. The proposed workflow improves the horizontal accuracy of the updated 2D parcels from 1.19 m to 0.612 m. The floor area of the 3D models improves by approximately ±3 m2. Furthermore, the resulting 3D building models provide approximately 43% to 57% of the elements required for 3D property valuation. The case study of this research is in Indonesia.
Full article

Figure 1
Open AccessArticle
Towards an Extensible and Text-Oriented Analytical Semantic Trajectory Framework
by
Damião Ribeiro de Almeida, Cláudio de Souza Baptista, Fabio Gomes de Andrade and Anselmo Cardoso de Paiva
ISPRS Int. J. Geo-Inf. 2025, 14(8), 292; https://doi.org/10.3390/ijgi14080292 - 28 Jul 2025
Abstract
►▼
Show Figures
Semantically enriched trajectories have attracted growing interest in recent research, driven by the need for more expressive and context-aware movement data analysis. Two primary approaches have emerged for the storage and management of such data: moving object databases, which operate at the transactional
[...] Read more.
Semantically enriched trajectories have attracted growing interest in recent research, driven by the need for more expressive and context-aware movement data analysis. Two primary approaches have emerged for the storage and management of such data: moving object databases, which operate at the transactional or operational level, and trajectory data warehouses (TDWs), which support analytical processing within decision support systems. Conventional TDW methodologies typically model semantic aspects of trajectories by introducing new dimensions into the data warehouse schema. However, this approach often requires structural modifications to the schema in order to accommodate additional semantic attributes, potentially resulting in significant disruptions to the architecture and maintenance of the underlying decision support systems. To overcome this limitation, we propose a novel TDW model that supports dynamic and extensible integration of semantic aspects, without necessitating changes to the schema. This design enhances flexibility and promotes seamless adaptability to domain-specific requirements. To enable such extensibility, we propose an innovative approach to representing semantic trajectories by leveraging natural language processing (NLP) techniques. without relying on traditional spatiotemporal features. This enables the analysis of semantic movement patterns purely through textual context. Finally, we present a comprehensive framework that implements the proposed model in real-world application scenarios, demonstrating its practical extensibility.
Full article

Figure 1
Open AccessArticle
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by
Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Abstract
►▼
Show Figures
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after
[...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape.
Full article

Figure 1
Open AccessArticle
XT-SECA: An Efficient and Accurate XGBoost–Transformer Model for Urban Functional Zone Classification
by
Xin Gao, Xianmin Wang, Li Cao, Haixiang Guo, Wenxue Chen and Xing Zhai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 290; https://doi.org/10.3390/ijgi14080290 - 25 Jul 2025
Abstract
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high
[...] Read more.
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high computational complexity. To tackle these challenges, this work proposes a novel XT-SECA algorithm employing a strengthened efficient channel attention mechanism (SECA) to integrate the feature-extraction XGBoost branch and the feature-enhancement Transformer feedforward branch. The SECA optimizes the feature-fusion process through dynamic pooling and adaptive convolution kernel strategies, reducing feature confusion between various functional zones. XT-SECA is characterized by sufficient learning of complex image structures, effective representation of significant features, and efficient computational performance. The Futian, Luohu, and Nanshan districts in Shenzhen City are selected to conduct urban functional zone classification by XT-SECA, and they feature administrative management, technological innovation, and commercial finance functions, respectively. XT-SECA can effectively distinguish diverse functional zones such as residential zones and public management and service zones, which are easily confused by current mainstream algorithms. Compared with the commonly adopted algorithms for urban functional zone classification, including Random Forest (RF), Long Short-Term Memory (LSTM) network, and Multi-Layer Perceptron (MLP), XT-SECA demonstrates significant advantages in terms of overall accuracy, precision, recall, F1-score, and Kappa coefficient, with an accuracy enhancement of 3.78%, 42.86%, and 44.17%, respectively. The Kappa coefficient is increased by 4.53%, 51.28%, and 52.73%, respectively.
Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
►▼
Show Figures

Figure 1
Open AccessPerspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by
Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance
[...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation.
Full article
Open AccessArticle
GPT-Based Text-to-SQL for Spatial Databases
by
Hui Wang, Li Guo, Yubin Liang, Le Liu and Jiajin Huang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 288; https://doi.org/10.3390/ijgi14080288 - 24 Jul 2025
Abstract
►▼
Show Figures
Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when
[...] Read more.
Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently.
Full article

Figure 1
Open AccessArticle
Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study
by
Jin Zhu, Yingjing Huang, Ziyue Cao, Yue Zhang, Yuan Ding and Jinglong Du
ISPRS Int. J. Geo-Inf. 2025, 14(8), 287; https://doi.org/10.3390/ijgi14080287 - 24 Jul 2025
Abstract
►▼
Show Figures
Street view imagery has become a vital tool for assessing urban street greenery, with the Green View Index (GVI) serving as the predominant metric. However, while GVI effectively quantifies overall greenery, it fails to capture the nuanced, human-scale experience of urban greenery. This
[...] Read more.
Street view imagery has become a vital tool for assessing urban street greenery, with the Green View Index (GVI) serving as the predominant metric. However, while GVI effectively quantifies overall greenery, it fails to capture the nuanced, human-scale experience of urban greenery. This study introduces the Front-Facing Green View Index (FFGVI), a metric designed to reflect the perspective of pedestrians traversing urban streets. The FFGVI computation involves three key steps: (1) calculating azimuths for road points, (2) retrieving front-facing street view images, and (3) applying semantic segmentation to identify green pixels in street view imagery. Building on this, this study proposes the Street Canyon Green View Index (SCGVI), a novel approach for identifying boulevards that evoke perceptions of comfort, spaciousness, and aesthetic quality akin to room-like streetscapes. Applying these indices to a case study in Nanjing, China, this study shows that (1) FFGVI exhibited a strong correlation with GVI (R = 0.88), whereas the association between SCGVI and GVI was marginally weaker (R = 0.78). GVI tends to overestimate perceived greenery due to the influence of lateral views dominated by side-facing vegetation; (2) FFGVI provides a more human-centered perspective, mitigating biases introduced by sampling point locations and obstructions such as large vehicles; and (3) SCGVI effectively identifies prominent boulevards that contribute to a positive urban experience. These findings suggest that FFGVI and SCGVI are valuable metrics for informing urban planning, enhancing urban tourism, and supporting greening strategies at the street level.
Full article

Figure 1
Open AccessArticle
Multi-Channel Spatio-Temporal Data Fusion of ‘Big’ and ‘Small’ Network Data Using Transformer Networks
by
Tao Cheng, Hao Chen, Xianghui Zhang, Xiaowei Gao, Lu Yin and Jianbin Jiao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 286; https://doi.org/10.3390/ijgi14080286 - 24 Jul 2025
Abstract
►▼
Show Figures
The integration of heterogeneous spatio-temporal datasets presents a critical challenge in geospatial data science, particularly when combining large-scale, passively collected “big” data with precise but sparse “small” data. In this study, we propose a novel framework—Multi-Channel Spatio-Temporal Data Fusion (MCST-DF)—that leverages transformer-based deep
[...] Read more.
The integration of heterogeneous spatio-temporal datasets presents a critical challenge in geospatial data science, particularly when combining large-scale, passively collected “big” data with precise but sparse “small” data. In this study, we propose a novel framework—Multi-Channel Spatio-Temporal Data Fusion (MCST-DF)—that leverages transformer-based deep learning to fuse these data sources for accurate network flow estimation. Our approach introduces a Residual Spatio-Temporal Transformer Network (RSTTNet), equipped with a layered attention mechanism and multi-scale embedding architecture to capture both local and global dependencies across space and time. We evaluate the framework using real-world mobile sensing and loop detector data from the London road network, demonstrating over 89% prediction accuracy and outperforming several benchmark deep learning models. This work provides a generalisable solution for spatio-temporal fusion of diverse geospatial data sources and has direct relevance to smart mobility, urban infrastructure monitoring, and the development of spatially informed AI systems.
Full article

Figure 1
Open AccessArticle
Delineating Urban High–Risk Zones of Disease Transmission: Applying Tensor Decomposition to Trajectory Big Data
by
Tianhua Lu and Wenjia Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 285; https://doi.org/10.3390/ijgi14080285 - 23 Jul 2025
Abstract
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of
[...] Read more.
Risk zone delineation and mobility behavior control constitute critical measures in pandemic containment. Numerous studies utilize static demographic data or dynamic mobility data to calculate the high–risk zones present in cities; however, these studies fail to concurrently consider activity and mobility patterns of populations in both space and time, which results in many studies only being able to employ static geostatistical analytical methods, neglecting the transmission risks associated with human mobility. This study utilized the mobile phone signaling data of Shenzhen residents from 2019 to 2020 and developed a CP tensor decomposition algorithm to decompose the long-sequence spatiotemporal trajectory data to detect high risk zones in terms of detecting overlapped community structures. Tensor decomposition algorithms revealed community structures in 2020 and the overlapping regions among these communities. Based on the overlap in spatial distribution and the similarity in temporal rhythms of these communities, we identified regions with spatiotemporal co-location as high–risk zones. Furthermore, we calculated the degree of population mixing in these areas to indicate the level of risk. These areas could potentially lead to rapid virus spread across communities. The research findings address the shortcomings of currently used static geographic statistical methods in delineating risk zones, and emphasize the critical importance of integrating spatial and temporal dimensions within behavioral big data analytics. Future research should consider utilizing non-aggregated individual trajectories to construct tensors, enabling the inclusion of individual and environmental attributes.
Full article
(This article belongs to the Special Issue HealthScape: Intersections of Health, Environment, and GIS&T (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Graph Representation Learning on Street Networks
by
Mateo Neira and Roberto Murcio
ISPRS Int. J. Geo-Inf. 2025, 14(8), 284; https://doi.org/10.3390/ijgi14080284 - 22 Jul 2025
Abstract
►▼
Show Figures
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that
[...] Read more.
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that raster representations of the original data can be created through a learning algorithm on low-dimensional representations of the street networks. In contrast, models that capture high-level urban network metrics can be trained through convolutional neural networks. However, the detailed topological data is lost through the rasterization of the street network, and the models cannot recover this information from the image alone, failing to capture complex street network features. This paper proposes a model capable of inferring good representations directly from the street network. Specifically, we use a variational autoencoder with graph convolutional layers and a decoder that generates a probabilistic, fully connected graph to learn latent representations that encode both local network structure and the spatial distribution of nodes. We train the model on thousands of street network segments and use the learned representations to generate synthetic street configurations. Finally, we proposed a possible application to classify the urban morphology of different network segments, investigating their common characteristics in the learned space.
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- IJGI Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Topical Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Computers, Digital, Electronics, Smart Cities, IJGI
Artificial Intelligence Models, Tools and Applications
Topic Editors: Phivos Mylonas, Katia Lida Kermanidis, Manolis MaragoudakisDeadline: 31 August 2025
Topic in
Applied Sciences, Drones, Geomatics, Heritage, IJGI, Remote Sensing, Sensors
3D Documentation of Natural and Cultural Heritage
Topic Editors: Lorenzo Teppati Losè, Elisabetta Colucci, Arnadi Dhestaratri MurtiyosoDeadline: 1 December 2025
Topic in
Applied Sciences, Buildings, Energies, Sensors, Smart Cities, IJGI
Digital and Intelligent Technologies and Application in Urban Construction, Operation, Maintenance, and Renewal
Topic Editors: Vijayan Sugumaran, Min HuDeadline: 10 December 2025
Topic in
Cancers, IJERPH, IJGI, MAKE, Smart Cities
The Use of Big Data in Public Health Research and Practice
Topic Editors: Quynh C. Nguyen, Thu T. NguyenDeadline: 31 December 2025

Conferences
Special Issues
Special Issue in
IJGI
Spatial Information for Improved Living Spaces
Guest Editors: Ivana Ivánová, Yongze Song, Sisi ZlatanovaDeadline: 25 October 2025
Special Issue in
IJGI
Indoor Mobile Mapping and Location-Based Knowledge Services
Guest Editors: Eliseo Clementini, Zhiyong ZhouDeadline: 31 December 2025
Special Issue in
IJGI
Advances in AI-Driven Geospatial Analysis and Data Generation (2nd Edition)
Guest Editors: Levente Juhász, Hartwig H. Hochmair, Hao LiDeadline: 31 December 2025
Special Issue in
IJGI
HealthScape: Intersections of Health, Environment, and GIS&T (2nd Edition)
Guest Editors: Lan Mu, Jue YangDeadline: 31 December 2025