A Spatial Planning Model for Obnoxious Facilities with Spatially Informed Constraints
Abstract
1. Introduction
- RQ 1: How can spatial information influence the behavior of OFLPs, and how can it be incorporated into the model specification?
- RQ 2: How does a SI-OBNOX model exhibit different behavioral characteristics compared to the existing OFLPs?
- RQ 3: To what extent does a SI-OBNOX model improve various planning-related indices over the existing OFLPs?
2. Background and Literature
2.1. Existing OFLP Models
2.2. Location Behaviors of the OFLP Family
2.3. Conditions of Locating Obnoxious Facilities for the SI-OBNOX Model
- (1)
- Spatial Separation Condition (SSC): Facilities should be located far apart from each other to minimize negative interactions among facilities.
- (2)
- Spatial Externality Condition (SEC): Facilities should be located in sparsely populated areas to avoid negative impacts on residents.
- (3)
- Spatial Proximity Condition (SPC): Facilities should be located close to demand units to ensure effective service provision.
3. The SI-OBNOX Model
3.1. MIP Formulation
3.2. Spatially Informed Constraints
4. Data
Case-Study Area
5. Results
5.1. Location–Allocation Behaviors
5.2. Model Behavior Tuning: Changing Tolerance Standards
5.3. Comparison to Other OFLPs
5.3.1. Spatial Separation Condition (SSC)
5.3.2. Spatial Externality Condition (SEC)
5.3.3. Spatial Proximity Condition (SPC)
6. Discussion
6.1. Location Behaviors of the Models
6.2. Computational Efficiency and Scalability
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| p | SI-OBNOX | p-Obnoxious | MILP | |||||
| Branch and Cut (B&C) | Simulated Annealing (SA) | |||||||
| Sol. Time (s) | Iteration | Sol. Time (s) | Iteration | Sol. Time (s) | Gap (%) † | Sol. Time (s) | Iteration | |
| 2 | 2.72 | 12,187 | 2321.19 | 185,436 | - | - | 0.03 | 198 |
| 3 | 2.44 | 10,974 | 10,800.25 * | 748,538 | 69.01 | 2.72 | 0.02 | 198 |
| 4 | 2.08 | 7604 | 10,800.23 * | 566,059 | 95.87 | 8.70 | 0.02 | 231 |
| 5 | 2.2 | 7537 | 10,800.2 * | 626,730 | 100.99 | 7.64 | 0.03 | 228 |
| 6 | 4.23 | 14,618 | 10,800.17 * | 524,065 | 95.06 | 10.28 | 0.03 | 246 |
| 7 | 2.13 | 6396 | 10,800.17 * | 519,486 | 129.30 | 19.19 | 0.03 | 254 |
| 8 | 1.98 | 4972 | 10,800.16 * | 591,790 | 133.52 | 6.47 | 0.03 | 251 |
| 9 | 2 | 4638 | 10,800.17 * | 623,192 | 136.20 | 19.67 | 0.02 | 260 |
| 10 | 2.03 | 4650 | 10,800.19 * | 579,201 | 132.88 | 10.71 | 0.02 | 278 |
| 11 | 1.78 | 4046 | 10,800.38 * | 515,330 | 152.23 | 35.86 | 0.03 | 284 |
| 12 | 1.69 | 3491 | 10,800.17 * | 512,387 | 123.50 | 40.25 | 0.03 | 289 |
| 13 | 1.66 | 3317 | 10,800.23 * | 495,005 | 147.59 | 37.89 | 0.01 | 308 |
| 14 | 1.63 | 3139 | 10,800.23 * | 509,143 | 133.22 | 38.50 | 0.02 | 307 |
| 15 | 1.61 | 2912 | 10,800.2 * | 501,082 | 148.64 | 47.77 | 0.02 | 304 |
| 16 | 1.86 | 2942 | 10,800.25 * | 501,635 | 140.35 | 39.05 | 0.03 | 299 |
| 17 | 1.89 | 2698 | 10,800.19 * | 469,203 | 144.17 | 37.17 | 0.03 | 310 |
| 18 | 1.97 | 2735 | 10,800.25 * | 472,564 | 138.79 | 9.71 | 0.03 | 301 |
| 19 | 1.51 | 2461 | 10,800.08 * | 536,323 | 193.00 | 37.81 | 0.02 | 326 |
| 20 | 1.61 | 2392 | 10,800.17 * | 570,854 | 163.30 | 35.48 | 0.03 | 333 |
| p | p-Dispersion | Maxisum Dispersion | ||||||
| B&C | Simulated Annealing (SA) | B&C | Simulated Annealing (SA) | |||||
| Sol. Time (s) | Iteration | Sol. Time (s) | Gap (%) † | Sol. Time (s) | Iteration | Sol. Time (s) | Gap (%) † | |
| 2 | 12.8 | 6728 | - | - | 6582.23 | 5,878,689 | - | - |
| 3 | 26.59 | 41,156 | - | - | 10,800.02 * | 7,822,158 | 5.71 | 13.50 |
| 4 | 40.59 | 47,142 | - | - | 10,800.03 * | 3,638,566 | 6.89 | 27.75 |
| 5 | 112.99 | 161,266 | - | - | 10,800.06 * | 4,897,570 | 10.77 | 8.14 |
| 6 | 203.11 | 350,371 | - | - | 10,800.03 * | 4,760,838 | 11.45 | 15.48 |
| 7 | 1668.44 | 1,699,848 | - | - | 10,800.06 * | 4,981,575 | 12.02 | 12.67 |
| 8 | 248.59 | 228,699 | - | - | 10,800.34 * | 4,765,978 | 13.68 | 18.67 |
| 9 | 10,800.02 * | 11,358,965 | 20.91 | 0.00 | 10,800.03 * | 4,764,630 | 17.02 | 21.58 |
| 10 | 8314.19 | 8,966,400 | - | - | 10,800.13 * | 4,793,789 | 17.82 | 37.27 |
| 11 | 619.03 | 595,407 | 21.94 | −1.47 | 10,800.03 * | 4,941,578 | 21.14 | 30.59 |
| 12 | 10,800.02 * | 12,068,518 | - | - | 10,800.03 * | 4,828,137 | 22.23 | 30.18 |
| 13 | 10,800.05 * | 9,359,408 | 26.29 | −2.20 | 10,800.03 * | 5,353,207 | 23.85 | 31.88 |
| 14 | 10,800.02 * | 9,449,202 | 31.80 | −2.30 | 10,800.03 * | 4,772,813 | 27.99 | 34.48 |
| 15 | 10,800.05 * | 7,340,705 | 37.27 | −0.62 | 10,800.06 * | 5,135,708 | 29.52 | 12.25 |
| 16 | 10,800.02 * | 8,917,916 | 34.76 | −1.26 | 10,800.05 * | 5,200,464 | 30.74 | 19.95 |
| 17 | 10,800.03 * | 8,261,902 | 33.75 | −3.28 | 10,800.06 * | 4,903,942 | 34.27 | 30.16 |
| 18 | 10,800.03 * | 8,279,508 | 34.12 | −3.92 | 10,800.03 * | 5,004,869 | 38.80 | 37.76 |
| 19 | 10,800.03 * | 7,338,853 | 43.03 | −1.97 | 10,800.03 * | 5,093,321 | 43.78 | 32.58 |
References
- Erkut, E.; Karagiannidis, A.; Perkoulidis, G.; Tjandra, S.A. A multicriteria facility location model for municipal solid waste management in North Greece. Eur. J. Oper. Res. 2008, 187, 1402–1421. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Mahdavi, I.; Esfahani, M.M.S.; Weber, G.W. A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Manag. 2020, 102, 340–350. [Google Scholar] [CrossRef]
- Santos-Peñate, D.R.; Suárez-Vega, R.R.; de la Nuez, C.F. A Location-allocation Model for Bio-waste Management in the Hospitality Sector. Netw. Spat. Econ. 2023, 23, 611–639. [Google Scholar] [CrossRef]
- Cassola, F.; Burlando, M.; Antonelli, M.; Ratto, C.F. Optimization of the regional spatial distribution of wind power plants to minimize the variability of wind energy input into power supply systems. J. Appl. Meteorol. Climatol. 2008, 47, 3099–3116. [Google Scholar] [CrossRef]
- Idris, M.N.M.; Hashim, H.; Razak, N.H. Spatial optimisation of oil palm biomass co-firing for emissions reduction in coal-fired power plant. J. Clean. Prod. 2018, 172, 3428–3447. [Google Scholar] [CrossRef]
- Austin, M.; Smith, T.E.; Wolpert, J. The Implementation of Controversial Facility-Complex Programs. Geogr. Anal. 1970, 2, 315–329. [Google Scholar] [CrossRef]
- Mumphrey, A.J.; Seley, J.E.; Wolpert, J. A decision model for locating controversial facilities. J. Am. Inst. Plan. 1971, 37, 397–402. [Google Scholar] [CrossRef]
- Mumphrey, A.J.; Wolpert, J. Equity considerations and concessions in the siting of public facilities. Econ. Geogr. 1973, 49, 109–121. [Google Scholar] [CrossRef]
- Church, R.L.; Drezner, Z. Review of obnoxious facilities location problems. Comput. Oper. Res. 2022, 138, 105468. [Google Scholar] [CrossRef]
- Hosseini, S.; Esfahani, A.M. Obnoxious facility location. In Facility Location: Concepts, Models, Algorithms and Case Studies; 2009; pp. 315–345. [Google Scholar]
- Griffith, D.A.; Chun, Y.; Kim, H. Spatial autocorrelation informed approaches to solving location–allocation problems. Spat. Stat. 2022, 50, 100612. [Google Scholar] [CrossRef]
- Griffith, D.A.; Chun, Y.; Kim, H. The majority theorem for the single (p = 1) median problem and local spatial autocorrelation. Geogr. Anal. 2023, 55, 107–124. [Google Scholar] [CrossRef]
- Oh, C.; Kim, H.; Chun, Y. An Efficient Solving Approach for the p-Dispersion Problem Based on the Distance-Based Spatially Informed Property. Geogr. Anal. 2024, 56, 600–623. [Google Scholar] [CrossRef]
- Oh, C.; Kim, H.; Chun, Y. An Efficient Approach for Solving Hub Location Problems Using Network Autocorrelation Structures. Ann. Am. Assoc. Geogr. 2025, 115, 1263–1285. [Google Scholar] [CrossRef]
- Shier, D.R. A min-max theorem for p-center problems on a tree. Transp. Sci. 1977, 11, 243–252. [Google Scholar] [CrossRef]
- Kuby, M.J. Programming models for facility dispersion: The p-dispersion and maxisum dispersion problems. Geogr. Anal. 1987, 19, 315–329. [Google Scholar] [CrossRef]
- Moon, I. Application of graph theory to a location problem. In Proceedings of the Joint National Meeting of ORSA/TIMS, Atlanta, GA, USA, 7–9 November 1977. [Google Scholar]
- Moon, I.D.; Chaudhry, S.S. An analysis of network location problems with distance constraints. Manag. Sci. 1984, 30, 290–307. [Google Scholar] [CrossRef]
- Erkut, E.; ReVelle, C.; Ülküsal, Y. Integer-friendly formulations for the r-separation problem. Eur. J. Oper. Res. 1996, 92, 342–351. [Google Scholar] [CrossRef]
- Erkut, E.; Neuman, S. Comparison of four models for dispersing facilities. INFOR Inf. Syst. Oper. Res. 1991, 29, 68–86. [Google Scholar] [CrossRef]
- Oh, C.; Chun, Y.; Kim, H. Location planning of emergency medical facilities using the p-dispersed-median modeling approach. ISPRS Int. J. Geo-Inf. 2023, 12, 497. [Google Scholar] [CrossRef]
- Lei, T.L.; Church, R.L. A unified model for dispersing facilities. Geogr. Anal. 2013, 45, 401–418. [Google Scholar] [CrossRef]
- Murray, A.T.; Church, R.L. Solving the anti-covering location problem using Lagrangian relaxation. Comput. Oper. Res. 1997, 24, 127–140. [Google Scholar] [CrossRef]
- Murray, A.T.; Church, R.L. Facets for node packing. Eur. J. Oper. Res. 1997, 101, 598–608. [Google Scholar] [CrossRef]
- Murray, A.T.; Church, R.L. Measuring the efficacy of adjacency constraint structure in forest planning models. Can. J. For. Res. 1995, 25, 1416–1424. [Google Scholar] [CrossRef]
- Murray, A.T.; Kim, H. Efficient identification of geographic restriction conditions in anti-covering location models using GIS. Lett. Spat. Resour. Sci. 2008, 1, 159–169. [Google Scholar] [CrossRef]
- Niblett, M.R.; Church, R.L. The disruptive anti-covering location problem. Eur. J. Oper. Res. 2015, 247, 764–773. [Google Scholar] [CrossRef]
- Church, R.L.; Cohon, J.L. Multiobjective Location Analysis of Regional Energy Facility Siting Problems; No. BNL-50567; Brookhaven National Laboratory. (BNL): Upton, NY, USA, 1976. [Google Scholar]
- Daskin, M.S. Network and Discrete Location: Models, Algorithms, and Applications; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Ratick, S.J.; White, A.L. A risk-sharing model for locating noxious facilities. Environ. Plan. B Plan. Des. 1988, 15, 165–179. [Google Scholar] [CrossRef]
- Church, R.L.; Murray, A.T. Business Site Selection, Location Analysis, and GIS; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Drezner, T.; Drezner, Z.; Zerom, D. The obnoxious competitive facility location model. Netw. Spat. Econ. 2023, 23, 885–903. [Google Scholar] [CrossRef]
- Marsh, M.T.; Schilling, D.A. Equity measurement in facility location analysis: A review and framework. Eur. J. Oper. Res. 1994, 74, 1–17. [Google Scholar] [CrossRef]
- Talen, E. Visualizing fairness: Equity maps for planners. J. Am. Plan. Assoc. 1998, 64, 22–38. [Google Scholar] [CrossRef]
- Chea, H.; Kim, H. Assessing trauma center accessibility in the Southeastern region of the US to improve healthcare efficacy using an anti-covering approach. PLoS Glob. Public Health 2023, 3, e0002230. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 1965, 13, 462–475. [Google Scholar] [CrossRef]
- Balinski, M.L. Integer programming: Methods, uses, computations. Manag. Sci. 1965, 12, 253–313. [Google Scholar] [CrossRef]
- Rosing, K.E.; ReVelle, C.S.; Rosing-Vogelaar, H. The p-median and its linear programming relaxation: An approach to large problems. J. Oper. Res. Soc. 1979, 30, 815–823. [Google Scholar] [CrossRef]
- East Tennessee Development District. 2024 Annual Report. Available online: https://www.etdd.org/resources/reports/ (accessed on 14 August 2025).
- Zhou, E.; Murray, A.T. Facility layout and spatial configuration efficiency assessment. Netw. Spat. Econ. 2024, 25, 487–511. [Google Scholar] [CrossRef]
- Johnson, D.S.; Aragon, C.R.; McGeoch, L.A.; Schevon, C. Optimization by simulated annealing: An experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 1991, 39, 378–406. [Google Scholar] [CrossRef]
- Erkut, E.; Ülküsal, Y.; Yenicerioğlu, O. A comparison of p-dispersion heuristics. Comput. Oper. Res. 1994, 21, 1103–1113. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, C.; Kim, H. A Spatial Planning Model for Obnoxious Facilities with Spatially Informed Constraints. ISPRS Int. J. Geo-Inf. 2025, 14, 449. https://doi.org/10.3390/ijgi14110449
Oh C, Kim H. A Spatial Planning Model for Obnoxious Facilities with Spatially Informed Constraints. ISPRS International Journal of Geo-Information. 2025; 14(11):449. https://doi.org/10.3390/ijgi14110449
Chicago/Turabian StyleOh, Changwha, and Hyun Kim. 2025. "A Spatial Planning Model for Obnoxious Facilities with Spatially Informed Constraints" ISPRS International Journal of Geo-Information 14, no. 11: 449. https://doi.org/10.3390/ijgi14110449
APA StyleOh, C., & Kim, H. (2025). A Spatial Planning Model for Obnoxious Facilities with Spatially Informed Constraints. ISPRS International Journal of Geo-Information, 14(11), 449. https://doi.org/10.3390/ijgi14110449

