Machine Learning Insights into Supply–Demand Mismatch, Interactions and Driving Mechanisms of Ecosystem Services Across Scales: A Case Study of Xingtai, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. ES Supply–Demand Assessment
2.2.1. Quantification of ES Supply–Demand
2.2.2. Ecosystem Service Supply-Demand Ratio
2.3. Multi-Scale Analysis of Trade-Off/Synergy Relationships
2.3.1. Spearman Correlation Analysis
2.3.2. Geographically Weighted Regression (GWR) Model
2.4. Driving Factor Analysis
2.4.1. Driver Selection
2.4.2. XGBoost Model and SHAP Interpretation
2.4.3. Model Evaluation
2.4.4. Restricted Cubic Splines
2.5. Data Sources
3. Results
3.1. Spatiotemporal Variations in ES Supply and Demand
3.1.1. Spatiotemporal Characteristics of ES Supply
3.1.2. Spatiotemporal Characteristics of ES Demand
3.1.3. Spatiotemporal Characteristics of the ES Supply–Demand Ratio
3.2. Trade-Offs and Synergies Among ESDR
3.2.1. Correlation Analysis of Ess
3.2.2. Spatial Patterns of Trade-Offs and Synergies Among Ess
3.3. Analysis of Driving Factors
3.3.1. Interpretability Analysis Based on XGBoost Regression and SHAP Models
3.3.2. Analysis of Interactive Effects Among Driving Factors
3.3.3. Threshold Effects of Driving Factors
4. Discussion
4.1. Analysis of ES Supply–Demand Relationships
4.2. Multi-Scale Trade-Offs and Synergies Among ESs
4.3. Analysis of Driving Factors of ESs
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R. Valuing Natural Capital and Ecosystem Services toward the Goals of Efficiency, Fairness, and Sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Pr: Miami, FL, USA, 1997; ISBN 1-55963-476-6. [Google Scholar]
- Gao, J.; Zuo, L. Revealing Ecosystem Services Relationships and Their Driving Factors for Five Basins of Beijing. J. Geogr. Sci. 2021, 31, 111–129. [Google Scholar] [CrossRef]
- Li, P.; Li, T. Spatiotemporal Analysis of Ecosystem Services and the Impact of New-Type Urbanization: A Case Study of Chengdu, China. Ecol. Indic. 2025, 171, 113191. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- Fulford, R.S.; Russell, M.; Myers, M.; Malish, M.; Delmaine, A. Models Help Set Ecosystem Service Baselines for Restoration Assessment. J. Environ. Manag. 2022, 317, 115411. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Dang, H.; Li, J.; Zhou, Z. Revealing the Supply-Demand Relationship of Urban Cultural Ecosystem Services: The Combination of Open-Source Spatial Model and Topic Model. Appl. Geogr. 2024, 167, 103288. [Google Scholar] [CrossRef]
- Tallis, H.; Kareiva, P.; Marvier, M.; Chang, A. An Ecosystem Services Framework to Support Both Practical Conservation and Economic Development. Proc. Natl. Acad. Sci. USA 2008, 105, 9457–9464. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards Systematic Analyses of Ecosystem Service Trade-Offs and Synergies: Main Concepts, Methods and the Road Ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Stoeckl, N.; Costanza, R.; Dorji, N.; Kubiszewski, I.; Limenih, B.; Tian, J.; Yamazaki, S. Valuing the Reciprocating Services That Humans Can Provide to Ecosystems. Ecol. Indic. 2025, 174, 113496. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Z.; Zhu, Q.; Houda Ben Ameur, N.E.; Liu, X.; Ding, F.; Cai, Y. Using Large Language Models to Investigate Cultural Ecosystem Services Perceptions: A Few-Shot and Prompt Method. Landsc. Urban Plan. 2025, 258, 105323. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, D.; Huang, H.; Jiang, J.; Liu, Q.; Zhu, L.; Ding, G. Spatio-Temporal Evolution and Scenario-Based Optimization of Urban Ecosystem Services Supply and Demand: A Block-Scale Study in Xiamen, China. Ecol. Indic. 2025, 172, 113289. [Google Scholar] [CrossRef]
- Chang, B.; Chen, B.; Chen, W.; Xu, S.; He, X.; Yao, J.; Huang, Y. Analysis of Trade-off and Synergy of Ecosystem Services and Driving Forces in Urban Agglomerations in Northern China. Ecol. Indic. 2024, 165, 112210. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Li, Y.; Zhang, Q. Comparison of Various Models for Multi-Scenario Simulation of Land Use/Land Cover to Predict Ecosystem Service Value: A Case Study of Harbin-Changchun Urban Agglomeration, China. J. Clean. Prod. 2024, 478, 144012. [Google Scholar] [CrossRef]
- Wu, Q.; Cao, Y.; Su, D.; Cao, Y. A Multi-Scale Framework for Understanding Spatial Scale Effects on Ecosystem Service Heterogeneity, Interactions, Drivers and Their Socio-Ecological Impact Pathways for Adaptive Management. J. Clean. Prod. 2025, 516, 145757. [Google Scholar] [CrossRef]
- Uribe-Aguado, J.; Patiño, J.N.; Kozak, D.; Wild, T.; Sánchez, J.P.R. A Decision Support Tool for the Selection of Biophysical Methodologies to Assess Urban Nature-Based Solutions Using Regulating Ecosystem Services. Urban For. Urban Green. 2025, 128842. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Y.; Liu, X.; Liang, M. Revealing Multi-Scale Characteristics of Ecosystem Services Supply and Demand Imbalance to Enhance Refined Ecosystem Management in China. Ecol. Indic. 2025, 170, 112971. [Google Scholar] [CrossRef]
- Rong, Y.; Li, K.; Guo, J.; Zheng, L.; Luo, Y.; Yan, Y.; Wang, C.; Zhao, C.; Shang, X.; Wang, Z. Multi-Scale Spatio-Temporal Analysis of Soil Conservation Service Based on MGWR Model: A Case of Beijing-Tianjin-Hebei, China. Ecol. Indic. 2022, 139, 108946. [Google Scholar] [CrossRef]
- Dang, L.; Zhao, F.; Teng, Y.; Teng, J.; Zhan, J.; Zhang, F.; Liu, W.; Wang, L. Scale Dependency of Trade-Offs/Synergies Analysis of Ecosystem Services Based on Bayesian Belief Networks: A Case of the Yellow River Basin. J. Environ. Manage. 2025, 375, 124410. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Liu, L.; Cao, Y.; Zhang, M.; Yuan, Z.; Ma, R.; Liu, X.; Liu, Y. Scaling Effects of Ecosystem Service Trade-off and Synergy in Arid Inland River Basins: A Case Study of the Manas River Basin of Xinjiang, China. Ecol. Indic. 2025, 173, 113358. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, J.; Olhnuud, A.; Hao, F.; Gong, C. The Impact of Large-Scale Ecological Restoration Projects on Trade-Offs/Synergies and Clusters of Ecosystem Services. J. Environ. Manag. 2024, 365, 121591. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal Variation and Spatial Scale Dependency of the Trade-Offs and Synergies among Multiple Ecosystem Services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef]
- Li, T.; Li, D.; Liu, Y.; Wei, G.; Liu, C.; Wang, J. The Spatiotemporal Effects on Ecosystem Services Supply-Demand from Industrial Transformation and Upgrading: Promotion or Inhibition? Ecol. Indic. 2024, 161, 111990. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Jiang, S.; Li, K.; Xin, X.; Huang, X.; Chen, J.; Zhou, L.; Li, Z. Impacts of Rice–Crayfish Co-Culture on Ecosystem Service Trade-Offs/Synergies in Agricultural Watersheds: A Case Exploration in Sihu Lake Basin, China. Agric. Water Manag. 2025, 310, 109389. [Google Scholar] [CrossRef]
- Salata, S.; Grillenzoni, C. A Spatial Evaluation of Multifunctional Ecosystem Service Networks Using Principal Component Analysis: A Case of Study in Turin, Italy. Ecol. Indic. 2021, 127, 107758. [Google Scholar] [CrossRef]
- Tonin, S. Influence of Environmental Attitudes and Time Horizons on the Valuation of Lagoon Ecosystem Services: A Choice Experiment Approach Using Principal Component Analysis. J. Environ. Manag. 2025, 375, 124178. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Tang, Z.; Xue, L.; Zhang, W.; Zhang, J. Driving Mechanisms of Ecosystem Services and Their Trade-Offs and Synergies in the Transition Zone between the Qinghai-Tibet Plateau and the Loess Plateau. Ecol. Indic. 2025, 171, 113148. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, J. Ecosystem Service Trade-Offs and Spatial Non-Stationary Responses to Influencing Factors in the Loess Hilly-Gully Region: Lanzhou City, China. Sci. Total Environ. 2022, 846, 157422. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Chen, Y.; Yang, D.; Zhao, X.; Pan, S. The Impact of Impervious Surface Expansion Morphology on Ecosystem Services and Thresholds in the Haihe River Basin. Ecol. Indic. 2025, 175, 113493. [Google Scholar] [CrossRef]
- Liu, T.; Wang, M.; Wang, M.; Xiong, Q.; Jia, L.; Ma, W.; Sui, S.; Wu, W.; Guo, X. Identification of the Primary Pollution Sources and Dominant Influencing Factors of Soil Heavy Metals Using a Random Forest Model Optimized by Genetic Algorithm Coupled with Geodetector. Ecotoxicol. Environ. Saf. 2025, 290, 117731. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Liu, Y.; Liu, R. Spatial-Temporal Dynamics and Drivers of Ecosystem Service Interactions along the Yellow River Area in Shaanxi Province. J. Clean. Prod. 2025, 496, 145095. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A Comprehensive Spatial-Temporal Analysis of Driving Factors of Human-Caused Wildfires in Spain Using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, Y.; Wang, X.; Chen, J.; Ma, J.; Liang, E.; Wang, X. Exploring the Natural-Socioeconomic Driving and Response Mechanisms of Ecosystem Services Interactions to Optimize Ecosystem Management: A Case Study in the Yarlung Zangbo River Basin. Sci. Total Environ. 2024, 957, 177842. [Google Scholar] [CrossRef] [PubMed]
- Bacani, V.M.; Machado da Silva, B.H.; Ayumi de Souza Amede Sato, A.; Souza Sampaio, B.D.; Rodrigues da Cunha, E.; Pereira Vick, E.; Ribeiro de Oliveira, V.F.; Decco, H.F. Carbon Storage and Sequestration in a Eucalyptus Productive Zone in the Brazilian Cerrado, Using the ca-Markov/Random Forest and InVEST Models. J. Clean. Prod. 2024, 444, 141291. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.; Ren, F.; Li, M. Estimation of Unrealized Forest Carbon Potential in China Using Time-Varying Boruta-SHAP-Random Forest Model and Climate Vegetation Productivity Index. J. Environ. Manag. 2025, 377, 124649. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Yang, Y.; Yan, Y. Nonlinear Relationship and Threshold-Based Zones between Ecosystem Service Supply-Demand Ratio and Land Use Intensity: A Case Study of the Beijing-Tianjin-Hebei Region, China. J. Clean. Prod. 2024, 481, 144148. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Z.; Dong, B.; Wang, H.; Han, Y. Analyzing Trade-Offs, Synergies, and Driving Factors of Ecosystem Services in Anhui Province Using Spatial Analysis and XG-Boost Modeling. Ecol. Indic. 2025, 171, 113098. [Google Scholar] [CrossRef]
- Sokhansefat, S.; Kanani-Sadat, Y.; Nasseri, M. Modeling Vegetation Dynamics in Complex Topography under Impacts of Climate Change: Integration of Spatial Clustering and Optimized XGBoost. J. Environ. Manag. 2025, 387, 125902. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J.; Bai, X. Use of Interpretable Machine Learning for Understanding Ecosystem Service Trade-Offs and Their Driving Mechanisms in Karst Peak-Cluster Depression Basin, China. Ecol. Indic. 2024, 166, 112474. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Ma, Y.; Bai, X.; Huang, L.; Cheng, S.; Yang, H.; Guo, W. Spatiotemporal Dislocation of Ecosystem Supply and Demand Services from Habitat Quality under Different Development Scenarios. Ecol. Indic. 2023, 157, 111230. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W. InVEST 3.6. 0 User’s Guide. Collaborative Publication by the Natural Capital Project, Stanford University, the University of Minnesota, the Nature Conservancy, and the World Wildlife Fund. In The Nature Conservancy, and the World Wildlife Fund; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Yang, Y.; Yuan, X.; An, J.; Su, Q.; Chen, B. Drivers of Ecosystem Services and Their Trade-Offs and Synergies in Different Land Use Policy Zones of Shaanxi Province, China. J. Clean. Prod. 2024, 452, 142077. [Google Scholar] [CrossRef]
- Xu, Y.; Li, C. Investigating the Heterogeneity of Driving Mechanisms and Multi-Dimensional Policy Pathways in Ecosystem Service Supply-Demand Relationships: A Case Study of the Shandong Peninsula Urban Agglomeration. J. Clean. Prod. 2025, 512, 145523. [Google Scholar] [CrossRef]
- Fan, J.; Liu, S.; Wang, W.; Li, Y.; Wang, Z.; Liu, M.; Zhao, Y.; Lin, J.; Tian, Z.; Wu, G. Identifying Driving Mechanisms and Relationships between Supply and Demand of Ecosystem Services Based on Structural Equation Model in the Upstream Segment of the Yangtze River. J. Environ. Manag. 2025, 393, 127093. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Jiao, L.; Lian, X.; Wang, W. Linking Supply-Demand Balance of Ecosystem Services to Identify Ecological Security Patterns in Urban Agglomerations. Sustain. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Jing, Z.; Min, X.; Li, S.; Li, J.; Song, W. Trade-off or Synergy? The Impacts of Coal Energy Consumption on Compound System Vulnerability: A Perspective from Coal Resource Base Assessment. Ecol. Indic. 2025, 170, 113124. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Integrating Ecosystem Services Supply-Demand Balance into Landscape Ecological Risk and Its Driving Forces Assessment in Southwest China. J. Clean. Prod. 2024, 475, 143671. [Google Scholar] [CrossRef]
- Ding, H.; Sun, R. Supply-Demand Analysis of Ecosystem Services Based on Socioeconomic and Climate Scenarios in North China. Ecol. Indic. 2023, 146, 109906. [Google Scholar] [CrossRef]
- Tian, F.; Li, X.; Wu, X.; Gong, L. Identifying Supply–Demand Mismatches of Ecosystem Services and Social-Ecological Drivers at Different Scales to Support Land Use Planning. Ecol. Indic. 2025, 174, 113462. [Google Scholar] [CrossRef]
- Su, B.; Liu, M. Coupling Management Ecosystem Service Supply-Supply Trade-Offs and Supply–Demand Trade-Offs: Framework and Practice. Ecol. Indic. 2024, 166, 112258. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Wang, H.; Wu, S.; Liang, Z.; Zhang, Y.; Wei, F.; Li, S.; Ma, L.; Wang, Y.; et al. Understanding the Spatial Relationships and Drivers of Ecosystem Service Supply-Demand Mismatches towards Spatially-Targeted Management of Social-Ecological System. J. Clean. Prod. 2023, 406, 136882. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Understanding the Intricate Tradeoffs among Ecosystem Services in the Beijing-Tianjin-Hebei Urban Agglomeration across Spatiotemporal Features. Sci. Total Environ. 2023, 898, 165453. [Google Scholar] [CrossRef]
- Guo, X.; Fang, C.; Mu, X.; Chen, D. Coupling and Coordination Analysis of Urbanization and Ecosystem Service Value in Beijing-Tianjin-Hebei Urban Agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhai, G.; Yu, Z.; Lu, Z.; Chen, Y.; Liu, J. Coupling Coordination between Urbanization and Ecosystem Services Value in the Beijing-Tianjin-Hebei Urban Agglomeration. Sustain. Cities Soc. 2024, 113, 105715. [Google Scholar] [CrossRef]
- Zhang, X.; Du, J.; Huang, T.; Zhang, L.; Gao, H.; Zhao, Y.; Ma, J. Atmospheric Removal of PM 2.5 by Man-Made Three Northern Regions Shelter Forest in Northern China Estimated Using Satellite Retrieved PM 2.5 Concentration. Sci. Total Environ. 2017, 593–594, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, Trade-Offs, and Losses of Ecosystem Services in Urban Regions: An Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Li, S.; Xiang, N.; Shu, C.; Xu, F. Unveiling the Industrial Synergy Optimization Pathways in Beijing-Tianjin-Hebei Urban Agglomeration Based on Water-Energy-Carbon Nexus. J. Environ. Manag. 2025, 376, 124528. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Yang, M. Unravelling the Non-Linear Response of Ecosystem Services to Urban-Rural Transformation in the Beijing-Tianjin-Hebei Region, China. Ecol. Inform. 2024, 81, 102633. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Wang, J.; Wang, S.; Wang, R.; Fu, G.; Yuan, Y.; Zheng, Z. Spatial Heterogeneity of Ecosystem Service Bundles and the Driving Factors in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2024, 479, 144006. [Google Scholar] [CrossRef]
- Deng, F.; Zhu, S.; Guo, J.; Sun, X. Exploring the Quality of Ecosystem Services and the Segmental Impact of Influencing Factors in Resource-Based Cities. J. Environ. Manage. 2025, 375, 124411. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wang, Q.; Ren, H.; Zhu, S.; Cao, J. Ecological Network Construction and Optimization of Typical Resource-Based Regions, and Strategies for the Enhancement of Multiple Ecosystem Services: Balancing Function and Structure. Ecol. Indic. 2025, 170, 112951. [Google Scholar] [CrossRef]
- Bi, S.; Li, Z.; Chen, Y.; Zhang, Q.; Ye, T. Identification of Priority Conservation Areas in Beijing-Tianjin-Hebei Using Multi-Scenario Trade-Offs Based on Different Spatial Scales and Their Drivers. Ecol. Indic. 2024, 166, 112508. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Yang, S.; Yang, Y.; Tang, X.; Qu, W. Identification of Bundles and Driving Factors of Ecosystem Services at Multiple Scales in the Eastern China Region. Ecol. Indic. 2024, 158, 111378. [Google Scholar] [CrossRef]
- Xu, T.; Tian, G.; Lin, T.; Li, W.; Liu, C. Multiscale Analysis of Ecosystem Service Interactions and Driving Factors in the Loess Plateau: Implications for Ecological Management. J. Clean. Prod. 2025, 495, 145074. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liu, L.; Liang, Z.; Wang, Y.; Wang, H.; Wu, S. Uncovering the Relationships between Ecosystem Services and Social-Ecological Drivers at Different Spatial Scales in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2021, 290, 125193. [Google Scholar] [CrossRef]
- Gao, C.; Hu, B.; Wang, Z.; Huang, S.; Zhang, L. Study on Spatiotemporal Changes of Ecosystem Service Trade-Offs/Synergies and Driving Mechanisms in the Key Zone of Mountain-River-Sea Coupling: A Case Study of the Southwest Guangxi Karst-Beibu Gulf. Ecol. Indic. 2024, 169, 112892. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal Heterogeneity of Ecosystem Service Interactions and Their Drivers at Different Spatial Scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Lv, L.; Han, X.; Zhu, J.; Liao, K.; Yang, Q.; Wang, X. Spatial Drivers of Ecosystem Services Supply-Demand Balances in the Nanjing Metropolitan Area, China. J. Clean. Prod. 2024, 434, 139894. [Google Scholar] [CrossRef]
- Chen, X.; Wei, F. Reducing PM2.5 and O3 through Optimizing Urban Ecological Land Form Based on Its Size Thresholds. Atmos. Pollut. Res. 2025, 16, 102466. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Feng, X. A Hybrid Bayesian Network Approach for Trade-Offs between Environmental Flows and Agricultural Water Using Dynamic Discretization. Adv. Water Resour. 2017, 110, 445–458. [Google Scholar] [CrossRef]









| ESs | Model Process | Parameter Description |
|---|---|---|
| WY | S: | = water production service supply (mm), = actual annual evapotranspiration (mm), = annual precipitation for raster cell x (mm) [43]. |
| D: | = the demand for water production services. , , , represent industrial and domestic water use, agricultural water use, ecological water use, and other water use. | |
| SDR | S: | SD = soil retention demand, RKLS = potential soil erosion, USLE = actual soil erosion, R = rainfall erosivity factor, K = soil erodibility factor, LS = topographic factor (slope length/steepness), C = vegetation management factor, P = anthropogenic measures factor. |
| D: | ||
| HQ | S: | = the level of provision of habitat quality services, Dxj = the level of stress experienced by raster x in land use type j, = the habitat suitability of land use type j k = a scaling constant, z = a normalization constant [44]. |
| D: | = the habitat quality requirement standard S = the size of the study area (km2). | |
| UC | S | HMi = the supply of urban cooling services on image i CCi = the cooling capacity index, shadowing, evapotranspiration and albedo. CCparki = the distance-weighted average of the CC values for the greenfield dcool = the effective greenfield cooling distance. |
| = the demand for urban cooling, = the population density of the administrative unit, = the percentage of the population over 65 years of age in the administrative unit, T = the mean value of the inversion temperature. | ||
| PM2.5 | S: | = Annual PM2.5 Deposition, F = PM2.5 Deposition Flux LAI = Annual Leaf Area Index, = PM2.5 Deposition Velocity = Annual PM2.5 Concentration, V(x) = Air Purification Volume (grid x) C(x) = Grid Area, H = PM2.5 Distribution Height. |
| D: | = Required PM2.5 Reduction, = Annual PM2.5 Concentration = PM2.5 “Excellent” Standard (35 μg/m3). | |
| NPP | S: | NPP(x,t) = Net Primary Productivity, APAR(x,t) = Absorbed Photosynthetically Active Radiation, ε(x,t) = Actual Light Use Efficiency, SOL(x,t) = Total Solar Radiation, FPAR(x,t) = Fraction of Absorbed PAR, Tε1(x,t), Tε2(x,t) = Temperature Stress Coefficients, Wε(x,t) = Water Stress Coefficient, εmax = Maximum Light Use Efficiency. |
| D: | CD = Carbon Sequestration Demand, = Nighttime Light Value (pixel x) = Total Regional Nighttime Light Value, C = Total Carbon Emissions. |
| Data Type | Resolution | Data Source |
|---|---|---|
| Land Use | 30 m | Resource and Environment Science Data Platform (resdc.cn, accessed on 1 November 2025) |
| Elevation (DEM) | 30 m | Geospatial Data Cloud “Global 30 m SRTM DEM” (http://www.gis5g.com, accessed on 1 November 2025) |
| Soil Data | 1 km | Harmonized World Soil Database (HWSD) v1.2 |
| Precipitation and Evapotranspiration | 1 km | National Earth System Science Data Center (geodata.cn, accessed on 1 November 2025) |
| Temperature | 1 km | Geospatial Data Cloud |
| Land Surface Temperature | 1 km | Resource and Environment Science Data Platform |
| Nighttime Light | 1 km | Earth Observation Group, Payne Institute (mines.edu, accessed on 1 November 2025) |
| Population Density | 1 km | LandScan Global 1 km Population Grid |
| GDP and Energy Consumption | - | National Bureau of Statistics, China Energy Statistical Yearbook |
| Annual Mean Leaf Area Index (LAI) | 1 km | Geospatial Data Cloud “China 1 km Monthly LAI Dataset (2000–2022)” (http://www.gis5g.com, accessed on 1 November 2025) |
| PM2.5 | 1 km | National Tibetan Plateau Data Center “High-resolution PM2.5 Dataset (2000–2023)” (tpdc.ac.cn, accessed on 1 November 2025) |
| Population Age Structure and Water Consumption | County-level | Statistical Yearbooks, Water Resources Bulletins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, R.; Luo, K.; Liang, S.; Xie, M. Machine Learning Insights into Supply–Demand Mismatch, Interactions and Driving Mechanisms of Ecosystem Services Across Scales: A Case Study of Xingtai, China. ISPRS Int. J. Geo-Inf. 2025, 14, 452. https://doi.org/10.3390/ijgi14110452
Wang Z, Wang R, Luo K, Liang S, Xie M. Machine Learning Insights into Supply–Demand Mismatch, Interactions and Driving Mechanisms of Ecosystem Services Across Scales: A Case Study of Xingtai, China. ISPRS International Journal of Geo-Information. 2025; 14(11):452. https://doi.org/10.3390/ijgi14110452
Chicago/Turabian StyleWang, Zhenyu, Ruohan Wang, Keyu Luo, Sen Liang, and Miaomiao Xie. 2025. "Machine Learning Insights into Supply–Demand Mismatch, Interactions and Driving Mechanisms of Ecosystem Services Across Scales: A Case Study of Xingtai, China" ISPRS International Journal of Geo-Information 14, no. 11: 452. https://doi.org/10.3390/ijgi14110452
APA StyleWang, Z., Wang, R., Luo, K., Liang, S., & Xie, M. (2025). Machine Learning Insights into Supply–Demand Mismatch, Interactions and Driving Mechanisms of Ecosystem Services Across Scales: A Case Study of Xingtai, China. ISPRS International Journal of Geo-Information, 14(11), 452. https://doi.org/10.3390/ijgi14110452

