Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3749 KiB  
Article
User-Centred Design of Multidisciplinary Spatial Data Platforms for Human-History Research
by Meeli Roose, Tua Nylén, Harri Tolvanen and Outi Vesakoski
ISPRS Int. J. Geo-Inf. 2021, 10(7), 467; https://doi.org/10.3390/ijgi10070467 - 8 Jul 2021
Cited by 5 | Viewed by 4610
Abstract
The role of open spatial data is growing in human-history research. Spatiality can be utilized to bring together and seamlessly examine data describing multiple aspects of human beings and their environment. Web-based spatial data platforms can create equal opportunities to view and access [...] Read more.
The role of open spatial data is growing in human-history research. Spatiality can be utilized to bring together and seamlessly examine data describing multiple aspects of human beings and their environment. Web-based spatial data platforms can create equal opportunities to view and access these data. In this paper, we aim at advancing the development of user-friendly spatial data platforms for multidisciplinary research. We conceptualize the building process of such a platform by systematically reviewing a diverse sample of historical spatial data platforms and by piloting a user-centered design process of a multidisciplinary spatial data platform. We outline (1) the expertise needed in organizing multidisciplinary spatial data sharing, (2) data types that platforms should be able to handle, (3) the most useful platform functionalities, and (4) the design process itself. We recommend that the initiative and subject expertise should come from the end-users, i.e., scholars of human history, and all key end-user types should be involved in the design process. We also highlight the importance of geographic expertise in the process, an important link between subject, spatial and technical viewpoints, for reaching a common understanding and common terminology. Based on the analyses, we identify key development goals for spatial data platforms, including full layer management functionalities. Moreover, we identify the main roles in the user-centered design process, main user types and suggest good practices including a multimodal design workshop. Full article
(This article belongs to the Special Issue Geospatial Open Systems)
Show Figures

Figure 1

34 pages, 17827 KiB  
Article
An “Animated Spatial Time Machine” in Co-Creation: Reconstructing History Using Gamification Integrated into 3D City Modelling, 4D Web and Transmedia Storytelling
by Mario Matthys, Laure De Cock, John Vermaut, Nico Van de Weghe and Philippe De Maeyer
ISPRS Int. J. Geo-Inf. 2021, 10(7), 460; https://doi.org/10.3390/ijgi10070460 - 6 Jul 2021
Cited by 23 | Viewed by 8104
Abstract
More and more digital 3D city models might evolve into spatiotemporal instruments with time as the 4th dimension. For digitizing the current situation, 3D scanning and photography are suitable tools. The spatial future could be integrated using 3D drawings by public space designers [...] Read more.
More and more digital 3D city models might evolve into spatiotemporal instruments with time as the 4th dimension. For digitizing the current situation, 3D scanning and photography are suitable tools. The spatial future could be integrated using 3D drawings by public space designers and architects. The digital spatial reconstruction of lost historical environments is more complex, expensive and rarely done. Three-dimensional co-creative digital drawing with citizens’ collaboration could be a solution. In 2016, the City of Ghent (Belgium) launched the “3D city game Ghent” project with time as one of the topics, focusing on the reconstruction of disappeared environments. Ghent inhabitants modelled in open-source 3D software and added animated 3D gamification and Transmedia Storytelling, resulting in a 4D web environment and VR/AR/XR applications. This study analyses this low-cost interdisciplinary 3D co-creative process and offers a framework to enable other cities and municipalities to realise a parallel virtual universe (an animated digital twin bringing the past to life). The result of this co-creation is the start of an “Animated Spatial Time Machine” (AniSTMa), a term that was, to the best of our knowledge, never used before. This research ultimately introduces a conceptual 4D space–time diagram with a relation between the current physical situation and a growing number of 3D animated models over time. Full article
(This article belongs to the Special Issue Crowdsourced Geographic Information in Citizen Science)
Show Figures

Figure 1

16 pages, 7789 KiB  
Article
Hydrological Modeling of Green Infrastructure to Quantify Its Effect on Flood Mitigation and Water Availability in the High School Watershed in Tucson, AZ
by Yoganand Korgaonkar, David Phillip Guertin, Thomas Meixner and David C Goodrich
ISPRS Int. J. Geo-Inf. 2021, 10(7), 443; https://doi.org/10.3390/ijgi10070443 - 29 Jun 2021
Cited by 4 | Viewed by 3335
Abstract
Green Infrastructure (GI) practices are being implemented in numerous cities to tackle stormwater management issues and achieve co-benefits such as mitigating heat island effects and air pollution, as well as water augmentation, health, and economic benefits. Tucson, Arizona is a fast-growing city in [...] Read more.
Green Infrastructure (GI) practices are being implemented in numerous cities to tackle stormwater management issues and achieve co-benefits such as mitigating heat island effects and air pollution, as well as water augmentation, health, and economic benefits. Tucson, Arizona is a fast-growing city in the semiarid region of the southwest United States and provides a unique landscape in terms of urban hydrology and stormwater management, where stormwater is routed along the streets to the nearest ephemeral washes. Local organizations have implemented various GI practices, such as curb cuts, traffic chicanes, roof runoff harvesting, and retention basins, to capture the excess runoff and utilize it on-site. This study models the 3.31 km2 High School watershed in central Tucson using the Automated Geospatial Watershed Assessment (AGWA) tool and the Kinematic Runoff and Erosion (KINEROS2) model. Each parcel in the watershed was individually represented using the KINEROS2 Urban element to simulate small-scale flow-on/flow-off processes. Seven different configurations of GI implementation were simulated using design storms, and we stochastically generated 20 years of precipitation data to understand the effects of GI implementation on flood mitigation and long-term water availability, respectively. The design storm analysis indicates that the configuration designed to mimic the current level of GI implementation, which includes 175 on-street basins and 37 roof runoff harvesting cisterns, has minimum (<2%) influence on runoff volume. Furthermore, the analysis showed that the current level of GI implementation caused an increase (<1%) in peak flows at the watershed outlet but predicted reduced on-street accumulated volumes (>25%) and increased water availability via GI capture and infiltration. When the GI implementation was increased by a factor of two and five, a larger reduction of peak flow (<8% and <22%, respectively) and volume (<3% and <8%, respectively) was simulated at the watershed outlet. The 20-year analysis showed that parcels with roof runoff harvesting cisterns were able to meet their landscape irrigation demands throughout the year, except for the dry months of May and June. Additionally, stormwater captured and infiltrated by the on-street basins could support xeric vegetation for most of the year, except June, where the water demand exceeded volume of water infiltrated in the basins. The current level of GI implementation in the High School watershed may not have significant large-scale impacts, but it provides numerous benefits at the parcel, street, and small neighborhood scales. Full article
Show Figures

Figure 1

12 pages, 15071 KiB  
Article
Exploring Allometric Scaling Relations between Fractal Dimensions of Metro Networks and Economic, Environmental and Social Indicators: A Case Study of 26 Cities in China
by Tian Lan, Qian Peng, Haoyu Wang, Xinyu Gong, Jing Li and Zhicheng Shi
ISPRS Int. J. Geo-Inf. 2021, 10(7), 429; https://doi.org/10.3390/ijgi10070429 - 23 Jun 2021
Cited by 3 | Viewed by 2453
Abstract
Allometric scaling originates in biology, where it refers to scaling relations between the size of a body part and the size of the whole body when an organism grows. In cities, various allometric relations have also been discovered, such as those between the [...] Read more.
Allometric scaling originates in biology, where it refers to scaling relations between the size of a body part and the size of the whole body when an organism grows. In cities, various allometric relations have also been discovered, such as those between the complexity of traffic networks and urban quantities. Metro networks are typical traffic networks in cities. However, whether allometric relations with metro networks exist is still uncertain. In this study, “fractal dimension” was employed as the complexity measure of metro networks, and potential allometric relations between fractal dimensions and urban indicators in 26 main cities in China were explored. It was found that fractal dimensions of metro networks had positive allometric relations with gross domestic product (GDP), population, particulate matter with a diameter less than 2.5 microns (PM2.5), the road congestion index and the average price of second-hand housing (with Spearman’s R of 0.789, 0.806, 0.273, 0.625 and 0.335, respectively) but inverse allometric relations with sulfur dioxide (SO2) and residential satisfaction (with Spearman’s R of −0.270 and −0.419, respectively). Such discoveries imply that allometric relations do exist with metro networks, which is helpful in deepening our understanding of how metro systems interact with urban quantities in the self-organized evolution of cities. Full article
Show Figures

Figure 1

15 pages, 39210 KiB  
Article
A Spatially Highly Resolved Ground Mounted and Rooftop Potential Analysis for Photovoltaics in Austria
by Christian Mikovits, Thomas Schauppenlehner, Patrick Scherhaufer, Johannes Schmidt, Lilia Schmalzl, Veronika Dworzak, Nina Hampl and Robert Gennaro Sposato
ISPRS Int. J. Geo-Inf. 2021, 10(6), 418; https://doi.org/10.3390/ijgi10060418 - 16 Jun 2021
Cited by 12 | Viewed by 6436
Abstract
Austria aims to meet 100% of its electricity demand from domestic renewable sources by 2030 which means, that an additional 27 TWh/a of renewable electricity generation are required, thereof 11 TWh/a from photovoltaic. While some [...] Read more.
Austria aims to meet 100% of its electricity demand from domestic renewable sources by 2030 which means, that an additional 27 TWh/a of renewable electricity generation are required, thereof 11 TWh/a from photovoltaic. While some federal states and municipalities released a solar rooftop cadastre, there is lacking knowledge on the estimation of the potential of both, ground mounted installations and rooftop modules, on a national level with a high spatial resolution. As a first, in this work data on agricultural land-use is combined with highly resolved data on buildings on a national level. Our results show significant differences between urban and rural areas, as well as between the Alpine regions and the Prealpine- and Easter Plain areas. Rooftop potential concentrates in the big urban areas, but also in densely populated areas in Lower- and Upper Austria, Styria and the Rhine valley of Vorarlberg. The ground mounted photovoltaic potential is highest in Eastern Austria. This potential is geographically consistent with the demand and allows for a production close to the consumer. In theory, the goal of meeting 11 TWh/a in 2030 can be achieved solely with the rooftop PV potential. However, considering the necessary installation efforts, the associated costs of small and dispersed production units and finally the inherent uncertainty with respect to the willingness of tens of thousands of individual households to install PV systems, installing the necessary solar PV on buildings alone is constrained. Full article
(This article belongs to the Collection Spatial and Temporal Modelling of Renewable Energy Systems)
Show Figures

Figure 1

20 pages, 9736 KiB  
Article
Emojis as Contextual Indicants in Location-Based Social Media Posts
by Eva Hauthal, Alexander Dunkel and Dirk Burghardt
ISPRS Int. J. Geo-Inf. 2021, 10(6), 407; https://doi.org/10.3390/ijgi10060407 - 12 Jun 2021
Cited by 4 | Viewed by 3655
Abstract
The presented study aims to investigate the relationship between the use of emojis in location-based social media and the location of the corresponding post in terms of perceived objects and conducted activities connected to this place. The basis for this is not a [...] Read more.
The presented study aims to investigate the relationship between the use of emojis in location-based social media and the location of the corresponding post in terms of perceived objects and conducted activities connected to this place. The basis for this is not a purely frequency-based assessment, but a specifically introduced measure called typicality. To evaluate the typicality measure and examine the assumption that emojis are contextual indicants, a dataset of worldwide geotagged posts from Instagram relating to sunset and sunrise events is used, converted to a privacy-aware version based on a Hyperloglog approach. Results suggest that emojis can often provide more nuanced information about user activities and the surrounding environment than is possible with hashtags. Thus, emojis may be suitable for identifying less obvious characteristics and the sense of a place. Emojis are already explored in research, but mainly for sentiment analysis, for semantic studies or as part of emoji prediction. In contrast, this work provides novel insights into the user’s spatial or activity context by applying the typicality measure and therefore considers emojis contextual indicants. Full article
(This article belongs to the Special Issue Social Computing for Geographic Information Science)
Show Figures

Figure 1

31 pages, 9866 KiB  
Article
Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study
by Oliver Harig, Robert Hecht, Dirk Burghardt and Gotthard Meinel
ISPRS Int. J. Geo-Inf. 2021, 10(5), 353; https://doi.org/10.3390/ijgi10050353 - 20 May 2021
Cited by 15 | Viewed by 4869
Abstract
Urban Growth Boundary (UGB) is a growth management policy that designates specific areas where growth should be concentrated in order to avoid urban sprawl. The objective of such a boundary is to protect agricultural land, open spaces and the natural environment, as well [...] Read more.
Urban Growth Boundary (UGB) is a growth management policy that designates specific areas where growth should be concentrated in order to avoid urban sprawl. The objective of such a boundary is to protect agricultural land, open spaces and the natural environment, as well as to use existing infrastructure and public services more efficiently. Due to the inherent heterogeneity and complexity of settlements, UGBs in Germany are currently created manually by experts. Therefore, every dataset is linked to a specific area, investigation period and dedicated use. Clearly, up-to-date, homogeneous, meaningful and cost-efficient delineations created automatically are needed to avoid this reliance on manually or semi-automatically generated delineations. Here, we present an aggregative method to produce UGBs using building footprints and generally available topographic data as inputs. It was applied to study areas in Frankfurt/Main, the Hanover region and rural Brandenburg while taking full account of Germany’s planning and legal framework for spatial development. Our method is able to compensate for most of the weaknesses of available UGB data and to significantly raise the accuracy of UGBs in Germany. Therefore, it represents a valuable tool for generating basic data for future studies. Application elsewhere is also conceivable by regionalising the employed parameters. Full article
(This article belongs to the Special Issue Geo-Information Science in Planning and Development of Smart Cities)
Show Figures

Figure 1

17 pages, 9393 KiB  
Article
Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas
by Martino Terrone, Pietro Piana, Guido Paliaga, Marco D’Orazi and Francesco Faccini
ISPRS Int. J. Geo-Inf. 2021, 10(5), 349; https://doi.org/10.3390/ijgi10050349 - 18 May 2021
Cited by 20 | Viewed by 4300
Abstract
In recent years, there has been growing interest in urban geomorphology both for its applications in terms of landscape planning, and its historical, cultural, and scientific interest. Due to recent urban growth, the identification of landforms in cities is difficult, particularly in Mediterranean [...] Read more.
In recent years, there has been growing interest in urban geomorphology both for its applications in terms of landscape planning, and its historical, cultural, and scientific interest. Due to recent urban growth, the identification of landforms in cities is difficult, particularly in Mediterranean and central European cities, characterized by more than 1000 years of urban stratification. By comparing and overlapping 19th-century cartography and modern topography from remote sensing data, this research aims to assess the morphological evolution of the city of Genoa (Liguria, NW Italy). The analysis focuses on a highly detailed 1:2’000 scale map produced by Eng. Ignazio Porro in the mid-19th century. The methodology, developed in QGIS, was applied on five case studies of both hillside and valley floor areas of the city of Genoa. Through map overlay and digitalization of elevation data and contour lines, it was possible to identify with great accuracy the most significant morphological transformations that have occurred in the city since the mid-19th century. In addition, the results were validated by direct observation and by drills data of the regional database. The results allowed the identification and quantification of the main anthropic landforms. The paper suggests that the same methodology can be applied to other historical urban contexts characterized by urban and architectural stratification. Full article
Show Figures

Figure 1

17 pages, 6084 KiB  
Article
What Is the Shape of Geographical Time-Space? A Three-Dimensional Model Made of Curves and Cones
by Alain L’Hostis and Farouk Abdou
ISPRS Int. J. Geo-Inf. 2021, 10(5), 340; https://doi.org/10.3390/ijgi10050340 - 17 May 2021
Cited by 3 | Viewed by 4206
Abstract
Geographical time-spaces exhibit a series of properties, including space inversion, that turns any representation effort into a complex task. In order to improve the legibility of the representation and leveraging the advances of three-dimensional computer graphics, the aim of the study is to [...] Read more.
Geographical time-spaces exhibit a series of properties, including space inversion, that turns any representation effort into a complex task. In order to improve the legibility of the representation and leveraging the advances of three-dimensional computer graphics, the aim of the study is to propose a new method extending time-space relief cartography introduced by Mathis and L’Hostis. The novelty of the model resides in the use of cones to describing the terrestrial surface instead of graph faces, and in the use of curves instead of broken segments for edges. We implement the model on the Chinese space. The Chinese geographical time-space of reference year 2006 is produced by the combination and the confrontation of the fast air transport system and of the 7.5-times slower road transport system. Slower, short range flights are represented as curved lines above the earth surface with longer length than the geodesic, in order to account for a slower speed. The very steep slope of cones expresses the relative difficulty of crossing terrestrial time-space, as well as the comparably extreme efficiency of long-range flights for moving between cities. Finally, the whole image proposes a coherent representation of the geographical time-space where fast city-to-city transport is combined with slow terrestrial systems that allow one to reach any location. Full article
(This article belongs to the Special Issue Spatio-Temporal Models and Geo-Technologies)
Show Figures

Figure 1

15 pages, 8845 KiB  
Article
Vector Map Encryption Algorithm Based on Double Random Position Permutation Strategy
by Xiaolong Wang, Haowen Yan and Liming Zhang
ISPRS Int. J. Geo-Inf. 2021, 10(5), 311; https://doi.org/10.3390/ijgi10050311 - 7 May 2021
Cited by 11 | Viewed by 3601
Abstract
Encryption of vector maps, used for copyright protection, is of importance in the community of geographic information sciences. However, some studies adopt one-to-one mapping to scramble vertices and permutate the coordinates one by one according to the coordinate position in a plain map. [...] Read more.
Encryption of vector maps, used for copyright protection, is of importance in the community of geographic information sciences. However, some studies adopt one-to-one mapping to scramble vertices and permutate the coordinates one by one according to the coordinate position in a plain map. An attacker can easily obtain the key values by analyzing the relationship between the cipher vector map and the plain vector map, which will lead to the ineffectiveness of the scrambling operation. To solve the problem, a vector map encryption algorithm based on a double random position permutation strategy is proposed in this paper. First, the secret key sequence is generated using a four-dimensional quadratic autonomous hyperchaotic system. Then, all coordinates of the vector map are encrypted using the strategy of double random position permutation. Lastly, the encrypted coordinates are reorganized according to the vector map structure to obtain the cipher map. Experimental results show that: (1) one-to-one mapping between the plain vector map and cipher vector map is prevented from happening; (2) scrambling encryption between different map objects is achieved; (3) hackers cannot obtain the permutation key value by analyzing the pairs of the plain map and cipher map. Full article
(This article belongs to the Special Issue Cartographic Communication of Big Data)
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Context-Specific Point-of-Interest Recommendation Based on Popularity-Weighted Random Sampling and Factorization Machine
by Dongjin Yu, Yi Shen, Kaihui Xu and Yihang Xu
ISPRS Int. J. Geo-Inf. 2021, 10(4), 258; https://doi.org/10.3390/ijgi10040258 - 11 Apr 2021
Cited by 6 | Viewed by 2737
Abstract
Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit [...] Read more.
Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit their effectiveness significantly. This paper focuses on the problem of context-specific POI recommendation based on the check-in behaviors recorded by Location-Based Social Network (LBSN) services, which aims at recommending a list of POIs for a user to visit at a given context (such as time and weather). Specifically, a bidirectional influence correlativity metric is proposed to measure the semantic feature of user check-in behavior, and a contextual smoothing method to effectively alleviate the problem of data sparsity. In addition, the check-in probability is computed based on the geographical distance between the user’s home and the POI. Furthermore, to handle the problem of no negative feedback in LBSN, a weighted random sampling method is proposed based on contextual popularity. Finally, the recommendation results is obtained by utilizing Factorization Machine with Bayesian Personalized Ranking (BPR) loss. Experiments on a real dataset collected from Foursquare show that the proposed approach has better performance than others. Full article
Show Figures

Figure 1

20 pages, 34596 KiB  
Article
On the Use of ‘Glyphmaps’ for Analysing the Scale and Temporal Spread of COVID-19 Reported Cases
by Roger Beecham, Jason Dykes, Layik Hama and Nik Lomax
ISPRS Int. J. Geo-Inf. 2021, 10(4), 213; https://doi.org/10.3390/ijgi10040213 - 1 Apr 2021
Cited by 3 | Viewed by 3557
Abstract
Recent analysis of area-level COVID-19 cases data attempts to grapple with a challenge familiar to geovisualization: how to capture the development of the virus, whilst supporting analysis across geographic areas? We present several glyphmap designs for addressing this challenge applied to local authority [...] Read more.
Recent analysis of area-level COVID-19 cases data attempts to grapple with a challenge familiar to geovisualization: how to capture the development of the virus, whilst supporting analysis across geographic areas? We present several glyphmap designs for addressing this challenge applied to local authority data in England whereby charts displaying multiple aspects related to the pandemic are given a geographic arrangement. These graphics are visually complex, with clutter, occlusion and salience bias an inevitable consequence. We develop a framework for describing and validating the graphics against data and design requirements. Together with an observational data analysis, this framework is used to evaluate our designs, relating them to particular data analysis needs based on the usefulness of the structure they expose. Our designs, documented in an accompanying code repository, attend to common difficulties in geovisualization design and could transfer to contexts outside of the UK and to phenomena beyond the pandemic. Full article
Show Figures

Figure 1

19 pages, 4054 KiB  
Article
Comparing World City Networks by Language: A Complex-Network Approach
by Wenjia Zhang, Jiancheng Zhu and Pu Zhao
ISPRS Int. J. Geo-Inf. 2021, 10(4), 219; https://doi.org/10.3390/ijgi10040219 - 1 Apr 2021
Cited by 7 | Viewed by 2962
Abstract
City networks are multiplex and diverse rather than being regarded as part of a single universal model that is valid worldwide. This study contributes to the debate on multiple globalizations by distinguishing multiscale structures of world city networks (WCNs) reflected in the Internet [...] Read more.
City networks are multiplex and diverse rather than being regarded as part of a single universal model that is valid worldwide. This study contributes to the debate on multiple globalizations by distinguishing multiscale structures of world city networks (WCNs) reflected in the Internet webpage content in English, German, and French. Using big data sets from web crawling, we adopted a complex-network approach with both macroscale and mesoscale analyses to compare global and grouping properties in varying WCNs, by using novel methods such as the weighted stochastic block model (WSBM). The results suggest that at the macro scale, the rankings of city centralities vary across languages due to the uneven geographic distribution of languages and the variant levels of globalization of cities perceived in different languages. At the meso scale, the WSBMs infer different grouping patterns in the WCNs by language, and the specific roles of many world cities vary with language. The probability-based comparative analyses reveal that the English WCN looks more globalized, while the French and German worlds appear more territorial. Using the mesoscale structure detected in the English WCN to comprehend the city networks in other languages may be biased. These findings demonstrate the importance of scrutinizing multiplex WCNs in different cultures and languages as well as discussing mesoscale structures in comparative WCN studies. Full article
Show Figures

Figure 1

21 pages, 43310 KiB  
Article
Empirical Insights from a Study on Outlier Preserving Value Generalization in Animated Choropleth Maps
by Christoph Traun, Manuela Larissa Schreyer and Gudrun Wallentin
ISPRS Int. J. Geo-Inf. 2021, 10(4), 208; https://doi.org/10.3390/ijgi10040208 - 1 Apr 2021
Cited by 7 | Viewed by 2589
Abstract
Time series animation of choropleth maps easily exceeds our perceptual limits. In this empirical research, we investigate the effect of local outlier preserving value generalization of animated choropleth maps on the ability to detect general trends and local deviations thereof. Comparing generalization in [...] Read more.
Time series animation of choropleth maps easily exceeds our perceptual limits. In this empirical research, we investigate the effect of local outlier preserving value generalization of animated choropleth maps on the ability to detect general trends and local deviations thereof. Comparing generalization in space, in time, and in a combination of both dimensions, value smoothing based on a first order spatial neighborhood facilitated the detection of local outliers best, followed by the spatiotemporal and temporal generalization variants. We did not find any evidence that value generalization helps in detecting global trends. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

22 pages, 2898 KiB  
Article
Beyond Objects in Space-Time: Towards a Movement Analysis Framework with ‘How’ and ‘Why’ Elements
by Saeed Rahimi, Antoni B. Moore and Peter A. Whigham
ISPRS Int. J. Geo-Inf. 2021, 10(3), 190; https://doi.org/10.3390/ijgi10030190 - 22 Mar 2021
Cited by 4 | Viewed by 3413
Abstract
Current spatiotemporal data has facilitated movement studies to shift objectives from descriptive models to explanations of the underlying causes of movement. From both a practical and theoretical standpoint, progress in developing approaches for these explanations should be founded on a conceptual model. This [...] Read more.
Current spatiotemporal data has facilitated movement studies to shift objectives from descriptive models to explanations of the underlying causes of movement. From both a practical and theoretical standpoint, progress in developing approaches for these explanations should be founded on a conceptual model. This paper presents such a model in which three conceptual levels of abstraction are proposed to frame an agent-based representation of movement decision-making processes: ‘attribute,’ ‘actor,’ and ‘autonomous agent’. These in combination with three temporal, spatial, and spatiotemporal general forms of observations distinguish nine (3 × 3) representation typologies of movement data within the agent framework. Thirdly, there are three levels of cognitive reasoning: ‘association,’ ‘intervention,’ and ‘counterfactual’. This makes for 27 possible types of operation embedded in a conceptual cube with the level of abstraction, type of observation, and degree of cognitive reasoning forming the three axes. The conceptual model is an arena where movement queries and the statement of relevant objectives takes place. An example implementation of a tightly constrained spatiotemporal scenario to ground the agent-structure was summarised. The platform has been well-defined so as to accommodate different tools and techniques to drive causal inference in computational movement analysis as an immediate future step. Full article
(This article belongs to the Special Issue Innovations in Agent-Based Modelling of Spatial Systems)
Show Figures

Figure 1

41 pages, 5142 KiB  
Article
Pyramidal Framework: Guidance for the Next Generation of GIS Spatial-Temporal Models
by Cyril Carré and Younes Hamdani
ISPRS Int. J. Geo-Inf. 2021, 10(3), 188; https://doi.org/10.3390/ijgi10030188 - 22 Mar 2021
Cited by 3 | Viewed by 4267
Abstract
Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a [...] Read more.
Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling. Full article
(This article belongs to the Special Issue Spatio-Temporal Models and Geo-Technologies)
Show Figures

Figure 1

21 pages, 16896 KiB  
Article
A Decentralized Semantic Reasoning Approach for the Detection and Representation of Continuous Spatial Dynamic Phenomena in Wireless Sensor Networks
by Roger Cesarié Ntankouo Njila, Mir Abolfazl Mostafavi and Jean Brodeur
ISPRS Int. J. Geo-Inf. 2021, 10(3), 182; https://doi.org/10.3390/ijgi10030182 - 19 Mar 2021
Cited by 5 | Viewed by 3477
Abstract
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of [...] Read more.
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of sensor data and their update with respect to the evolution of the state of the phenomena to be represented. Sensor data are generally poorly provided in terms of semantic information. Hence, the proposed approach starts with building a knowledge base integrating sensor and domain ontologies and then uses fuzzy rules to extract three-valued spatial qualitative information expressing the relative position of each sensor with respect to the monitored phenomenon’s extent. The observed phenomena are modeled using a fuzzy-crisp type spatial object made of a kernel and a conjecture part, which is a more realistic spatial representation for such vague shape environmental phenomena. The second step of our approach uses decentralized computing techniques to infer boundary detection and vertices for the kernel and conjecture parts of spatial objects using fuzzy IF-THEN rules. Finally, we present a case study for urban noise pollution monitoring by a sensor network, which is implemented in Netlogo to illustrate the validity of the proposed approach. Full article
(This article belongs to the Special Issue Applications of Discrete and Computational Geometry to Geoprocessing)
Show Figures

Figure 1

33 pages, 651 KiB  
Review
Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations
by Timothy Nyerges, John A. Gallo, Steven D. Prager, Keith M. Reynolds, Philip J. Murphy and WenWen Li
ISPRS Int. J. Geo-Inf. 2021, 10(3), 179; https://doi.org/10.3390/ijgi10030179 - 18 Mar 2021
Cited by 2 | Viewed by 3272
Abstract
This paper synthesizes vulnerability, risk, resilience, and sustainability (VRRS) in a way that can be used for decision evaluations about sustainable systems, whether such systems are called coupled natural–human systems, social–ecological systems, coupled human–environment systems, and/or hazards influencing global environmental change, all considered [...] Read more.
This paper synthesizes vulnerability, risk, resilience, and sustainability (VRRS) in a way that can be used for decision evaluations about sustainable systems, whether such systems are called coupled natural–human systems, social–ecological systems, coupled human–environment systems, and/or hazards influencing global environmental change, all considered geospatial open systems. Evaluations of V-R-R-S as separate concepts for complex decision problems are important, but more insightful when synthesized for improving integrated decision priorities based on trade-offs of V-R-R-S objectives. A synthesis concept, called VRRSability, provides an overarching perspective that elucidates Tier 2 of a previously developed four-tier framework for organizing measurement-informed ontology and epistemology for sustainability information representation (MOESIR). The new synthesis deepens the MOESIR framework to address VRRSability information representation and clarifies the Tier 2 layer of abstraction. This VRRSability synthesis, composed of 13 components (several with sub-components), offers a controlled vocabulary as the basis of a conceptual framework for organizing workflow assessment and intervention strategies as part of geoinformation decision support software. Researchers, practitioners, and machine learning algorithms can use the vocabulary results for characterizing functional performance relationships between elements of geospatial open systems and the computing technology systems used for evaluating them within a context of complex sustainable systems. Full article
(This article belongs to the Special Issue Geospatial Open Systems)
Show Figures

Figure 1

16 pages, 5407 KiB  
Article
Consideration of Uncertainty Information in Accessibility Analyses for an Effective Use of Urban Infrastructures
by Jochen Schiewe and Martin Knura
ISPRS Int. J. Geo-Inf. 2021, 10(3), 171; https://doi.org/10.3390/ijgi10030171 - 16 Mar 2021
Cited by 2 | Viewed by 2469
Abstract
Accessibility analyses are an essential step in the evaluation and planning of urban infrastructures such as transport or pipeline networks. However, these studies generally produce sharply defined lines (called isovarones) or areas (called isovarone areas) that represent the same or similar accessibility. Uncertainties [...] Read more.
Accessibility analyses are an essential step in the evaluation and planning of urban infrastructures such as transport or pipeline networks. However, these studies generally produce sharply defined lines (called isovarones) or areas (called isovarone areas) that represent the same or similar accessibility. Uncertainties in the input data are usually not taken into account. The aim of this contribution is, therefore, to set up a structured framework that describes the integration of uncertainty information for accessibility analyses. This framework takes uncertainties in the input data, in the processing step, in the target variables, and in the final visualization into account. Particular attention is paid, on the one hand, to the impact of the uncertainties in the target values, as these are key factors for reasoning and decision making. On the other hand, the visualization component is emphasized by applying a dichotomous classification of uncertainty visualization methods. This framework leads to a large set of possible combinations of uncertainty categories. Five selected examples that have been generated with a new software tool and that cover important combinations are presented and discussed. Full article
(This article belongs to the Special Issue Geo-Information for Developing Urban Infrastructures)
Show Figures

Figure 1

20 pages, 3189 KiB  
Article
Building a Large-Scale Micro-Simulation Transport Scenario Using Big Data
by Joerg Schweizer, Cristian Poliziani, Federico Rupi, Davide Morgano and Mattia Magi
ISPRS Int. J. Geo-Inf. 2021, 10(3), 165; https://doi.org/10.3390/ijgi10030165 - 14 Mar 2021
Cited by 25 | Viewed by 5616
Abstract
A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport [...] Read more.
A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport technologies and services, such as intelligent traffic lights or shared autonomous vehicles. Large-scale microsimulations can be seen as an interdisciplinary project where transport planners and technology developers can work together on the same scenario; big data from OpenStreetMap, traffic surveys, GPS traces, traffic counts and transit details are merged into a unique transport scenario. The employed activity-based demand model is able to simulate and evaluate door-to-door trip times while testing different mobility strategies. Indeed, a utility-based mode choice model is calibrated that matches the official modal split. The scenario is implemented and analyzed with the software SUMOPy/SUMO which is an open source software, available on GitHub. The simulated traffic flows are compared with flows from traffic counters using different indicators. The determination coefficient has been 0.7 for larger roads (width greater than seven meters). The present work shows that it is possible to build realistic microsimulation scenarios for larger urban areas. A higher precision of the results could be achieved by using more coherent data and by merging different data sources. Full article
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective
by Hartmut Müller and Marije Louwsma
ISPRS Int. J. Geo-Inf. 2021, 10(3), 166; https://doi.org/10.3390/ijgi10030166 - 14 Mar 2021
Cited by 5 | Viewed by 3110
Abstract
The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of [...] Read more.
The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned at the European level. However, further integration and alignment of public health data, statistical data and spatio-temporal data could provide even better information for governments and actors involved in managing the outbreak, both at national and supra-national level. The Infrastructure for Spatial Information in Europe (INSPIRE) initiative and the NUTS system provide a framework to guide future integration and extension of existing systems. Full article
(This article belongs to the Special Issue Spatio-Temporal Models and Geo-Technologies)
Show Figures

Figure 1

16 pages, 2309 KiB  
Article
Effectiveness of Memorizing an Animated Route—Comparing Satellite and Road Map Differences in the Eye-Tracking Study
by Paweł Cybulski
ISPRS Int. J. Geo-Inf. 2021, 10(3), 159; https://doi.org/10.3390/ijgi10030159 - 12 Mar 2021
Cited by 9 | Viewed by 3281
Abstract
There is no consensus on the importance of satellite images in the process of memorizing a route from a map image, especially if the route is displayed on the Internet using dynamic (animated) cartographic visualization. In modern dynamic maps built with JavaScript APIs, [...] Read more.
There is no consensus on the importance of satellite images in the process of memorizing a route from a map image, especially if the route is displayed on the Internet using dynamic (animated) cartographic visualization. In modern dynamic maps built with JavaScript APIs, background layers can be easily altered by map users. The animation attracts people’s attention better than static images, but it causes some perceptual problems. This study examined the influence of the number of turns on the effectiveness (correctness) and efficiency of memorizing the animated route on different cartographic backgrounds. The routes of three difficulty levels, based on satellite and road background, were compared. The results show that the satellite background was not a significant factor influencing the efficiency and effectiveness of route memorizing. Recordings of the eye movement confirmed this. The study reveals that there were intergroup differences in participants’ visual behavior. Participants who described their spatial abilities as “very good” performed better (in terms of effectiveness and efficiency) in route memorizing tasks. For future research, there is a need to study route variability and its impact on participants’ performance. Moreover, future studies should involve differences in route visualization (e.g., without and with ephemeral or permanent trail). Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

32 pages, 15184 KiB  
Article
Development after Displacement: Evaluating the Utility of OpenStreetMap Data for Monitoring Sustainable Development Goal Progress in Refugee Settlements
by Jamon Van Den Hoek, Hannah K. Friedrich, Anna Ballasiotes, Laura E. R. Peters and David Wrathall
ISPRS Int. J. Geo-Inf. 2021, 10(3), 153; https://doi.org/10.3390/ijgi10030153 - 10 Mar 2021
Cited by 14 | Viewed by 5025
Abstract
In 2015, 193 countries declared their commitment to “leave no one behind” in pursuit of 17 Sustainable Development Goals (SDGs). However, the world’s refugees have been routinely excluded from national censuses and representative surveys, and, as a result, have broadly been overlooked in [...] Read more.
In 2015, 193 countries declared their commitment to “leave no one behind” in pursuit of 17 Sustainable Development Goals (SDGs). However, the world’s refugees have been routinely excluded from national censuses and representative surveys, and, as a result, have broadly been overlooked in SDG evaluations. In this study, we examine the potential of OpenStreetMap (OSM) data for monitoring SDG progress in refugee settlements. We collected all available OSM data in 28 refugee and 26 nearby non-refugee settlements in the major refugee-hosting country of Uganda. We created a novel SDG-OSM data model, measured the spatial and temporal coverages of SDG-relevant OSM data across refugee settlements, and compared these results to non-refugee settlements. We found 11 different SDGs represented across 92% (21,950) of OSM data in refugee settlements, compared to 78% (1919 nodes) in non-refugee settlements. However, most data were created three years after refugee arrival, and 81% of OSM data in refugee settlements were never edited, both of which limit the potential for long-term monitoring of SDG progress. In light of our findings, we offer suggestions for improving OSM-driven SDG monitoring in refugee settlements that have relevance for development and humanitarian practitioners and research communities alike. Full article
Show Figures

Graphical abstract

15 pages, 1822 KiB  
Article
Simultaneous Extraction of Road and Centerline from Aerial Images Using a Deep Convolutional Neural Network
by Tamara Alshaikhli, Wen Liu and Yoshihisa Maruyama
ISPRS Int. J. Geo-Inf. 2021, 10(3), 147; https://doi.org/10.3390/ijgi10030147 - 8 Mar 2021
Cited by 7 | Viewed by 2200
Abstract
The extraction of roads and centerlines from aerial imagery is considered an important topic because it contributes to different fields, such as urban planning, transportation engineering, and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects the quality [...] Read more.
The extraction of roads and centerlines from aerial imagery is considered an important topic because it contributes to different fields, such as urban planning, transportation engineering, and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects the quality of extracted roads and centerlines because of the correlation between these two tasks. Accurate road extraction enhances accurate centerline extraction if these two tasks are processed simultaneously. This study proposes a multitask learning scheme using a gated deep convolutional neural network (DCNN) to extract roads and centerlines simultaneously. The DCNN is composed of one encoder and two decoders implemented on the U-Net backbone. The decoders are assigned to extract roads and centerlines from low-resolution feature maps. Before extraction, the images are processed within an encoder to extract the spatial information from a complex, high-resolution image. The encoder consists of the residual blocks (Res-Block) connected to a bridge represented by a Res-Block, and the bridge connects the two identical decoders, which consists of stacking convolutional layers (Conv.layer). Attention gates (AGs) are added to our model to enhance the selection process for the true pixels that represent road or centerline classes. Our model is trained on a dataset of high-resolution aerial images, which is open to the public. The model succeeds in efficiently extracting roads and centerlines compared with other multitask learning models. Full article
Show Figures

Figure 1

15 pages, 6948 KiB  
Article
Interpersonal and Intrapersonal Variabilities in Daily Activity-Travel Patterns: A Networked Spatiotemporal Analysis
by Wenjia Zhang, Chunhan Ji, Hao Yu, Yi Zhao and Yanwei Chai
ISPRS Int. J. Geo-Inf. 2021, 10(3), 148; https://doi.org/10.3390/ijgi10030148 - 8 Mar 2021
Cited by 10 | Viewed by 3199
Abstract
Interpersonal and intrapersonal variabilities are two important perspectives to understand daily travel behaviors, while only a small number of studies incorporate them for understanding human dynamics. This paper employed a network analysis approach to detecting daily activity-travel patterns of 680 Beijing’s residents within [...] Read more.
Interpersonal and intrapersonal variabilities are two important perspectives to understand daily travel behaviors, while only a small number of studies incorporate them for understanding human dynamics. This paper employed a network analysis approach to detecting daily activity-travel patterns of 680 Beijing’s residents within a week and then used a multilevel multinomial logit model to analyze the intrapersonal variability in patterns and the socioeconomic linkages behind them. Results suggest that most activity-travel patterns have significant day-to-day intrapersonal and interpersonal variabilities. This suggests that the application of a typical day of activity-travel behaviors to measure and represent a week’s or even longer-term behaviors may be biased, due to the existence of day-to-day intrapersonal variability. This study also provides a hint for the selection of days of a week to conduct a diary survey for activity pattern mining or travel demand modeling. Full article
(This article belongs to the Special Issue Geospatial Methods in Social and Behavioral Sciences)
Show Figures

Figure 1

17 pages, 3033 KiB  
Article
Effects of Virtual Reality Locomotion Techniques on Distance Estimations
by Julian Keil, Dennis Edler, Denise O’Meara, Annika Korte and Frank Dickmann
ISPRS Int. J. Geo-Inf. 2021, 10(3), 150; https://doi.org/10.3390/ijgi10030150 - 8 Mar 2021
Cited by 44 | Viewed by 6460
Abstract
Mental representations of geographic space are based on knowledge of spatial elements and the spatial relation between these elements. Acquiring such mental representations of space requires assessing distances between pairs of spatial elements. In virtual reality (VR) applications, locomotion techniques based on real-world [...] Read more.
Mental representations of geographic space are based on knowledge of spatial elements and the spatial relation between these elements. Acquiring such mental representations of space requires assessing distances between pairs of spatial elements. In virtual reality (VR) applications, locomotion techniques based on real-world movement are constrained by the size of the available room and the used room scale tracking system. Therefore, many VR applications use additional locomotion techniques such as artificial locomotion (continuous forward movement) or teleporting (“jumping” from one location to another). These locomotion techniques move the user through virtual space based on controller input. However, it has not yet been investigated how different established controller-based locomotion techniques affect distance estimations in VR. In an experiment, we compared distance estimations between artificial locomotion and teleportation before and after a training phase. The results showed that distance estimations in both locomotion conditions improved after the training. Additionally, distance estimations were found to be more accurate when teleportation locomotion was used. Full article
Show Figures

Figure 1

16 pages, 5063 KiB  
Article
The Extended Concept of the Map in View of Modern Geoinformation Products
by Dariusz Gotlib, Robert Olszewski and Georg Gartner
ISPRS Int. J. Geo-Inf. 2021, 10(3), 142; https://doi.org/10.3390/ijgi10030142 - 5 Mar 2021
Cited by 4 | Viewed by 2603
Abstract
In the face of strikingly intense technological development, there have been significant discrepancies in the understanding of the concept of the map; an understanding that is fundamental to cartography and, more broadly, GIScience. The development of electronic products based on geoinformation has caused [...] Read more.
In the face of strikingly intense technological development, there have been significant discrepancies in the understanding of the concept of the map; an understanding that is fundamental to cartography and, more broadly, GIScience. The development of electronic products based on geoinformation has caused a growing need for the systematization of basic concepts, including defining what a map is. In particular, the modification of the idea of the map may profoundly influence the future development of cartography. The comprehensive and innovative use of maps, for example, in location-based service (LBS) applications, may contribute to more in-depth analyses in this area. This article examines how the concept of how the map is used in technological or scientific literature about the latest geoinformation applications, as well as analyzing the survey results that confirm the change in social perception of the concept of the map in cartography. The article also refers to the role of the map in the process of indirect cognition and understanding of geographical space—cognition realized through maps. A social understanding of mapping concepts is evolving and covers the entire spectrum of geoinformation products. It seems that the latest geoinformation solutions, such as navigation applications and, in particular, applications supporting the movement of autonomous vehicles (e.g., self-driving cars), have had a particular impact on the concept of the map. This is confirmed by the results of a survey conducted by the authors on a group of nearly 900 respondents from a variety of countries. The vast majority of users are convinced that the contemporary understanding of the concept of the map is a long way from the classic definition of this concept. Therefore, in the opinion of the authors of this article, it is worth undertaking research that will become a starting point for a discussion about the broader definition of the map in GIScience. Full article
Show Figures

Figure 1

23 pages, 6413 KiB  
Article
Geospatial Queries on Data Collection Using a Common Provenance Model
by Guillem Closa, Joan Masó, Núria Julià and Xavier Pons
ISPRS Int. J. Geo-Inf. 2021, 10(3), 139; https://doi.org/10.3390/ijgi10030139 - 5 Mar 2021
Cited by 4 | Viewed by 2672
Abstract
Lineage information is the part of the metadata that describes “what”, “when”, “who”, “how”, and “where” geospatial data were generated. If it is well-presented and queryable, lineage becomes very useful information for inferring data quality, tracing error sources and increasing trust in geospatial [...] Read more.
Lineage information is the part of the metadata that describes “what”, “when”, “who”, “how”, and “where” geospatial data were generated. If it is well-presented and queryable, lineage becomes very useful information for inferring data quality, tracing error sources and increasing trust in geospatial information. In addition, if the lineage of a collection of datasets can be related and presented together, datasets, process chains, and methodologies can be compared. This paper proposes extending process step lineage descriptions into four explicit levels of abstraction (process run, tool, algorithm and functionality). Including functionalities and algorithm descriptions as a part of lineage provides high-level information that is independent from the details of the software used. Therefore, it is possible to transform lineage metadata that is initially documenting specific processing steps into a reusable workflow that describes a set of operations as a processing chain. This paper presents a system that provides lineage information as a service in a distributed environment. The system is complemented by an integrated provenance web application that is capable of visualizing and querying a provenance graph that is composed by the lineage of a collection of datasets. The International Organization for Standardization (ISO) 19115 standards family with World Wide Web Consortium (W3C) provenance initiative (W3C PROV) were combined in order to integrate provenance of a collection of datasets. To represent lineage elements, the ISO 19115-2 lineage class names were chosen, because they express the names of the geospatial objects that are involved more precisely. The relationship naming conventions of W3C PROV are used to represent relationships among these elements. The elements and relationships are presented in a queryable graph. Full article
(This article belongs to the Special Issue Geospatial Metadata)
Show Figures

Figure 1

23 pages, 9574 KiB  
Article
Near Real-Time Semantic View Analysis of 3D City Models in Web Browser
by Juho-Pekka Virtanen, Kaisa Jaalama, Tuulia Puustinen, Arttu Julin, Juha Hyyppä and Hannu Hyyppä
ISPRS Int. J. Geo-Inf. 2021, 10(3), 138; https://doi.org/10.3390/ijgi10030138 - 4 Mar 2021
Cited by 22 | Viewed by 5474
Abstract
3D city models and their browser-based applications have become an increasingly applied tool in the cities. One of their applications is the analysis views and visibility, applicable to property valuation and evaluation of urban green infrastructure. We present a near real-time semantic view [...] Read more.
3D city models and their browser-based applications have become an increasingly applied tool in the cities. One of their applications is the analysis views and visibility, applicable to property valuation and evaluation of urban green infrastructure. We present a near real-time semantic view analysis relying on a 3D city model, implemented in a web browser. The analysis is tested in two alternative use cases: property valuation and evaluation of the urban green infrastructure. The results describe the elements visible from a given location, and can also be applied to object type specific analysis, such as green view index estimation, with the main benefit being the freedom of choosing the point-of-view obtained with the 3D model. Several promising development directions can be identified based on the current implementation and experiment results, including the integration of the semantic view analysis with virtual reality immersive visualization or 3D city model application development platforms. Full article
(This article belongs to the Special Issue Virtual 3D City Models)
Show Figures

Figure 1

20 pages, 8982 KiB  
Article
Transfer Learning of a Deep Learning Model for Exploring Tourists’ Urban Image Using Geotagged Photos
by Youngok Kang, Nahye Cho, Jiyoung Yoon, Soyeon Park and Jiyeon Kim
ISPRS Int. J. Geo-Inf. 2021, 10(3), 137; https://doi.org/10.3390/ijgi10030137 - 4 Mar 2021
Cited by 37 | Viewed by 4968
Abstract
Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze [...] Read more.
Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze the tourists’ urban image by identifying the visual content of photos. However, previous studies have limitations in properly reflecting unique landscape, cultural characteristics, and traditional elements of the region that are prominent in tourism. With the purpose of going beyond these limitations of previous studies, we crawled 168,216 Flickr photos, created 75 scenes and 13 categories as a tourist’ photo classification by analyzing the characteristics of photos posted by tourists and developed a deep learning model by continuously re-training the Inception-v3 model. The final model shows high accuracy of 85.77% for the Top 1 and 95.69% for the Top 5. The final model was applied to the entire dataset to analyze the regions of attraction and the tourists’ urban image in Seoul. We found that tourists feel attracted to Seoul where the modern features such as skyscrapers and uniquely designed architectures and traditional features such as palaces and cultural elements are mixed together in the city. This work demonstrates a tourist photo classification suitable for local characteristics and the process of re-training a deep learning model to effectively classify a large volume of tourists’ photos. Full article
(This article belongs to the Special Issue Geospatial Artificial Intelligence)
Show Figures

Figure 1

35 pages, 4586 KiB  
Article
Evaluating Social Distancing Measures and Their Association with the Covid-19 Pandemic in South America
by Gisliany Lillian Alves de Oliveira, Luciana Lima, Ivanovitch Silva, Marcel da Câmara Ribeiro-Dantas, Kayo Henrique Monteiro and Patricia Takako Endo
ISPRS Int. J. Geo-Inf. 2021, 10(3), 121; https://doi.org/10.3390/ijgi10030121 - 1 Mar 2021
Cited by 17 | Viewed by 5095
Abstract
Social distancing is a powerful non-pharmaceutical intervention used as a way to slow the spread of the SARS-CoV-2 virus around the world since the end of 2019 in China. Taking that into account, this work aimed to identify variations on population mobility in [...] Read more.
Social distancing is a powerful non-pharmaceutical intervention used as a way to slow the spread of the SARS-CoV-2 virus around the world since the end of 2019 in China. Taking that into account, this work aimed to identify variations on population mobility in South America during the pandemic (15 February to 27 October 2020). We used a data-driven approach to create a community mobility index from the Google Covid-19 Community Mobility and relate it to the Covid stringency index from Oxford Covid-19 Government Response Tracker (OxCGRT). Two hypotheses were established: countries which have adopted stricter social distancing measures have also a lower level of circulation (H1), and mobility is occurring randomly in space (H2). Considering a transient period, a low capacity of governments to respond to the pandemic with more stringent measures of social distancing was observed at the beginning of the crisis. In turn, considering a steady-state period, the results showed an inverse relationship between the Covid stringency index and the community mobility index for at least three countries (H1 rejected). Regarding the spatial analysis, global and local Moran indices revealed regional mobility patterns for Argentina, Brazil, and Chile (H1 rejected). In Brazil, the absence of coordinated policies between the federal government and states regarding social distancing may have played an important role for several and extensive clusters formation. On the other hand, the results for Argentina and Chile could be signals for the difficulties of governments in keeping their population under control, and for long periods, even under stricter decrees. Full article
(This article belongs to the Collection Spatial Components of COVID-19 Pandemic)
Show Figures

Figure 1

20 pages, 8349 KiB  
Article
Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience
by Kejin Wang, Nina S. N. Lam, Lei Zou and Volodymyr Mihunov
ISPRS Int. J. Geo-Inf. 2021, 10(3), 116; https://doi.org/10.3390/ijgi10030116 - 27 Feb 2021
Cited by 24 | Viewed by 3710
Abstract
Disaster resilience is the capacity of a community to “bounce back” from disastrous events. Most studies rely on traditional data such as census data to study community resilience. With increasing use of social media, new data sources such as Twitter could be utilized [...] Read more.
Disaster resilience is the capacity of a community to “bounce back” from disastrous events. Most studies rely on traditional data such as census data to study community resilience. With increasing use of social media, new data sources such as Twitter could be utilized to monitor human response during different phases of disasters to better understand resilience. An important research question is: Does Twitter use correlate with disaster resilience? Specifically, will communities with more disaster-related Twitter uses be more resilient to disasters, presumably because they have better situational awareness? The underlying issue is that if there are social and geographical disparities in Twitter use, how will such disparities affect communities’ resilience to disasters? This study examines the relationship between Twitter use and community resilience during Hurricane Isaac, which hit Louisiana and Mississippi in August 2012. First, we applied the resilience inference measurement (RIM) model to calculate the resilience indices of 146 affected counties. Second, we analyzed Twitter use and their sentiment patterns through the three phases of Hurricane Isaac—preparedness, response, and recovery. Third, we correlated Twitter use density and sentiment scores with the resilience scores and major social–environmental variables to test whether significant geographical and social disparities in Twitter use existed through the three phases of disaster management. Significant positive correlations were found between Twitter use density and resilience indicators, confirming that communities with higher resilience capacity, which are characterized by better social–environmental conditions, tend to have higher Twitter use. These results imply that Twitter use during disasters could be improved to increase the resilience of affected communities. On the other hand, no significant correlations were found between sentiment scores and resilience indicators, suggesting that further research on sentiment analysis may be needed. Full article
(This article belongs to the Special Issue Applications and Implications in Geosocial Media Monitoring)
Show Figures

Figure 1

25 pages, 13164 KiB  
Article
A Unified Methodology for the Generalisation of the Geometry of Features
by Anna Barańska, Joanna Bac-Bronowicz, Dorota Dejniak, Stanisław Lewiński, Artur Krawczyk and Tadeusz Chrobak
ISPRS Int. J. Geo-Inf. 2021, 10(3), 107; https://doi.org/10.3390/ijgi10030107 - 25 Feb 2021
Cited by 2 | Viewed by 2507
Abstract
The development of generalisation (simplification) methods for the geometry of features in digital cartography in most cases involves the improvement of existing algorithms without their validation with respect to the similarity of feature geometry before and after the process. It also consists of [...] Read more.
The development of generalisation (simplification) methods for the geometry of features in digital cartography in most cases involves the improvement of existing algorithms without their validation with respect to the similarity of feature geometry before and after the process. It also consists of the assessment of results from the algorithms, i.e., characteristics that are indispensable for automatic generalisation. The preparation of a fully automatic generalisation for spatial data requires certain standards, as well as unique and verifiable algorithms for particular groups of features. This enables cartographers to draw features from these databases to be used directly on the maps. As a result, collected data and their generalised unique counterparts at various scales should constitute standardised sets, as well as their updating procedures. This paper proposes a solution which consists in contractive self-mapping (contractor for scale s = 1) that fulfils the assumptions of the Banach fixed-point theorem. The method of generalisation of feature geometry that uses the contractive self-mapping approach is well justified due to the fact that a single update of source data can be applied to all scales simultaneously. Feature data at every scale s < 1 are generalised through contractive mapping, which leads to a unique solution. Further generalisation of the feature is carried out on larger scale spatial data (not necessarily source data), which reduces the time and cost of the new elaboration. The main part of this article is the theoretical presentation of objectifying the complex process of the generalisation of the geometry of a feature. The use of the inherent characteristics of metric spaces, narrowing mappings, Lipschitz and Cauchy conditions, Salishchev measures, and Banach theorems ensure the uniqueness of the generalisation process. Their application to generalisation makes this process objective, as it ensures that there is a single solution for portraying the generalised features at each scale. The present study is dedicated to researchers concerned with the theory of cartography. Full article
(This article belongs to the Special Issue Spatial Optimization and GIS)
Show Figures

Figure 1

32 pages, 12094 KiB  
Article
TouchTerrain—3D Printable Terrain Models
by Chris Harding, Franek Hasiuk and Aaron Wood
ISPRS Int. J. Geo-Inf. 2021, 10(3), 108; https://doi.org/10.3390/ijgi10030108 - 25 Feb 2021
Cited by 8 | Viewed by 7350
Abstract
TouchTerrain is a simple-to-use web application that makes creating 3D printable terrain models from anywhere on the globe accessible to a wide range of users, from people with no GIS expertise to power users. For coders, a Python-based standalone version is available from [...] Read more.
TouchTerrain is a simple-to-use web application that makes creating 3D printable terrain models from anywhere on the globe accessible to a wide range of users, from people with no GIS expertise to power users. For coders, a Python-based standalone version is available from the open-source project’s GitHub repository. Analyzing 18 months of web analytics gave us a preliminary look at who is using the TouchTerrain web application and what their models are used for; and to map out what terrains on the globe they chose to 3D print. From July 2019 to January 2021, more than 20,000 terrain models were downloaded. Models were created for many different use cases, including education, research, outdoor activities and crafting mementos. Most models were realized with 3D printers, but a sizable minority used CNC machines. Our own experiences with using 3D printed terrain in a university setting have been very positive so far. Anecdotal evidence points to the strong potential for 3D printed terrain models to provide significant help with specific map-related tasks. For the introductory geology laboratory, 3D printed models were used as a form of “training wheels” to aid beginning students in learning to read contour maps, which are still an important tool for geology. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

21 pages, 6287 KiB  
Article
Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization
by Tingting Pan, Yu Zhang, Fenzhen Su, Vincent Lyne, Fei Cheng and Han Xiao
ISPRS Int. J. Geo-Inf. 2021, 10(2), 100; https://doi.org/10.3390/ijgi10020100 - 22 Feb 2021
Cited by 24 | Viewed by 3044
Abstract
Practical efficient regional land-use planning requires planners to balance competing uses, regional policies, spatial compatibilities, and priorities across the social, economic, and ecological domains. Genetic algorithm optimization has progressed complex planning, but challenges remain in developing practical alternatives to random initialization, genetic mutations, [...] Read more.
Practical efficient regional land-use planning requires planners to balance competing uses, regional policies, spatial compatibilities, and priorities across the social, economic, and ecological domains. Genetic algorithm optimization has progressed complex planning, but challenges remain in developing practical alternatives to random initialization, genetic mutations, and to pragmatically balance competing objectives. To meet these practical needs, we developed a Land use Intensity-restricted Multi-objective Spatial Optimization (LIr-MSO) model with more realistic patch size initialization, novel mutation, elite strategies, and objectives balanced via nominalizations and weightings. We tested the model for Dapeng, China where experiments compared comprehensive fitness (across conversion cost, Gross Domestic Product (GDP), ecosystem services value, compactness, and conflict degree) with three contrast experiments, in which changes were separately made in the initialization and mutation. The comprehensive model gave superior fitness compared to the contrast experiments. Iterations progressed rapidly to near-optimality, but final convergence involved much slower parent–offspring mutations. Tradeoffs between conversion cost and compactness were strongest, and conflict degree improved in part as an emergent property of the spatial social connectedness built into our algorithm. Observations of rapid iteration to near-optimality with our model can facilitate interactive simulations, not possible with current models, involving land-use planners and regional managers. Full article
Show Figures

Figure 1

33 pages, 4090 KiB  
Review
Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review
by Andreas Tsatsaris, Kleomenis Kalogeropoulos, Nikolaos Stathopoulos, Panagiota Louka, Konstantinos Tsanakas, Demetrios E. Tsesmelis, Vassilios Krassanakis, George P. Petropoulos, Vasilis Pappas and Christos Chalkias
ISPRS Int. J. Geo-Inf. 2021, 10(2), 94; https://doi.org/10.3390/ijgi10020094 - 21 Feb 2021
Cited by 43 | Viewed by 6666
Abstract
Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified [...] Read more.
Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified by anthropogenic factors. Thus, they present rapid increase in intensity, frequency of occurrence, spatial density, and significant spread of the areas of occurrence. The impact of these phenomena is devastating to human life and to global economies, private holdings, infrastructure, etc., while in a wider context it has a very negative effect on the social, environmental, and economic status of the affected region. Geospatial technologies including Geographic Information Systems, Remote Sensing—Earth Observation as well as related spatial data analysis tools, models, databases, contribute nowadays significantly in predicting, preventing, researching, addressing, rehabilitating, and managing these phenomena and their effects. This review attempts to mark the most devastating geo-hazards from the view of environmental monitoring, covering the state of the art in the use of geospatial technologies in that respect. It also defines the main challenge of this new era which is nothing more than the fictitious exploitation of the information produced by the environmental monitoring so that the necessary policies are taken in the direction of a sustainable future. The review highlights the potential and increasing added value of geographic information as a means to support environmental monitoring in the face of climate change. The growth in geographic information seems to be rapidly accelerated due to the technological and scientific developments that will continue with exponential progress in the years to come. Nonetheless, as it is also highlighted in this review continuous monitoring of the environment is subject to an interdisciplinary approach and contains an amount of actions that cover both the development of natural phenomena and their catastrophic effects mostly due to climate change. Full article
(This article belongs to the Special Issue GIS-Based Analysis for Quality of Life and Environmental Monitoring)
Show Figures

Figure 1

17 pages, 9586 KiB  
Article
Digital Graphic Documentation and Architectural Heritage: Deformations in a 16th-Century Ceiling of the Pinelo Palace in Seville (Spain)
by Juan Francisco Reinoso-Gordo, Antonio Gámiz-Gordo and Pedro Barrero-Ortega
ISPRS Int. J. Geo-Inf. 2021, 10(2), 85; https://doi.org/10.3390/ijgi10020085 - 19 Feb 2021
Cited by 10 | Viewed by 3404
Abstract
Suitable graphic documentation is essential to ascertain and conserve architectural heritage. For the first time, accurate digital images are provided of a 16th-century wooden ceiling, composed of geometric interlacing patterns, in the Pinelo Palace in Seville. Today, this ceiling suffers from significant deformation. [...] Read more.
Suitable graphic documentation is essential to ascertain and conserve architectural heritage. For the first time, accurate digital images are provided of a 16th-century wooden ceiling, composed of geometric interlacing patterns, in the Pinelo Palace in Seville. Today, this ceiling suffers from significant deformation. Although there are many publications on the digital documentation of architectural heritage, no graphic studies on this type of deformed ceilings have been presented. This study starts by providing data on the palace history concerning the design of geometric interlacing patterns in carpentry according to the 1633 book by López de Arenas, and on the ceiling consolidation in the 20th century. Images were then obtained using two complementary procedures: from a 3D laser scanner, which offers metric data on deformations; and from photogrammetry, which facilitates the visualisation of details. In this way, this type of heritage is documented in an innovative graphic approach, which is essential for its conservation and/or restoration with scientific foundations and also to disseminate a reliable digital image of the most beautiful ceiling of this Renaissance palace in southern Europe. Full article
(This article belongs to the Special Issue 3D Modeling and GIS for Historical Sites Reconstruction)
Show Figures

Figure 1

20 pages, 3352 KiB  
Article
Do Different Map Types Support Map Reading Equally? Comparing Choropleth, Graduated Symbols, and Isoline Maps for Map Use Tasks
by Katarzyna Słomska-Przech and Izabela Małgorzata Gołębiowska
ISPRS Int. J. Geo-Inf. 2021, 10(2), 69; https://doi.org/10.3390/ijgi10020069 - 10 Feb 2021
Cited by 11 | Viewed by 5924
Abstract
It is acknowledged that various types of thematic maps emphasize different aspects of mapped phenomena and thus support different map users’ tasks. To provide empirical evidence, a user study with 366 participants was carried out comparing three map types showing the same input [...] Read more.
It is acknowledged that various types of thematic maps emphasize different aspects of mapped phenomena and thus support different map users’ tasks. To provide empirical evidence, a user study with 366 participants was carried out comparing three map types showing the same input data. The aim of the study is to compare the effect of using choropleth, graduated symbols, and isoline maps to solve basic map user tasks. Three metrics were examined: two performance metrics (answer accuracy and time) and one subjective metric (difficulty). The results showed that the performance metrics differed between the analyzed map types, and better performances were recorded using the choropleth map. It was also proven that map users find the most commonly applied type of the map, choropleth map, as the easiest. In addition, the subjective metric matched the performance metrics. We conclude with the statement that the choropleth map can be a sufficient solution for solving various tasks. However, it should be remembered that making this type of map correctly may seem easy, but it is not. Moreover, we believe that the richness of thematic cartography should not be abandoned, and work should not be limited to one favorable map type only. Full article
(This article belongs to the Special Issue Cartographic Communication of Big Data)
Show Figures

Figure 1

25 pages, 4285 KiB  
Review
Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review
by Vitória Albuquerque, Miguel Sales Dias and Fernando Bacao
ISPRS Int. J. Geo-Inf. 2021, 10(2), 62; https://doi.org/10.3390/ijgi10020062 - 2 Feb 2021
Cited by 28 | Viewed by 7224
Abstract
Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and [...] Read more.
Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction. Full article
Show Figures

Figure 1

21 pages, 4047 KiB  
Article
A National Examination of the Spatial Extent and Similarity of Offenders’ Activity Spaces Using Police Data
by Sophie Curtis-Ham, Wim Bernasco, Oleg N. Medvedev and Devon L. L. Polaschek
ISPRS Int. J. Geo-Inf. 2021, 10(2), 47; https://doi.org/10.3390/ijgi10020047 - 23 Jan 2021
Cited by 13 | Viewed by 4737
Abstract
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and [...] Read more.
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and to small study areas. This paper explores the utility of police data to provide novel insights into the spatial extent of, and overlap between, individual offenders’ activity spaces. It includes a wider set of activity nodes (including relatives’ homes, schools, and non-crime incidents) and broadens the geographical scale to a national level, by comparison to previous studies. Using a police dataset including n = 60,229 burglary, robbery, and extra-familial sex offenders in New Zealand, a wide range of activity nodes were present for most burglary and robbery offenders, but fewer for sex offenders, reflecting sparser histories of police contact. In a novel test of the criminal profiling assumptions of homology and differentiation in a spatial context, we find that those who offend in nearby locations tend to share more activity space than those who offend further apart. However, in finding many offenders’ activity spaces span wide geographic distances, we highlight challenges for crime location choice research and geographic profiling practice. Full article
(This article belongs to the Special Issue Geographic Crime Analysis)
Show Figures

Figure 1

30 pages, 11356 KiB  
Article
Crowdsourcing without Data Bias: Building a Quality Assurance System for Air Pollution Symptom Mapping
by Marta Samulowska, Szymon Chmielewski, Edwin Raczko, Michał Lupa, Dorota Myszkowska and Bogdan Zagajewski
ISPRS Int. J. Geo-Inf. 2021, 10(2), 46; https://doi.org/10.3390/ijgi10020046 - 22 Jan 2021
Cited by 10 | Viewed by 5094
Abstract
Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting and removing crowdsourced data bias as a prerequisite for better-quality open-data [...] Read more.
Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting and removing crowdsourced data bias as a prerequisite for better-quality open-data output. This study aims to find the most robust data quality assurance system (QAs). To achieve this goal, we design logic-based QAs variants and test them on the air quality crowdsourcing database. By extending the paradigm of urban air pollution monitoring from particulate matter concentration levels to air-quality-related health symptom load, the study also builds a new perspective for citizen science (CS) air quality monitoring. The method includes the geospatial web (GeoWeb) platform as well as a QAs based on conditional statements. A four-month crowdsourcing campaign resulted in 1823 outdoor reports, with a rejection rate of up to 28%, depending on the applied. The focus of this study was not on digital sensors’ validation but on eliminating logically inconsistent surveys and technologically incorrect objects. As the QAs effectiveness may depend on the location and society structure, that opens up new cross-border opportunities for replication of the research in other geographical conditions. Full article
(This article belongs to the Special Issue Citizen Science and Geospatial Capacity Building)
Show Figures

Graphical abstract

16 pages, 4611 KiB  
Article
Using Restaurant POI Data to Explore Regional Structure of Food Culture Based on Cuisine Preference
by Shangjing Jiang, Haiping Zhang, Haoran Wang, Lei Zhou and Guoan Tang
ISPRS Int. J. Geo-Inf. 2021, 10(1), 38; https://doi.org/10.3390/ijgi10010038 - 18 Jan 2021
Cited by 12 | Viewed by 4717
Abstract
As a result of the influence of geographical environment and historical heritage, food preference has significant regional differentiation characteristics. However, the spatial structure of food culture represented by the cuisine culture at the regional level has not yet been explored from the perspective [...] Read more.
As a result of the influence of geographical environment and historical heritage, food preference has significant regional differentiation characteristics. However, the spatial structure of food culture represented by the cuisine culture at the regional level has not yet been explored from the perspective of geography. Cultural regionalization is an important way to analyze and understand the spatial structure of food culture. It is of great significance to deeply mine intra-regional homogeneity and scientifically cognize inter-regional cultural characteristics. This study aims to explore such patterns by focusing on the restaurants of the eight most famous cuisines in Mainland China. Initially, the density based geospatial hotspot detector method is proposed to analyze and mapping the spatial quantitative characteristics of the eight major cuisines. A heuristic method for geographical regionalization based on machine learning was used to analyze spatial distribution patterns in accordance with the proportion of these cuisines in each prefecture-level city. Results show that some types of single-category cuisines have a stronger spatial concentration effect in the present, whereas others have a strong diffusion trend. In the comprehensive analysis of multicategory cuisines, the eight major cuisines formed a new structure of geographical regionalization of Chinese cuisine culture. This study is helpful to understand regional structure characteristics of food preference, and the density-based hotspot detector proposed in this paper can also be used in the analysis of other type of point of interest (POI) data. Full article
Show Figures

Figure 1

18 pages, 14253 KiB  
Article
Incorporating Memory-Based Preferences and Point-of-Interest Stickiness into Recommendations in Location-Based Social Networks
by Hang Zhang, Mingxin Gan and Xi Sun
ISPRS Int. J. Geo-Inf. 2021, 10(1), 36; https://doi.org/10.3390/ijgi10010036 - 15 Jan 2021
Cited by 9 | Viewed by 2977
Abstract
In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI [...] Read more.
In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Full article
(This article belongs to the Special Issue Geovisualization and Social Media)
Show Figures

Figure 1

20 pages, 10533 KiB  
Article
A Tourist Attraction Recommendation Model Fusing Spatial, Temporal, and Visual Embeddings for Flickr-Geotagged Photos
by Shanshan Han, Cuiming Liu, Keyun Chen, Dawei Gui and Qingyun Du
ISPRS Int. J. Geo-Inf. 2021, 10(1), 20; https://doi.org/10.3390/ijgi10010020 - 8 Jan 2021
Cited by 17 | Viewed by 3874
Abstract
The rapid development of social media data, including geotagged photos, has benefited the research of tourism geography; additionally, tourists’ increasing demand for personalized travel has encouraged more researchers to pay attention to tourism recommendation models. However, few studies have comprehensively considered the content [...] Read more.
The rapid development of social media data, including geotagged photos, has benefited the research of tourism geography; additionally, tourists’ increasing demand for personalized travel has encouraged more researchers to pay attention to tourism recommendation models. However, few studies have comprehensively considered the content and contextual information that may influence the recommendation accuracy, especially tourist attractions’ visual content due to redundant and noisy geotagged photos; therefore, we propose a tourist attraction recommendation model for Flickr-geotagged photos which fuses spatial, temporal, and visual embeddings (STVE). After spatial clustering and extracting visual embeddings of tourist attractions’ representative images, the spatial and temporal embeddings are modeled with the Word2Vec negative sampling strategy, and the visual embeddings are fused with Matrix Factorization and Bayesian Personalized Ranking. The combination of these two parts comprises our proposed STVE model. The experimental results demonstrate that our STVE model outperforms other baseline models. We also analyzed the parameter sensitivity and component performance to prove the performance superiority of our model. Full article
(This article belongs to the Special Issue Geovisualization and Social Media)
Show Figures

Figure 1

17 pages, 4087 KiB  
Article
Identifying Complex Junctions in a Road Network
by Jianting Yang, Kongyang Zhao, Muzi Li, Zhu Xu and Zhilin Li
ISPRS Int. J. Geo-Inf. 2021, 10(1), 4; https://doi.org/10.3390/ijgi10010004 - 24 Dec 2020
Cited by 8 | Viewed by 3727
Abstract
Automated generalization of road network data is of great concern to the map generalization community because of the importance of road data and the difficulty involved. Complex junctions are where roads meet and join in a complicated way and identifying them is a [...] Read more.
Automated generalization of road network data is of great concern to the map generalization community because of the importance of road data and the difficulty involved. Complex junctions are where roads meet and join in a complicated way and identifying them is a key issue in road network generalization. In addition to their structural complexity, complex junctions don’t have regular geometric boundary and their representation in spatial data is scale-dependent. All these together make them hard to identify. Existing methods use geometric and topological statistics to characterize and identify them, and are thus error-prone, scale-dependent and lack generality. More significantly, they cannot ensure the integrity of complex junctions. This study overcomes the obstacles by clarifying the topological boundary of a complex junction, which provides the basis for straightforward identification of them. Test results show the proposed method can find and isolate complex junctions in a road network with their integrity and is able to handle different road representations. The integral identification achieved can help to guarantee connectivity among roads when simplifying complex junctions, and greatly facilitate the geometric and semantic simplification of them. Full article
Show Figures

Figure 1

16 pages, 5359 KiB  
Article
Participatory Rural Spatial Planning Based on a Virtual Globe-Based 3D PGIS
by Linjun Yu, Xiaotong Zhang, Feng He, Yalan Liu and Dacheng Wang
ISPRS Int. J. Geo-Inf. 2020, 9(12), 763; https://doi.org/10.3390/ijgi9120763 - 21 Dec 2020
Cited by 13 | Viewed by 3201
Abstract
With the current spatial planning reform in China, public participation is becoming increasingly important in the success of rural spatial planning. However, engaging various stakeholders in spatial planning projects is difficult, mainly due to the lack of planning knowledge and computer skills. Therefore, [...] Read more.
With the current spatial planning reform in China, public participation is becoming increasingly important in the success of rural spatial planning. However, engaging various stakeholders in spatial planning projects is difficult, mainly due to the lack of planning knowledge and computer skills. Therefore, this paper discusses the development of a virtual globe-based 3D participatory geographic information system (PGIS) aiming to support public participation in the spatial planning process. The 3D PGIS-based rural planning approach was applied in the village of XiaFan, Ningbo, China. The results demonstrate that locals’ participation capacity was highly promoted, with their interest in 3D PGIS visualization being highly activated. The interactive landscape design tools allow stakeholders to present their own suggestions and designs, just like playing a computer game, thus improving their interactive planning abilities on-site. The scientific analysis tools allow planners to analyze and evaluate planning scenarios in different disciplines in real-time to quickly respond to suggestions from participants on-site. Functions and tools such as data management, marking, and highlighting were found to be useful for smoothing the interactions among planners and participants. In conclusion, virtual globe-based 3D PGIS highly supports the participatory rural landscape planning process and is potentially applicable to other regions. Full article
Show Figures

Figure 1

16 pages, 4565 KiB  
Article
The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery
by Maciej Smaczyński, Beata Medyńska-Gulij and Łukasz Halik
ISPRS Int. J. Geo-Inf. 2020, 9(12), 754; https://doi.org/10.3390/ijgi9120754 - 16 Dec 2020
Cited by 8 | Viewed by 3381
Abstract
Traditionally, chorochromatic maps with a qualitative measurement level are used for land use presentations. Along with the use of UAV (Unmanned Aerial Vehicles), it became possible to register dynamic phenomena in a small space. We analyze the application of qualitative and quantitative mapping [...] Read more.
Traditionally, chorochromatic maps with a qualitative measurement level are used for land use presentations. Along with the use of UAV (Unmanned Aerial Vehicles), it became possible to register dynamic phenomena in a small space. We analyze the application of qualitative and quantitative mapping methods to visualize land use in a dynamic context thanks to cyclically obtained UAV imaging. The aim of the research is to produce thematic maps showing the actual land use of the small area urbanized by pedestrians. The research was based on low-level aerial imagery that recorded the movement of pedestrians in the research area. Additionally, based on the observation of pedestrian movement, researchers pointed out the areas of land that pedestrians used incorrectly. For this purpose, the author will present his own concept of the point-to-polygon transformation of pedestrians’ representation. The research was an opportunity to demonstrate suitable mapping techniques to effectively convey the information on land use by pedestrians. The results allowed the authors of this article to draw conclusions on the choice of suitable mapping techniques during the process of thematic land use map design and to specify further areas for research. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

22 pages, 3274 KiB  
Review
Towards Self-Service GIS—Combining the Best of the Semantic Web and Web GIS
by Alexandra Rowland, Erwin Folmer and Wouter Beek
ISPRS Int. J. Geo-Inf. 2020, 9(12), 753; https://doi.org/10.3390/ijgi9120753 - 15 Dec 2020
Cited by 23 | Viewed by 5127
Abstract
The field of geographic information science has grown exponentially over the last few decades and, particularly within the context of the pervasiveness of the internet, bears witness to a rapid transition of its associated technologies from stand-alone systems to increasingly networked and distributed [...] Read more.
The field of geographic information science has grown exponentially over the last few decades and, particularly within the context of the pervasiveness of the internet, bears witness to a rapid transition of its associated technologies from stand-alone systems to increasingly networked and distributed systems as geospatial information becomes increasingly available online. With its long-standing history for innovation, the field has adopted many disruptive technologies from the fields of computer and information sciences through this transition towards web geographic information systems (GIS); most interestingly in the context of this research is the limited uptake of semantic web technologies by the field and its associated technologies, the lack of which has resulted in a technological disjoint between these fields. As the field seeks to make geospatial information more accessible to more users and in more contexts through ‘self-service’ applications, the use of these technologies is imperative to support the interoperability between distributed data sources. This paper aims to provide insight into what linked data tooling already exists, and based on the features of these, what may be possible for the achievement of self-service GIS. Findings include what visualisation, interactivity, analytics and usability features could be included in the realisation of self-service GIS, pointing to the opportunities that exist in bringing GIS technologies closer to the user. Full article
(This article belongs to the Special Issue Spatial Data Infrastructure for Distributed Management and Processing)
Show Figures

Figure 1

18 pages, 2515 KiB  
Article
Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image-Derived Point Clouds
by Arnadi Murtiyoso, Mirza Veriandi, Deni Suwardhi, Budhy Soeksmantono and Agung Budi Harto
ISPRS Int. J. Geo-Inf. 2020, 9(12), 743; https://doi.org/10.3390/ijgi9120743 - 12 Dec 2020
Cited by 16 | Viewed by 4905
Abstract
Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong [...] Read more.
Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong competitor to aerial lidar mapping. However, in the context of 3D city mapping, further 3D modeling is required to generate 3D city models which is often performed manually using, e.g., photogrammetric stereoplotting. The aim of the paper was to try to implement an algorithmic approach to building point cloud segmentation, from which an automated workflow for the generation of roof planes will also be presented. 3D models of buildings are then created using the roofs’ planes as a base, therefore satisfying the requirements for a Level of Detail (LoD) 2 in the CityGML paradigm. Consequently, the paper attempts to create an automated workflow starting from UAV-derived point clouds to LoD 2-compatible 3D model. Results show that the rule-based segmentation approach presented in this paper works well with the additional advantage of instance segmentation and automatic semantic attribute annotation, while the 3D modeling algorithm performs well for low to medium complexity roofs. The proposed workflow can therefore be implemented for simple roofs with a relatively low number of planar surfaces. Furthermore, the automated approach to the 3D modeling process also helps to maintain the geometric requirements of CityGML such as 3D polygon coplanarity vis-à-vis manual stereoplotting. Full article
(This article belongs to the Special Issue Virtual 3D City Models)
Show Figures

Figure 1

21 pages, 4134 KiB  
Article
A Fuzzy Logic-Based Approach for Modelling Uncertainty in Open Geospatial Data on Landfill Suitability Analysis
by Neema Nicodemus Lyimo, Zhenfeng Shao, Ally Mgelwa Ally, Nana Yaw Danquah Twumasi, Orhan Altan and Camilius A. Sanga
ISPRS Int. J. Geo-Inf. 2020, 9(12), 737; https://doi.org/10.3390/ijgi9120737 - 9 Dec 2020
Cited by 13 | Viewed by 3519
Abstract
Besides OpenStreetMap (OSM), there are other local sources, such as open government data (OGD), that have the potential to enrich the modeling process with decision criteria that uniquely reflect some local patterns. However, both data are affected by uncertainty issues, which limits their [...] Read more.
Besides OpenStreetMap (OSM), there are other local sources, such as open government data (OGD), that have the potential to enrich the modeling process with decision criteria that uniquely reflect some local patterns. However, both data are affected by uncertainty issues, which limits their usability. This work addresses the imprecisions on suitability layers generated from such data. The proposed method is founded on fuzzy logic theories. The model integrates OGD, OSM data and remote sensing products and generate reliable landfill suitability results. A comparison analysis demonstrates that the proposed method generates more accurate, representative and reliable suitability results than traditional methods. Furthermore, the method has facilitated the introduction of open government data for suitability studies, whose fusion improved estimations of population distribution and land-use mapping than solely relying on free remotely sensed images. The proposed method is applicable for preparing decision maps from open datasets that have undergone similar generalization procedures as the source of their uncertainty. The study provides evidence for the applicability of OGD and other related open data initiatives (ODIs) for land-use suitability studies, especially in developing countries. Full article
Show Figures

Figure 1

Back to TopTop