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Abstract: In location-based social networks (LBSNs), point-of-interest (POI) recommendations facili-
tate access to information for people by recommending attractive locations they have not previously
visited. Check-in data and various contextual factors are widely taken into consideration to obtain
people’s preferences regarding POIs in existing POI recommendation methods. In psychological
effect-based POI recommendations, the memory-based attenuation of people’s preferences with
respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently
than those visited earlier, is emphasized. However, the memory effect only reflects the changes
in an individual’s check-in trajectory and cannot discover the important POIs that dominate their
mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve
this problem, in this paper, we developed a novel POI recommendation framework using people’s
memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used
the memory-based preference-attenuation mechanism to emphasize personal psychological effects
and memory-based preference evolution in human mobility patterns. Second, we took the visiting
frequency of POIs into consideration and introduced the concept of POI stickiness to identify the
important POIs that reflect the stable interests of an individual with respect to their mobility be-
havior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI
stickiness into a user-based collaborative filtering framework to improve the performance of POI
recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated
that our method outperformed other methods.

Keywords: location-based social networks; point-of-interest recommendations; memory-based
preferences; point-of-interest stickiness; collaborative filtering

1. Introduction

Advances in mobile communication devices, the global positioning system, and wire-
less networking technologies have promoted the development of location-based social
networks (LBSNs) such as Foursquare and Yelp, which encourage people to upload their
locations and experiences with points of interest (POIs) such as restaurants, tourist at-
tractions, and cinemas [1]. The abundance of location-based trajectory data provides us
with sufficient information to generate meaningful knowledge for use in contexts such
as personalized POI recommendations [2], traffic flow analysis [3], urban road network
management [4], and urban space management [5]. In recent years, most researchers have
placed increasing emphasis on personalized POI recommendations for further understand-
ing people’s shifts in location and predicting which as yet unvisited POIs might be of
interest to them [6].

In traditional recommendation systems such as product recommendations or movie
recommendations, users generally provide numerical ratings for items, with higher ratings
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indicating a higher degree of user satisfaction [7]. In contrast, POI recommendation systems
usually first obtain implicit feedback data [8,9] and then try to derive people’s personalized
behavioral preferences. The implicit feedback data from users are usually regarded as a set
of binary variables, e.g., whether a user has checked in at a POI. Obviously, these methods
ignore the number of an individual’s check-ins at a POI and assume that even rare visits
to a POI by an individual indicate that they are interested in it [10,11]. However, some
studies have argued that people’s behavioral patterns with respect to mobility are related
to visiting frequency [12,13] and that the POIs to which people make frequent repeat visits
dominate their travel behaviors [14,15]. Moreover, in many real-world situations, people’s
activities are often strongly affected by various contextual factors. One factor, for example,
is their friends’ tastes, as people are more likely to go for dinner at a restaurant in which
their friends are interested than at one in which they themselves are interested. In this case,
just one or two check-ins at a restaurant by an individual do not indicate that they have
any great interest in it, whereas multiple check-ins at a restaurant by an individual indicate
that they have a high degree of recognition of it. To solve these problems, in this paper,
we introduce the concept of POI stickiness as a way of exploring the effects of the various
visiting frequencies of an individual at POIs for use in building POI recommendations.

Related studies on the dynamics of human behavior have found that human move-
ment is usually driven by various kinds of interests and is full of diversity and com-
plexity [16,17]. To explore the dynamic evolution of human interests, some existing POI
recommendation methods take various contextual factors, e.g., temporal information [18],
geographical information [19], and social relationships [20], into consideration. However,
most existing studies ignore the effects of individual psychology, e.g., the memory effect,
which is related to the non-Poisson properties of human mobility patterns [21]. For exam-
ple, due to the physical nature of user–POI interaction and the continuous changes in POI
environmental factors, an individual’s travel preferences with regard to a given POI will
change over time. Specifically, when people plan to visit a certain POI at which they have
checked in before, they will recall some interesting experiences about it. Such personal
psychology is strongly related to people’s memories with regard to a POI [22]. The closer
the time of the historical visit is to the current time, the clearer the memory will be; the
further back in time the previous visit was, the less clearly it will be remembered. Therefore,
POI recommendations should take into consideration the memory-based attenuation of
people’s travel preferences for POIs by analyzing their historical check-in records. Fortu-
nately, relevant studies [23] have demonstrated that the evolution of people’s memories is
analogous to that of their preferences. To explore the memory effect in human mobility
patterns, we resorted to Ebbinghaus’s classical theory of memory [24], which argued that
the evolution of an individual’s memory follows a regular but unbalanced process [25] and
can be described in the form of a forgetting curve [26].

Inspired by the two considerations above, in this paper, we propose a novel personal-
ized POI recommendation method based on people’s memory-based preference attenuation
and POI stickiness, named U-CF-Memory-Stickiness. First, we study the memory effect
in human mobility patterns, which implies the dynamic evolution of people’s interest in
POIs. Specifically, we introduce the memory-based preference-attenuation mechanism [22]
for exploiting the psychological effects that influence an individual’s travel behavior. In
the mechanism, for a given POI, a recent check-in behavior should have more influence
on an individual’s travel preferences in the near future than an earlier check-in behavior.
However, according to the time series of POI check-ins, the study of the memory effect of
human travel behaviors is only reflected by the changes in people’s check-in trajectories.
To precisely identify the POIs that dominate human mobility patterns, we introduce the
concept of POI stickiness, which signifies revisits by and retention of an individual at
a given POI. In other words, people are more likely to check in at POIs with high POI
stickiness, and less likely to visit POIs with low POI stickiness repeatedly. Lastly, we
propose a unified user-based collaborative filtering framework for combining the influence
of an individual’s memory-based preferences and the influence of the stickiness of a POI
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for an individual. To verify the efficiency of our method, we crawled a real dataset from
the Foursquare website. The results of our comparative experiments demonstrated that
our method using memory-based preferences and POI stickiness outperforms multiple
other methods.

The main contributions of our work are summarized as follows:

• We introduced the concept of POI stickiness, which is strongly related to the visiting
frequency of POIs and signifies revisits to and retention of an individual at a POI. The
results of our method show that the POI stickiness is a meaningful indicator for POI
recommendations in distinguishing the important POIs that attract repeated visits
by an individual from unimportant POIs at which an individual only checks in once
or twice.

• We proposed a novel user-based collaborative filtering framework for POI recom-
mendations that takes into consideration both memory-based preferences and the
influence of POI stickiness. The memory effect emphasizes the dynamic attenuation
of an individual’s travel preferences, and POI stickiness mines an individual’s stable
interests, which dominate people’s behavioral decisions with respect to mobility.

• The results of our evaluation experiments demonstrated that our proposed method
significantly outperformed other methods. Thus, the use of time series and visiting
frequency of check-in data rather than simple statistics is an effective way to process
data in location-based social networks.

The remainder of our paper is organized as follows: we review related work in Section 2.
In Section 3, we provide some preliminary work. Then, we introduce our proposed POI
recommendation method with memory-based preference attenuation and POI stickiness in
detail in Section 4. Section 5 shows the experimental results and the corresponding param-
eter analysis. Lastly, Section 6 contains further discussion and presents the conclusions.

2. Related Work
2.1. Collaborative Filtering-Based POI Recommendations

The collaborative filtering algorithm has been widely adopted in traditional personal-
ized recommendations [27], the basic assumption of which is that users’ behaviors reflect
their interest in items. In recent years, many collaborative filtering methods for POI rec-
ommendations have been proposed that treat POIs as items. In these methods, people’s
check-in trajectory data are used to derive their personalized travel preferences with respect
to POIs [28].

Collaborative filtering methods usually consist of two categories: memory-based
algorithms and model-based algorithms [27]. Memory-based collaborative filtering al-
gorithms can be further divided into user-based and item-based methods. In terms of
user-based POI recommendations, the basic assumption is that people who share similar
preferences for POIs tend to check in at the same POIs [8]. In terms of item-based POI
recommendations, the basic assumption is that people are interested in similar POIs, which
can be discovered via similarity measures such as cosine similarity [29]. However, Ye et al.
found that, because the calculated POI similarities may be incorrect, user-based approaches
are more suitable for POI recommendations than item-based approaches [29].

In terms of model-based POI recommendation algorithms, the matrix factorization
technique is used to discover the hidden factors of people and POIs from historical check-in
records [28]. For example, Liu et al. incorporated the Poisson factor into a probabilistic
matrix factorization model for learning people’s mobility patterns [30]. Baral et al. devel-
oped a matrix factorization-based fused model for analyzing the roles of various contextual
factors (e.g., check-in data, time, geography) in POI recommendations [31]. In addition, the
Bayesian probabilistic modeling technique [32,33] and the Markov chain model [34,35] are
also typical model-based methods for making POI recommendations.
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2.2. Temporal Factor-Enhanced POI Recommendations

Some researchers have recently tried to improve the performance of POI recommen-
dations by combining pure check-in data with contextual information such as a temporal
factor [36]. Several studies used check-in records with timestamps to learn people’s periodic
travel patterns to generate temporal factor-enhanced POI recommendations. Yuan et al.
found that people exhibit different check-in preferences at different time slots over the day;
for example, at night, people prefer to visit bars rather than libraries [8]. Thus, they studied
the daily patterns of users’ check-in behaviors according to the hour dimension. Gao et al.
argued that, compared to nonconsecutive time periods, people may exhibit more similar
travel preferences in consecutive time periods [37]. However, because these methods study
people’s travel behaviors in various time slots separately, they tend to suffer from a severe
sparsity problem. To avoid time information loss, Zhang et al. explored the temporal prob-
ability density of check-in records and preference correlations of people between weekdays
and weekends [38]. Zhao et al. designed a three-slice time-indexing mechanism based
on hours, weekdays, and months for capturing the temporal characteristics of check-in
behaviors [39].

Several studies explored the temporal sequences of historical check-in records [40,41].
For example, some works [42,43] constructed personalized Markov chain models for
predicting where an individual would like to go tomorrow or in the next few days. Liu et al.
established an attention network for learning the overall temporal dependence in check-in
sequences [44]. Lu et al. combined tree structures with successive transition graphs to
acquire a latent representation of people’s temporal-based travel preferences [45]. However,
check-in-sequence-based methods cannot recommend new POIs to a certain individual,
which has an adverse effect on the user experience.

In addition, the change in psychological effects over time is significantly correlated
with the individual’s travel preferences for POIs. Gan et al. developed a memory-based
POI preference-attenuation mechanism for deriving the dynamic evolution of people’s
interest in POIs [22]. In this mechanism, for a given POI, recent check-in behaviors have
more influence on an individual’s travel preferences in the near future than earlier check-in
behaviors. Although the POI recommendation method using people’s memory-based
preference changes has greatly improved the performance of the recommendations, the
method only highlights POI check-in records that are closer to each other in a time series
and does not discover which POIs have greater effects on people’s behavior with respect
to mobility.

2.3. Visiting Frequency in Location-Based Check-in Data

Given the abundance of check-in records, it is of great importance to mine the primary
cause behind each check-in thoroughly. In particular, POIs that have attracted relatively
more check-ins from an individual can serve as an important support for understanding
their mobility patterns [46]. McKercher et al. found that first-time visitors and repeat visi-
tors have substantial differences with respect to visiting times and destinations in the case
of Hong Kong [13]. Yu et al. argued that locations that have been visited repeatedly appear
to be more important than other locations that have been visited only once or twice [14].

Although the above works have demonstrated the effect of visiting frequency on
human mobility patterns, existing POI recommendation methods do not fully explore the
visiting frequency of people at POIs. For example, Kato et al. simply divided travelers into
two categories, first-time travelers and repeat travelers, and designed the two different
sightseeing spot recommendation components separately, which may consume consider-
able computing resources [47]. Xu et al. only considered the effect of the visiting frequency
of POIs in the objective function [48]. In this paper, on the one hand, we incorporated
visiting frequency into the user–POI check-in matrix; on the other hand, we introduced the
concept of POI stickiness for fully understanding people’s potential interest behind each
check-in.
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3. Preliminaries

In this section, we describe the traditional user-based collaborative filtering method
for POI recommendation concisely [8], namely, U-CF. Let U be the set of users, where
u, v ∈ U, and let P be the set of POIs, where p ∈ P. If a user u has checked in at POI p
before, we set cu,p = 1; otherwise, cu,p = 0.

For a target user u, we calculate the similarities between user u and other users via
cosine similarity, which is extensively used for implicit feedback data. Specifically, the
cosine similarity su,v between user u and user v is defined in Equation (1).

su,v =
∑p cu,pcv,p√

∑p c2
u,p

√
∑p c2

v,p

(1)

Then, according to the result from the similarity ranking, we select the optimal k-
nearest neighbors for each user. Finally, we use the similarity as a weight for predicting
the recommendation scores for the target user u for unvisited POIs, which represents the
possibility of user u checking in at POI p. The recommendation score r̂u,p is computed
using Equation (2).

r̂u,p =
∑v su,vcv,p

∑v su,v
(2)

4. Methods
4.1. Overview of Our Proposed Method

As shown in Figure 1, the flowchart of our proposed POI recommendation method
using memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness,
consists of two components. One component is used to explore the memory effect in
people’s mobility patterns. This component mainly includes five sequential steps. First,
we used the memory-based preference-attenuation mechanism [22] to learn the memory
values between current check-ins and historical check-ins from check-in records with
timestamps. Second, we constructed a user-POI check-in matrix that takes the influence of
both the visiting frequency and the memory-based travel preference into consideration.
Third, according to the memory-based user-POI check-in matrix, we used the cosine
similarity method to calculate the similarity of travel preferences between individuals.
Fourth, we constructed a user–user similarity matrix, which represents the similarity of
people’s historical mobility patterns. Fifth, on the basis of the similarity values, we selected
the top-k individuals as the k-nearest neighborhood set for each individual.

Figure 1. Flowchart of point-of-interest (POI) recommendation with memory-based preference and
POI stickiness.
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The other component is used to study the influence of POI stickiness in people’s travel
decisions, which signifies revisiting by and retention of an individual at a POI. Specifically,
we first introduced the concept of POI stickiness and calculated the POI stickiness value
for each POI in our dataset. Then, we selected the POIs with higher stickiness than the
threshold L as the set of POIs that dominate an individual’s travel behaviors.

Lastly, we incorporated the two above components into a unified user-based collabo-
rative filtering framework. According to the travel preferences of the k-nearest neighbors,
we first predicted the check-in scores of the target individual at unvisited POIs. Then, we
ranked the predicted recommendation scores in descending order for generating the top-N
recommendation list for each individual.

4.2. Incorporating People’s Memory Effect

As mentioned in Section 4.1, previous studies usually used binary data in the collabo-
rative filtering-based POI recommendation. Obviously, these methods ignored the effect of
the visiting frequency of an individual at a POI, which clearly reflects how much emphasis
the individual places on the POI. The more times an individual goes to a certain POI,
the higher the importance of the POI to them. To distinguish between the important and
unimportant POIs for each individual, we used the visiting frequency of the individual at
POIs rather than simply statistics, e.g., whether people have checked in at POIs, to construct
the user–POI check-in matrix.

However, people’s travel behaviors are usually impacted by their experiences and
memories of POIs, and people are more likely to go to more familiar POIs than unfamiliar
ones [21]. This behavioral pattern, which is driven by memory, is strongly related to the
evolution of people’s interest in POIs [22]. To further explore the evolution of people’s
memory-based travel preferences, we considered memory-based preference attenuation
in our model. Ebbinghaus’s memory theory argues that the evolution of an individual’s
memory follows an unbalanced process, and the forgetting rate is very fast at first but then
slows down gradually over time [26]. Considering the evolution of human memory, we
developed a memory-based attenuation mechanism for deriving a user–POI check-in matrix
with memory-based preferences, which was described in detail in our previous work [22].
In this mechanism, for a given POI, recent check-in behaviors have more influence on
an individual’s travel preferences in the near future than earlier check-in behaviors. The
attenuation function of people’s memory-based preferences is represented as

f (d, d0) = e−
1
H |d−d0| (3)

where d0 denotes the current check-in time, d denotes the historical check-in time, H denotes
the time threshold between d0 and d, and f (d, d0) denotes the time-attenuation factor (the
memory value) between d0 and d. A larger time interval between the current check-in and
the historical check-in corresponds to a smaller time-attenuation factor of the historical
check-in, which is similar to the evolution of an individual’s memory.

According to the above considerations, we incorporated the influence of both check-in
frequency and individual memory-based travel preferences into the user-POI check-in
matrix. Specifically, we first used the time-attenuation factor as a weight for obtaining
people’s travel preferences at the current time. For example, with respect to the current
time d0, the check-in value cu,p(d, d0) of user u at POI p at time d is first represented as

cu,p(d, d0) = cu,p,d · f (d, d0) (4)

where cu,p,d denotes whether user u has visited POI p at time d. If user u has visited POI p
at time d, we set cu,p,d = 1; otherwise, cu,p,d = 0. Then, the check-in value ĉu,p of user u at
POI p at the current time d0 is represented as

ĉu,p = ∑
numu,p,d0

cu,p(d, d0) (5)
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where numu,p,d0 denotes the total check-ins times of user u at POI p before the current
time d0.

Because similar individuals tend to check in at the same POI [8], we need to discover
the nearest neighbors for each individual from the user–POI check-in matrix with memory-
based preference attenuation. Specifically, we first calculated user–user similarities via
the cosine method. For example, the cosine similarity sim(u, v) between user u and v is
calculated using Equation (6).

sim(u, v) =
∑p ĉu,p ĉv,p√

∑p ĉ2
u,p

√
∑p ĉ2

v,p

(6)

A larger value of sim(u, v) corresponds to a higher similarity between users u and
v. Then, according to the memory-based preference similarity values, we selected the
top-k users as the k-nearest neighborhood set of the target user u, which is denoted
by neighbor(u, k). The computation of the nearest neighborhood set is described in
Algorithm 1.

Algorithm 1. The computation of the nearest neighborhood set

Input: (1) check-in records with timestamps, (2) the number of neighbors k.
Output: neighbor(ui, k) of each user ui ∈ U, U = {u1, u2, ...um}.
1: Compute the memory value f (d, d0) between current check-in time d0 and historical check-in
time d using Equation (3).
2: for each user ui do
3: for each POI pj ∈ P, P = {p1, p2, ..., pn} do
4: Compute the check-in values cui ,pj (d, d0) of ui at pj at time d using Equation (4)
5: Compute the check-in value ĉui ,pj of ui at pj at time d0 using Equation (5)
6: User–POI check-in matrix (ui, pj)←

_
c ui ,pj

7: end for
8: end for
9: for each user ui do
10: or each user ug ∈ U, g 6= i do
11: Compute the cosine similarity sim(ui, ug) between user ui and ug using Equation (6)
12: User–user similarity matrix (ui, ug)← sim(ui, ug)
13: end for
14: User–user similarity matrix (ui, :)← sort similarity matrix (ui, :) in descending order
15: neighbor(ui, k)← get top k from user–user similarity matrix (ui, :)
16: end for

4.3. Incorporating the POI Stickiness

Relevant studies have found that, when an individual checks in at a POI repeatedly,
the POI may have higher importance to them than other POIs that they have only visited
once or twice [14,46]. That is to say, only one or two check-ins at a POI by an individual do
not indicate that the individual is interested in the POI, whereas multiple check-ins at a POI
by an individual indicate that they may have a high degree of satisfaction with it. Therefore,
the emphasis of POI recommendation research should be on the second category of POIs,
which reflects an individual’s stable interests in their travel behavior decisions [14,15].
To analyze the human mobility patterns and discover the POIs that attracted people’s
repeated visits, we further plotted the distribution of average check-in frequency for all
POIs in our dataset. As shown in Figure 2, as the average check-in frequency increases, the
number of POIs that satisfy the frequency requirement decreases, which also demonstrates
that the mobility behaviors of people present a long-tailed distribution [16]. Figure 2 also
indicates that most people check in at some POIs only once or twice, as the number of POIs
with an average check-in frequency of 1 account for the largest proportion. Therefore, a
small number of important POIs indicate an individual’s mobility patterns, and using a
large number of unimportant POIs may only result in complicating the next POI prediction.
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Figure 2. The distribution of the average check-in frequency for all POIs (note that we only show POIs
with an average check-in frequency between 1 and 7, as the subsequent POIs display the same trend.)

To identify the important POIs that dominate the individuals’ travel behaviors, we in-
troduced the concept of POI stickiness for further mining the underlying preferences
behind each check-in. Stickiness is a term usually used to describe the frequency, depth,
and duration of visits to a website [17] or to denote people’s underlying willingness to
revisit a social network [49]. The concept is also used to signify user loyalty to a website [50]
and deep-seated commitment to a website [51]. As for POI recommendations, we use
POI stickiness to signify revisiting by and retention of an individual at a POI in LBSNs.
In this paper, the concept of POI stickiness is regarded as an important indicator of people’s
preferences for POIs. Users have a higher degree of preference for these POIs with high POI
stickiness, and they are more likely to check in at these places repeatedly. In contrast, users
have a lower degree of preference for those POIs with low POI stickiness, and they will
not repeatedly visit these places. The POI stickiness of POI p is denoted by stickiness(p)
as follows:

stickiness(p) =
∑u∈Up nu,p∣∣Up

∣∣ , (7)

where Up denotes the set of users who have checked in at POI p,
∣∣Up

∣∣ denotes the total
number of users who have checked in at POI p, and nu,p denotes the check-in frequency of
user u at POI p.

To incorporate POI stickiness into our model, we calculated each individual’s sticki-
ness with respect to each POI using Equation 7, as above. Then, to choose the POIs that
attracted repeated visits by people and to remove those to which people hardly returned,
we selected the POIs with higher stickiness than the threshold L from the whole dataset.
We also performed a series of validation experiments to test the recommendation influences
under different values of the POI stickiness threshold L. The computation of the influence
of POI stickiness is described in Algorithm 2.

Algorithm 2. The computation of the influence of POI stickiness

Input: (1) check-in records with timestamps, (2) the POI-stickiness threshold L
Output: the POI set PL which includes POIs that satisfy the stickiness requirement
1: for each POI pj ∈ P,P = {p1, p2, ..., pn} do
2: Compute stickiness(p) of POI pj using Equation (7)
3: if stickiness(p) ≥ the threshold L then
4: PL add pj
5: end for

4.4. A Unified User-Based POI recommendation Framework

We obtained the evolution of people’s travel preferences from the time series of POI
check-ins via the memory-based attenuation mechanism, which pays more attention to
recent check-in behaviors than earlier ones. However, the memory effect only reflects
the change in people’s check-in trajectories and cannot discover the important POIs that
dominate people’s mobility patterns. Due to the diversity and heterogeneity of people’s
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interests, the POIs have different potentials to attract visits by individuals, resulting in
people checking in at some POIs many times and at others only once or twice. Thus, the
POI stickiness should be considered in identifying the POIs that attracted people’s revisits
and retention. As shown in Figure 3, we use a toy example of an individual’s travel records
between 1 July 2020 and 9 July 2020 to illustrate the phenomenon.

Figure 3. A toy example of an individual’s travel trajectory between 1 July 2020 and 9 July 2020.
Based on the memory-based preference-attenuation mechanism, with respect to the current time
(e.g., 1 August 2020), the value of the check-in at P7 is the highest among all the POIs. However,
the POI-stickiness value of the individual at P7 is the lowest. In other words, the individual will
not repeatedly visit P7 and has a lower degree of preference for P7. Thus, P7 cannot dominate the
individual’s travel behaviors. Considering the influence of POI stickiness, the individual has the
highest stickiness and visiting frequency at P1, the second-highest stickiness and visiting frequency
at P2, and the lowest stickiness and visiting frequency at other POIs. Obviously, P1 plays the most
significant role in the individual’s travel decisions, followed by P2, and other POIs have a relatively
low influence.

According to the above considerations, we propose a unified user-based POI rec-
ommendation method that mines people’s travel preferences with respect to POIs from
aspects of the memory effect and POI stickiness. On the one hand, we incorporate the
memory effect into the user–POI check-in matrix for analyzing people’s memory-based
travel preference attenuation. On the other hand, when predicting the potential check-in
values for the individual, we selected the POIs with high repeat visits and removed the
POIs with low repeat visits via the indicator of the POI stickiness to identify the important
POIs that reflect stable interests in an individual’s mobility behavior decisions.

According to the similar neighbors’ memory-based travel preferences and the corre-
sponding POI stickiness, we calculated the check-in values of the target user u at POIs they
had not visited to represent the likelihood that the target user u will visit these POIs in the
near future. Specifically, for each target user u, we first chose the POIs they had not visited
from the set of POIs that satisfied the POI stickiness requirement. Then, on the basis of
the travel preferences of their similar neighbors, we predicted the check-in scores of the
target user u for these unvisited POIs. We used sim(u, v) as the weight of check-in scores
ĉv,p of k-nearest neighbors to obtain the corresponding memory-based check-in scores of
the target user u at POI p, which is denoted by scroe(u, p).

scroe(u, p) =
1

∑v∈neighbor(u,k) sim(u, v) ∑
v∈neighbor(u,k)

sim(u, v) · ĉv,p (8)

Lastly, we sorted the predicted check-in scores scroe(u, p) of these unvisited POIs in
descending order and recommended the top-N POIs to the target user u. Our proposed
unified POI recommendation method is described in Algorithm 3.
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Algorithm 3. A unified POI recommendation method using the memory effect and POI stickiness

Input: (1) neighbor(ui, k) of each user ui; (2) user–POI check-ins matrix; (3) user–user similarity
matrix; (4) the POI set PL; (5) total number of POI recommendation N
Output: candidate POIs list for each user ui ∈ U, U = {u1, u2, . . . um}
1: for each user ui do
2: for each POI pj ∈ PL do
3: if ui did not check in at pj then
4: Compute the check-in probability scroe(ui, pj) of ui at pj using Equation (7)
5: Predicted check-in values set V of ui add scroe(ui, pj)

6: end for
7: V ← sort V in descending order
8: get top N from V
9: end for

5. Experiments and Evaluation
5.1. Dataset

We conducted extensive experiments on a real-world dataset that was crawled from
Foursquare (https://foursquare.com/). The dataset consists of five fields: user identifier
(ID), check-in venue, longitude of venue, latitude of venue, and check-in time. To avoid
sparsity of the dataset, we focused on check-in records that were created in New York
between April 2012 and November 2013. In addition, the users and the POIs with fewer
than 10 check-ins were removed. The detailed statistics are presented in Table 1.

Table 1. Statistics of the dataset.

Class Counts

Users 3731
POIs 4963

Check-in Records 162,885
Check-in Dates April 2012–November 2013

5.2. Evaluation Criteria

We adopted three classical evaluation criteria, namely, precision, recall, and F-value,
which are often used to evaluate the accuracy of top-N recommendations [8,31,52]. The
three criteria are denoted by PRE@N, REC@N, and F@N, respectively, where N denotes
the number of recommendation results. The precision measures the proportion of rec-
ommended POIs that are actually visited out of the N recommended POIs. The recall
measures the proportion of recommended POIs that are actually visited out of the actual
POIs in the testing set. The F-value comprehensively considers the precision and recall of
the algorithm. Let R(u) be the recommended POIs and T(u) be the actual POIs in the test
set. The PRE@N is defined as

PRE@N =
∑u|R(u) ∩ T(u)|

∑u|R(u)|
. (9)

The REC@N is defined as

REC@N =
∑u|R(u) ∩ T(u)|

∑u|T(u)|
. (10)

The F@N is defined as

F@N =
2 ∗ pre@N ∗ rec@N

pre@N + rec@N
(11)

A higher PRE@N, a higher REC@N, and a higher F@N correspond to a better recom-
mendation performance.

https://foursquare.com/
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Additionally, as POI recommendation is highly sensitive to the quality of the list,
we adopted a widely used ranking measure, the normalized discounted cumulative gain
(NDCG) [53]. NDCG is a normalization of the discounted cumulative gain (DCG) measure,
which is a weighted sum of the degree of relevance of the ranked items. The weight is a
decreasing function of the rank (position) of the object. The NDCG@N is defined as

NDCG@N =
DCG@N
IDCG@N

, (12)

DCG@N =
N

∑
i=1

2reli − 1
log2(i + 1)

, (13)

IDCG@N =
|RELN |

∑
i=1

2reli − 1
log2(i + 1)

, (14)

where N denotes the number of recommendation results, reli denotes the relevancy of the
position i, and |RELN | denotes the set of the top-N results that are sorted in descending
order of relevance, which is the set that sorts the results in an optimal way. A higher
NDCG@N corresponds to a better recommendation performance.

5.3. Baseline Methods

To verify the efficiency of our proposed U-CF-Memory-Stickiness method, we adopted
the following comparison methods, which we describe briefly:

• U-CF: The U-CF method is the traditional user-based collaborative filtering (CF) POI
recommendation method described in Section 3.

• LRT [37]: The LRT is a location recommendation framework with temporal effects.
Because people’s check-in behaviors change with time, the method modeled each indi-
vidual by different latent vectors for different time slots and summed up the predicted
scores for all time slots as the recommendation scores. In this paper, we considered
the weekly (day of the week) patterns of people’s temporal check-in preferences.

• LORE [43]: The LORE is a location recommendation method with sequential influence.
The method explored sequential influence on people’s check-in behaviors and derived
a probability of an individual visiting a new POI on the basis of an additive Markov
chain (AMC).

• U-CF-Memory [22]: The U-CF-Memory method is the POI recommendation method
with memory-based preference attenuation that was presented in detail in our previ-
ous work.

• U-CF-Stickiness: The U-CF-Stickiness method is a novel user-based CF POI recom-
mendation method with the POI stickiness, which only incorporates the individuals’
stickiness at POIs into the traditional user-based CF method.

• U-CF-Memory-Stickiness: The U-CF-Memory-Stickiness method is our proposed
unified POI recommendation method, which takes into consideration the influence of
an individual’s memory-based preferences and the influence of the stickiness of POIs
for an individual.

5.4. Experiment Details

For each individual, we selected the first 64% of chronological check-in records as
the training set, the middle 16% as the validation set, and the last 20% as the test set. The
training set was used to obtain the travel preferences similarities among individuals, which
contained every user and POI. We tuned the hyperparameters of all the models on the
validation set and compared their performance on the test set. According to the results on
the validation set, the number of neighborhood k was set to 250. The default value of the
time threshold H was set to 300 days, as discussed in our previous work [22]. The optimal
value of the POI stickiness threshold L was set to 1.6. The detailed recommendation results
under the different POI stickiness thresholds L are presented in Section 5.6.
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5.5. Improvement of Recommendation Performance

In this section, we present the recommendation results of our method and those of
comparison methods. As shown in Figure 4 and Table 2, we considered the value of N as 5,
10, 15, 20, 25, and 30.

Figure 4. Comparison of recommendation performance under different N. (A) Precision (PRE@N).
(B) Recall (REC@N). (C) F-value (F@N). (D) Normalized discounted cumulative gain (NDCG@N).

Table 2. Comparison of recommendation performance.

N = 5 N = 10

PRE REC F NDCG PRE REC F NDCG

U-CF 3.40 6.47 4.53 4.04 2.19 9.83 3.93 4.76
LRT 3.59 6.69 4.67 4.26 2.26 10.20 3.99 4.82

LORE 3.67 6.98 4.81 4.33 2.83 10.43 4.46 5.37
U-CF-Memory 4.37 7.47 5.52 6.12 3.12 10.63 4.83 7.08

U-CF-Stickiness 6.07 14.69 8.58 11.00 4.21 20.42 6.57 12.67
U-CF-Memory-

Stickiness 6.57 17.56 9.56 11.39 4.46 23.32 7.49 13.24

N = 15 N = 20

PRE REC F NDCG PRE REC F NDCG

U-CF 1.63 12.21 3.39 5.08 1.27 14.02 2.94 5.37
LRT 1.93 12.42 3.43 5.18 1.88 14.15 3.31 5.40

LORE 2.37 12.46 3.98 6.03 2.09 14.28 3.65 6.54
U-CF-Memory 2.49 12.68 4.16 7.70 2.15 14.48 3.75 8.14

U-CF-Stickiness 3.25 23.40 5.11 13.25 2.56 25.16 4.03 13.69
U-CF-Memory-

Stickiness 3.41 26.04 6.03 13.98 2.74 27.86 4.99 14.38

N = 25 N = 30

PRE REC F NDCG PRE REC F NDCG

U-CF 1.03 15.51 2.62 5.56 0.85 16.92 2.36 5.68
LRT 1.80 15.78 3.22 5.71 1.67 16.93 3.03 5.94

LORE 1.86 15.84 3.33 6.89 1.72 17.05 3.05 7.23
U-CF-Memory 1.92 16.00 3.44 8.52 1.74 17.16 3.06 8.83

U-CF-Stickiness 2.11 26.18 3.69 13.88 1.81 27.15 3.37 14.10
U-CF-Memory-

Stickiness 2.30 28.98 4.26 14.59 1.99 30.19 3.74 14.77
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5.5.1. Methods Incorporating Temporal Influence

The experimental results demonstrate that all temporal POI methods (LRT, LORE,
and U-CF-Memory) outperformed U-CF. This is because people’s preferences with respect
to POIs will vary with time, and the time factor plays an important role in people’s travel
decisions. For example, with regard to PRE@10, U-CF-Memory realized a higher precision
of 3.12%, outperforming U-CF (2.19%) by 42.47%. With regard to REC@10, U-CF-Memory
realized a higher recall of 10.63%, outperforming U-CF (9.83%) by 81.38%. With regard
to F@10, U-CF-Memory realized a higher F-value of 4.83%, outperforming U-CF (3.93%)
by 22.9%. With regard to NDCG@10, U-CF-Memory realized a higher value of 7.08%,
outperforming U-CF (4.76%) by 48.74%. The main limitations of U-CF are that it only uses
the binary check-in data and ignores the individual’s memory effect. In contrast, U-CF-
Memory not only uses people’s check-in frequency at POIs to distinguish between the
important and unimportant POIs but also introduces the memory-based travel-preference-
attenuation mechanism to emphasize the check-in records closer to the current time.

In addition, the U-CF-Memory method outperforms other temporal-enhanced meth-
ods (LRT and LORE) on the four evaluation criteria. This is because LRT and LORE are
highly sensitive to the sparsity in the dataset and thus suffer from poor performance with
our dataset. As shown in Figure 4, another observation is that when the length of the recom-
mendation list is small (N = 5), the U-CF-Memory method achieves the best performance;
as the length of the recommendation list increases, the performance of the three temporal
methods tends to be consistent. We think the reason is that the U-CF-Memory method
considers the attenuation of people’s memory-based travel preferences and the change
in people’s psychological effects over time and, thus, obtained a better recommendation
performance on the next-POI prediction.

5.5.2. Methods Incorporating POI Stickiness

Compared to U-CF, our proposed U-CF-Stickiness method realizes much better rec-
ommendation accuracy on the four evaluation criteria. For example, in terms of PRE@10,
U-CF-Stickiness realized a higher precision of 4.21%, outperforming U-CF (2.19%) by
92.24%. In terms of REC@10, U-CF-Stickiness realized a higher recall of 20.42%, outper-
forming U-CF (9.83%) by 107.73%. In terms of F@10, U-CF-Stickiness realized a higher
F-value of 6.57%, outperforming U-CF (3.93%) by 67.18%. In terms of NDCG@10, U-CF-
Stickiness realized a higher value of 12.67%, outperforming U-CF (4.76%) by 166.18%.
These experimental results suggest that the large number of unimportant POIs with low
repeat-visit frequencies resulted in complexity and inefficiency in POI recommendation
because the recommendation algorithm did not precisely identify the people’s interest in
POIs. In contrast, the U-CF-Stickiness method removed these POIs, to which people hardly
returned, via the indicator of POI stickiness so that the recommendation algorithm was
able to focus on the important POIs that dominate people’s mobility behaviors.

Another observation is that, compared to the U-CF baseline, the U-CF-Stickiness
method achieves better accuracy than the U-CF-Memory method. The reason is that
the U-CF-Stickiness method used the POI stickiness indicator to select POIs with high
individual revisit and retention rates and removed those that were only checked in at
once or twice. People have a higher degree of preference for POIs with high stickiness,
which dominate the individual’s travel behaviors. In contrast, although the U-CF-Memory
method considered the evolution of people’s interests, it still included a large number of
POIs with low POI stickiness when recommending POIs to an individual, which resulted
in poor performance.

5.5.3. The Unified Method

Among all four methods, our proposed unified U-CF-Memory-Stickiness method
achieved the best performance on all these criteria. For example, with regard to PRE@10,
the U-CF-Memory-Stickiness method realized a highest value of 4.46%, outperforming
U-CF-Memory and U-CF-Stickiness by 42.95% and 5.94%, respectively. With regard to
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REC@10, the U-CF-Memory-Stickiness method realized a highest value of 23.33%, out-
performing U-CF-Memory and U-CF-Stickiness by 119.47% and 14.2%, respectively. With
regard to F@10, the U-CF-Memory-Stickiness method realized a highest value of 7.49%,
outperforming U-CF-Memory and U-CF-Stickiness by 55.07% and 14.00%, respectively.
With regard to NDCG@10, the U-CF-Memory-Stickiness method realized a highest value
of 13.24%, outperforming U-CF-Memory and U-CF-Stickiness by 87.01% and 4.50%, re-
spectively. The superior performance of the unified U-CF-Memory-Stickiness method was
due to the fact that the method considers the influence of an individual’s memory-based
preferences and the influence of the stickiness of POIs for them at the same time. First,
we considered the check-in frequency and the memory effect rather than simply binary
variables to construct the user–POI check-in matrix with memory-based preferences, which
reflected the evolution of interest in people’s mobility patterns. Second, when recommend-
ing unvisited POIs to each individual, we used the POI stickiness to choose the POIs with
high repeated visits and remove the POIs with low repeat visits to discover the important
POIs that dominate individuals’ travel behaviors.

In addition, these experimental results demonstrate that our proposed unified method
U-CF-Memory-Stickiness consistently outperformed other multiple methods at all N values
on the four evaluation criteria. Therefore, the selection of the N value does not affect the
comparison of the different methods.

5.6. Impact of the POI Stickiness Threshold L

We also studied the recommendation influence of the POI stickiness threshold L on the
validation set. The value of the POI stickiness threshold L controls the average visiting fre-
quency threshold in the U-CF-Stickiness method and the U-CF-Memory-Stickiness method.
A lower value for threshold L means that the recommendation method will consider more
POIs with low average visiting frequencies. We plotted the PRE@10, REC@10, and F@10
under different POI-stickiness thresholds L in Figure 5, where we varied the POI stickiness
threshold L from 1.0 to 2.0.

1 

 

 

(a)       (b)       (c) 

Figure 5. Recommendation performance under different values of the POI stickiness threshold L (at a rank cut-off value of
N = 10). (a) Precision with different L values. (b) Recall with different L values. (c) F-value with different L values.

As shown in Figure 5, in terms of precision, the curves of both methods reached their
peaks at L = 1.6. The increase in L from 1.0 to 1.6 promoted the value of precision, whereas
the increase in L from 1.6 to 2.0 reduced the value of precision. In terms of recall, the curves
of both methods reached their peaks at L = 1.8. The increase in L from 1.0 to 1.8 promoted
the value of recall, whereas the increase in L from 1.8 to 2.0 reduced the value of recall. The
F-value evaluation criterion presented a tendency similar to that of the precision, with a
single peak occurring at L = 1.6. Considering the three criteria, we concluded that a lower
or higher value of L may degrade the POI recommendation performance. In addition, U-
CF-Stickiness and U-CF-Memory-Stickiness were robust when the POI stickiness threshold
L was set to 1.6.
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6. Discussion and Conclusions

In this paper, we proposed a novel user-based collaborative filtering framework with
memory-based preference attenuation and POI stickiness, named U-CF-Memory-Stickiness,
for top-N POI recommendation tasks. Our framework is interested in the memory effect
and the POI stickiness of check-in records rather than just binary data. Specifically, we
introduced the memory-based attenuation mechanism for studying psychological effects
on an individual’s travel behaviors and deriving the patterns of changes in people’s travel
preferences. However, the memory effect cannot capture the important POIs that dominate
people’s mobility patterns, which play an important role in people’s travel decisions. Thus,
we introduced the concept of POI stickiness as a function of the average check-in frequencies
of people at POIs, which signify the stable travel preferences of people for POIs in LBSNs.
According to the above considerations, we incorporated the influence of both the memory
effect and POI stickiness into a unified user-based POI recommendation framework.

We conducted a series of validation and evaluation experiments on a real-world
dataset that was crawled from the Foursquare website. First, the results of the experiments
demonstrated that incorporating the influence of POI stickiness into the user-based CF
method improves the performance of POI recommendations, meaning that POI stickiness
is a useful indicator for distinguishing between important POIs that attract people’s repeat
visits and unimportant POIs that an individual only checks in at once or twice. Second, the
results of the experiments demonstrated that our proposed unified method, U-CF-Memory-
Stickiness, outperforms all of the other methods on the four evaluation criteria, which
shows that the combination of memory effect and POI stickiness is an effective means
of mining the dynamic and stable travel preferences of people for POIs. Specifically, the
construction of the user–POI check-in matrix considered the influence of both memory-
based preference attenuation and visit frequency. The prediction of the check-in values
for the target individuals was only based on the POIs with higher POI stickiness than the
threshold L.

However, our approach has some limitations. First, we removed the POIs with lower
stickiness than the threshold L, which may have resulted in the loss of some preference
information. The concept of POI stickiness signifies the revisiting by and retention of an
individual at a POI and is strongly related to people’s potential travel preferences with
respect to POIs. People are more likely to check in at POIs with high POI stickiness, and they
will not repeatedly visit those POIs with low POI stickiness. Thus, there are significantly
different travel preferences among individuals with different values of stickiness for POIs.
Considering the heterogeneity of people’s cognition styles, the recommendation algorithm
should adopt different stickiness thresholds for each individual. However, the main
difficulty is that it is hard to quantify people’s heterogeneous cognition styles. Second,
our method did not consider geographical factor analysis. Due to the physical interactions
between people and POIs, the geographical factor is a significant piece of contextual
information for POI recommendation. For example, people tend to move around a localized
region. That is to say, the POIs that people have visited before may show a central cluster
pattern. Thus, the regional geographical constraint will have an effect on people’s mobility
patterns. Third, our method lacks an analysis of social influence. People tend to check
in at POIs that have been strongly recommended by their friends who share similar
travel preferences. Obviously, the preferences of their friends may play a significant role
in people’s travel decisions. However, how to predict the social relationships among
individuals is a challenging issue for POI recommendation.

In the future, we will further investigate the proposed method from several aspects.
First, we intend to take the various levels of POI stickiness into consideration to generate
the top-N recommendation lists. One possible approach is to learn a corresponding weight
for various values of POI stickiness via the attention mechanism and then use deep neural
networks to incorporate it into the check-in values of each individual at unvisited POIs.
In this method, the weight parameters can be adjusted via a backpropagation process, and
the learning process will, thus, be adaptive. Second, we will further attempt to incorporate
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the influence of an individual’s memory-based preferences and the influence of the sticki-
ness of a POI for an individual into such multiple baseline recommendation algorithms
as alternating least squares (ALS) and sparse linear model (SLIM). Third, on the basis of
the category and geographical coordinates of POIs that have been visited, we will study
the cluster patterns of human mobility trajectories. We intend to analyze the geographical
characteristics and the check-in probability of each cluster of POIs for obtaining localized
region constraints and people’s geographical preference patterns. Fourth, we intend to
incorporate the travel preferences and the social tags of social friends into a CF framework
for predicting the travel behaviors of the target individuals. To reflect the different levels of
social trust between social friends, we will use a graph-based neural network to construct
the social links between individuals. Lastly, we will pay more attention to the task of
successive personalized POI recommendations, which focus on where an individual would
like to go tomorrow or in the next few days. We will attempt to consider the category
information of the POIs in various model-based recommendation algorithms to deal with
successive changes in an individual’s preferences.
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