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Abstract: The development of generalisation (simplification) methods for the geometry of features
in digital cartography in most cases involves the improvement of existing algorithms without their
validation with respect to the similarity of feature geometry before and after the process. It also
consists of the assessment of results from the algorithms, i.e., characteristics that are indispensable
for automatic generalisation. The preparation of a fully automatic generalisation for spatial data
requires certain standards, as well as unique and verifiable algorithms for particular groups of
features. This enables cartographers to draw features from these databases to be used directly on
the maps. As a result, collected data and their generalised unique counterparts at various scales
should constitute standardised sets, as well as their updating procedures. This paper proposes
a solution which consists in contractive self-mapping (contractor for scale s = 1) that fulfils the
assumptions of the Banach fixed-point theorem. The method of generalisation of feature geometry
that uses the contractive self-mapping approach is well justified due to the fact that a single update
of source data can be applied to all scales simultaneously. Feature data at every scale s < 1 are
generalised through contractive mapping, which leads to a unique solution. Further generalisation
of the feature is carried out on larger scale spatial data (not necessarily source data), which reduces
the time and cost of the new elaboration. The main part of this article is the theoretical presentation
of objectifying the complex process of the generalisation of the geometry of a feature. The use of the
inherent characteristics of metric spaces, narrowing mappings, Lipschitz and Cauchy conditions,
Salishchev measures, and Banach theorems ensure the uniqueness of the generalisation process. Their
application to generalisation makes this process objective, as it ensures that there is a single solution
for portraying the generalised features at each scale. The present study is dedicated to researchers
concerned with the theory of cartography.

Keywords: digital generalisation; metric space; contractive self-mapping; banach theorem; generali-
sation standard; lipschitz continuity condition; cauchy convergence test; minimum dimensions of
salishchev; polyline (segmented line) of binary tree structure; contraction triangles; GIS; MRDB

1. Introduction

The development of methods of generalising (simplifying) a geometry object in dig-
ital cartography involves, for the most part, the improvement of existing algorithms,
and also the disregarding of mathematical objectivity in the verification of the geome-
try of figures before and after the process, i.e., the features necessary for the automatic
generalisation of the object [1–8]. Currently, a big challenge for automatic digital gener-
alisation in multi-resolution databases (MRDB) [9] involves increasing the scope of use
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and the searching of data collected in such a way (which is related to database queries and
geo-visualisation) [10–12].

One of the basic tasks of the MRDB, especially in the geodata databases maintained
by the state cartographic services, is the harmonisation of data obtained from other
databases [13,14]. This makes it necessary to establish constant “cartographic control points
in MRDBs” [9,15]. The overriding goal set by the UN-GGIM (United Nations Committee
of Experts on Global Geospatial Information Management) for state mapping services is
the interoperability of databases. The condition for fulfilling this task is the development
of generalisation algorithms, free from the subjective decision of the authors [8,15,16].

The development of a fully automatic generalisation method for the entire spatial
database (Digital Landscape Model) [17–19] and for the cartographic portrayal of this
database (Digital Cartographic Model) [20–23] calls for algorithms that are clearly verifiable
for a particular group of objects. This will allow cartographers from the aforementioned
bases to choose any objects. This follows from the aforementioned needs that once-acquired
data and their unambiguous, objective generalisation at various scales are the requirements
for the INSPIRE (INfrastructure for SPatial InfoRmation in Europe) directive [24] for the
purposes of database harmonisation and interoperability.

The paper presents a new solution for digital automatic cartographic generalisation for
the geometry of linear and areal objects. It uses the properties of contractive self-mapping,
which in a strict mathematical manner allows the source data of the object belonging to the
metric space to be clearly mapped and verified. At scales s <1 of polygonal generalisations—
lu, there is one objective mapping result if the mapping data meet the properties of the
metric space—Lm, as well as the following additional conditions:

• The necessary condition: the Lipschitz condition (contraction), i.e., p > h, and the
Banach theorem in the shrinking projection for TG [12,25] are preserved in each
envelope with the sequences of points on the polyline—the contractive mapping with
the participation of the binary tree system for the considered triangles:;

• The sufficient conditions of:

(a) Cauchy’s criterion [25] in the contractive mapping at the scale—s < 1,
(b) Minimum dimensions according to, e.g., A. Salishchev [26]: bases—p and

heights of triangles TK of the generalised line;
(c) The verification of the rejected dimensions for source line points.

2. Metric Space

Metric space is a set with an imposed metric, i.e., with a function that defines the
distance between any two members of the set. Metric spaces are the most general class of
sets, which use the concept of distance—patterned on the distance known from Euclidean
spaces (line, plane, three-dimensional space) [27].

In each envelope, the ordered polyline is transformed with a contractive mapping
and fulfils the necessary and sufficient conditions in polyline generalisation. Also needs to
have objective result for scales s < 1, dependent only on scale s. This is confirmed by the
test results (Figures A8 and A9) and in line with the Banach theorem [12,27]. Furthermore,
the generalisation of the geometry of objects, which is one of the three reefs of mapping
established by E. von Sydow in 1857 [1], following the procedure giving here, is no longer
a reef due to the fact that it has one objective solution at every scale.

In digital cartographic generalisation, the continuity of the sequence of points in
intervals of this space, as well as their sum, mean that there is only one objective result.
Moreover, the generated information has an increased degree of credibility.

For the purposes of digital cartography, the linear and areal objects of a metric space
are sequences of points describing the geometry of natural and man-made objects. The
data of these objects require ordering for their processing, in accordance with the rules
of the Lm metric space, which in turn is a generalisation of the properties of Euclidean
space. Thanks to the requirements of the said space, the results of the digital cartographic
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generalisation can be seen to be objective, which leads to an increase in the degree of the
credibility of the generated information.

Cartographic Control of Linear and Areal Objects in a Metric Space

Cartographic Control of Linear and Areal Objects in a Metric Space [25]. Cartographic
control base (OKO) consists of fixed points of the base, distinguished by the properties of the
object’s location, shape and dimensions. The determination of them allows their temporal
exclusion from the process in order to preserve their invariance in contraction mapping
(contractor). In multiresolution databases (MDRB), the selection of OKO improves the
scope of application of these databases and the range of the data search within them (which
is connected with inquiries and geo-visualisation) [10].

OKO is made up of the following objects:

• Natural:

(a) Open linear, represented by sequences of fixed points, the beginning and end
of which define one axis of the local coordinate system,

(b) Areal or base objects, the outline of which is divided into two parts, creating tri-
angles with a common base. The common base has a maximal length (Figure 1),
which assures the preservation of the contraction condition when mapping
polyline envelopes.

• Snthropogenic:

(a) Buildings, linear objects (roads, engineered rivers) and areal objects.

Points belonging to the anthropogenic objects within OKO are determined in a similar
way to those of a natural object, i.e., with their beginning and end singled out.

Figure 1. Cartographic control points of an aerial object.

In order to maintain the stability of the Cartographic Control, the Cartographic Control of
an Object OKO attribute in meta-data of MDRB bases should be determined automatically
only once, by a national mapping agency (NMA). In metric space Lz, if OKO points are not
excluded from the mapping, substantial distortions of the produced map may occur.

3. Definitions and Notations

Three types of triangles are considered in the paper:
TB—base triangles, constructed by object points in different coordinate systems trans-

formed into one geodetic system. These triangles constitute the base for the creation of
initial contraction triangles TK (Figure 2) from their left and right edge. Characteristic
features of these triangles are their bases, which are simultaneously the longest sides of
triangles TK, as they extend from the beginning to the end in every interval.

TK—contraction triangles built within the envelopes of the polyline:

• The first triangle TK in every envelope of the polyline in the contractive self-mapping
which has the longest base and fulfils condition (2),

• Consecutive triangles TK which have (a) common side(s) and are constructed accord-
ing to the binary tree scheme. Their sides are shorter than those of preceding triangles,
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which results from the assumption of the base TB on the longest section connecting
cartographic control points of the areal object,

• The procedure of the contractive self-mapping ends with the triangle TG.

TG—limiting triangle TK of the contractive self-mapping of polyline envelopes into
contraction triangles; in TG, at least one side is a section of the source—the ordered
polyline lu.

The following notations are used in the paper:

lu = ordered polyline, i.e., continuous sequences of points in closed intervals, with nodes;
i = 1, 2, 3, . . . , n,
j = 1, 2, 3, . . . , k—numbers of triangles—envelopes, built of segments of the polyline;
αj—Lipschitz constant (of contraction);
(X, ρX)—metric space with metric ρX;
f —contraction mapping f : X → X , the images of which are triangles TK.

Contraction triangles TKj form an irregular grid on segments, or envelopes, of the
polyline. The grid arises from the base triangle TB according to the scheme of the data
binary tree (Figure 2). Contraction triangles TKj are images of a contraction mapping
operator, and are under the following assumptions:

• Triangle sides (edges) are oriented clockwise—when observed from its base (Figure 2);
• In a triangle, for j = 1 (TK1), with base p1, sides are marked as:

(b) left: pI
1,

(c) right: pII
1,

• Consecutive envelopes of the polyline are created according to the binary tree scheme
in the form of two triangles with sides:

(a) bases: left p2 and right p3,
(b) sides: left: pI

2; pI
3 and right: pII

2; pII
3.

In addition, OKO elements for generalisation are the points of the polyline that
determine the contractive triangles TK in envelopes (Figure 2), the bases of which are
greater than the heights.

Triangles TK are created in the envelopes (hulls) of the polyline as consecutive itera-
tions of the contractive self-mapping; they are built on the edges of the triangles, which
are sections of an ordered polyline. In Figure 2, polyline lu consists of points i = 1–20.
As an example, a sequence of envelopes of polyline lu is created by the sections between
nodes (1–5); (5–10); (10–14); (14–20), which constitute a consecutive iteration of a binary
tree construction in the form of triangles.

Figure 2. In the TB envelope of the creation of contraction triangles TK in accordance with the binary
tree system.

The following definition explains the contractive mapping ([26], p. 203):
Contraction, or contractive mapping, is a projection f of metric space (X, ρx) into

metric space (Y, ρy), for which there exists real constant a ∈ (0, 1) so that for arbitrary
x1, x2 ∈ X the inequality ρY(( f (x1), f (x2)) ≤ a·ρX(x1, x2). is fulfilled.
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For the needs of this paper, contractive mapping f is defined in such a way that it
transforms an ordered polyline lu of geographic data into the binary tree structure of
contractive triangles TK. Therefore, lu ⊂ D f and f (lu) =

{
TKj

}
, which means that f maps

a sequence of sections within the envelope of the ordered polyline lu into a set of TK, and
the mapping is unique:

f : lu → f (lu) (1)

4. The Necessary and Sufficient Conditions for the Contractive Mapping in Digital
Generalisation Process

The introduction of contractive mappings to digital generalisation yields unique
objective results of the process. It can be achieved, provided certain conditions are imposed
on data and one-way mappings.

In digital generalisation, one strives to eliminate the inconclusiveness of its results.
Polylines lu contain points (nodes) which cause inconsistencies in results [8] [Chrobak et al.
2015], and which were named singular points. They can be found through triangles created
on polyline lu from its consecutive three points. The bases of these triangles (which do not
belong to the polyline) form a single axis of a local orthogonal coordinate system. Their
geometry is verified by condition (2), from which it uniquely results that the longest side
of the examined triangle is its base, which in turn fulfils Equation (3). The positive result of
the verification of condition (2) allows for the examination of the remaining triangles of the
polyline. If condition (3) is not fulfilled by the lengths of the examined triangle, the vertex
positioned opposite to the side determining the axis of local coordinate system is a singular
point. The identification of the singular points of the examined polyline allows for:

(a) The exclusion of these points from the mapping procedure by setting them limits
of intervals;

(b) The preservation of the continuity, repeatability and uniqueness of mapping;

Ad. (a) Fulfilment of condition (2) assures that every created triangle TK has a base
longer than its other sides (Figure 3). Its vertex becomes a singular point when one or both
sides are longer than the base. The triangle is then defined as in Figure 4, with condition (3);

Ad. (b) In self-mapping, triangles TK preserve condition (2) and the intervals of the
polyline are composed of continuous sequences of points. Their continuity assures that the
contractive self-mapping of an ordered polyline fulfils the contraction condition and the
Banach theorem on unique solutions. The solution is the original polyline (created before
mapping) and, thanks to that, the mapping is repeatable.

Determination of Singular Points—Nodes of Polyline lu in Metric Space Lz

The determination of singular points on the polyline is achieved by the sequential
creation of triangles from its three consecutive points. Moreover, the bases of these triangles
do not belong to the line. In these triangles (Figure 3), their dimensions are verified by
condition (2), which highlights the singular point or vertex positioned opposite the base
and fulfilling condition (3).

Figure 3. Determination of singular vertex.
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pmax
i,j > hsrod

i,j and hsrod <

√
n2 − 1

2
p0 (2)

i = 1, 2, 3, . . . , m (nodes of the polyline)
j = 1, 2, 3, . . . , k (contractive triangles TK)
n—number dividing base p of triangle TK, if abscissa of height h is not in the middle

of base p (n = 2, 3, 4, . . . , w)

hsrod <

√
3

2
p0

When n = 2, condition (2) confirms that every base p0 of triangle TK is longer than its height.
A local coordinate system is created in every triangle of the polyline under examina-

tion. In a triangle for which condition (2) is not fulfilled, the longest side is determined
by Equation (3): (

croz
0i
)2

= h2
0i + (b0i + d0i)

2

H2
0i = a2

i − d2
0i

and hence
(croz

oi )2 = a2
i − d2

0i + (b0i + d0i)
2 = a2

i + b2
0i + 2b0id0i

croz
0i =

√
a2

i + b2
0i + 2b0id0i

(3)

Figure 4. Triangle with vertex B in a node which is a singular point.

5. Contractive Self-Mapping of Ordered Polyline (Segmented Line) lu
In metric space (X, ρ), images in contractive self-mapping f : X → X of polyline

lu, envelopes, built on geographic data and possessing the structure of a binary tree
(Figure A1), while triangles TK (Figure A2) fulfil condition (2).

The polyline is split into envelopes whose borders are marked by the singular points
in accordance with Equation (3) and create sections of the polyline. The base triangles
TBs, the vertices of which are the beginning and end points of the polyline lu forming
triangles TB, which are created in these sections of the polyline lu (Figure 2). The edges
TBL and TBP (Figure 2) determine the points of the limit of the section, connecting the
beginning-to-middle edge TBL with the middle-to-end-of-the-section edge TBP. Within
the envelopes, the binary tree system triangles are created on polyline lu. The first triangle
TK—the beginning one (of each envelope polyline)—determines the length limit between
the beginning and end points of the TBL edge, which is the base of the first triangle TK. The
remaining edge TBP of the base triangle TB is determined in the same manner (Figure 2).

The contractive self-mapping has an application in the geometry of open figures, and
the closed ones are separated into two base triangles TB (Figure 1) with a common base.
The singular points of the polyline lu are temporarily excluded from the mapping. The
triangles TKj in the envelopes are created by a top–down approach, with inequality (2)
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being maintained. Each triangle TK (consecutive in iteration) has a common side with
its neighbour.

The experience gained from the examination of the currently used algorithms for
digital cartographic generalisation, mentioned at the beginning of the paper, calls for their
broader application complemented by contractive self-mapping, fulfilling the contraction
condition at arbitrary scale s≤ 1. The generalisation of every linear object is well justified [8].
Contractive self-mapping has the following properties:

• An unequivocal and user independent result;
• Verification of contractive self-mapping of an ordered polyline lu result by its original data;
• Preservation of the similarity condition of the polyline by original points in contractive

mappings at scales s < 1, which according to the Cauchy condition and minimum
dimensions of Salishchev (so univocally) are not removed at a given scale.

Research on the application of contractive self-mapping for the digital generalisation
of linear objects at scales s≤ 1 point out that it can become a standard of such generalisation
(Figure A3). They led to the formulation of the following thesis:

In metric space (X, ρ), the f: X→ X contractive self-mapping of the ordered polyline
lu into triangles TK with a binary tree structure, is created if the Lipschitz condition
is preserved, and if its result is objective and independent from the user at all scales of
the generalisation.

Proof: bases p1 and p2 of triangles TK are determined in the binary tree structure
through self-mapping with the preservation of the following assumptions for the
neighbouring triangles �

• Each pair of neighbouring triangles of polyline lu, of two consecutive iterations of
their construction, has a common side,

• In the envelope of the polyline lu, the length of the base of each created triangle TK is
greater than the length of its edges, which is guaranteed by condition (2).

Fulfilling the assumptions means that p1 > p2, since the common edge of triangles “1”
and “2” p2 = pI

1 (Figure 5) is shorter than base p1, but longer than edge pI
2 of the triangle

“2” of which it is the base.
In this way, triangles TK are created according to the binary tree structure, with the

preservation of the Lipschitz contraction condition, in the form of:

| f (p1)− f (p2)| =
∣∣∣pI

1 − pI
2

∣∣∣ ≤ a|p1 − p2| (4)

Figure 5. Relation of two neighbouring triangles TK1 and TK2.
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Considering the boundary case where pI
1 = pI

2 = p, which means that triangle “2” is
equilateral (Figure 6), we obtain:

p2 = h2 +
( p

2

)2
(5)

From which: h =
√

3
2 p, 0.866p ≥ h > 0

In other words, p > h, which fulfils condition that is given by Formula (2).
Relation (4) can then be written as

| f (p1)− f (p2)| =
∣∣∣pI

1 − pI
2

∣∣∣ = 0 ≤ a|p1 − p2| (6)

Dividing both sides of inequality (6) by α and p1, we obtain 0 ≤ 1 − p2
p1

, and

then p2
p1
≤ 1.

In each contractive mapping, the base of triangle “1” is longer than its sides, which is
reflected by the inequality.

In the binary tree system, each iteration of two neighbouring triangles that have a
common side of contractive mapping fulfils the condition α = p2

p1
< 1. In the section of

polyline lu of each binary tree, the iteration of a sequence of triangles TK of unidirectional
contractive mapping fulfils the condition of α <1. This is due to the fact that the limits of the
polyline section are triangles that follow the mentioned rules: the first with the maximum
possible length of its sides and the end-of-the-section boundary triangle with the minimum
lengths of the triangle TK edges create the lengths of the sides of the source polyline lu.
The binary tree interactions of TK triangles are continuous in the section (because α < 1),
which results in the contraction condition being fulfilled in each section of the polyline
lu. Moreover, the mapping-preserving contractions of the polyline lu belong to the metric
space in its sections, so the summation of the partial generalisations in the sections of
the polyline lu is the result of the mapping. Thus, the usefulness of the required and
sufficient conditions in contractive self-mapping has been proven to be necessary to obtain
an objective result in digital generalisation at each scale.

Figure 6. Equilateral triangle.

The extreme case of an equilateral triangle was included in the examination of the
contraction condition for the contractive triangles of a polyline (Figure 5). If the triangle
fulfils condition (2), it preserves the condition of the contractive self-mapping of polyline
envelopes. In summary, triangles TK created in the envelopes of the polyline according to
the binary tree scheme (Figure 5) maintain the properties of contractive self-mapping. This
is because in the case of two TK triangles having common side, the Lipschitz condition (4)
with constant α < 1 is fulfilled.

Values α are not stable within the procedure of contractive mapping of triangles
contained in the polyline lu envelopes (Figure A8, col. 10). In every iteration of the mapping,
the “local constant” assumes another value from the interval 0 < α < 1. This is due to the
irregular structure of polyline sections processed into triangles TK. Therefore α changes
but does not exceed the value of 1 (which is caused by the fulfilment of condition (2)).
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The contractive self-mapping preserves the contraction condition, and is unidirectionally
continuous, repeatable and possesses a unique solution: the source data of the polyline.

The second task of the contractive mapping of a polyline lu at scales s < 1 is to improve
the self-mapping for scales used in arbitrary generalisations of the line. This would yield at
every scale s < 1, due to self-mapping and the properties of its continuity and repeatability
preservation, a unique (one) result. Such mapping would cause a unique removal of points
undistinguishable at a given scale, which would not preserve the Cauchy condition with
Salishchev’s minimum dimensions (Figure A3).

Figure 7 presents part of the polyline lu, which illustrates the fulfilment of contraction
condition (4) for mapping, with local constant α < 1. Sections 1–5 is the base of base triangle
TB (1-4-5). On its edge 1–4, and by fulfilling condition (2) of the tree system, triangles
TK with decreasing lengths of their bases are formed according to the binary tree system
and variable mapping scales. Relations between the sides of the constructed triangles are
shown in column C of Table 1, while the contractive character of the local mappings is
confirmed by the results shown in column D.

Figure 7. Operation of contractive self-mapping of a polyline into triangles TK.

Table 1. Results proving the Lipschitz condition for constant α < 1 in the contractive mapping
of a polyline.

No TKj TK Base pj Left Edge pj
I Right Edge pj

II Relations α = pj+1/pj

A B C D

1 1-4-5 p1 = 1-5 pI
4-5 pII

1-4 p1 > pII
1-4 = p2 0 < p2/p1 < 1

2 1-2-4 p2 = 1-4 pI
1-2 pII

2-4 p2 > pII
2-4 = p3 0 < p3/p2 < 1

3 2-3-4 p3 = 2-4 pI
3-4 pII

2-3 p3 > pII
2-3 = p4 0 < p4/p3 < 1

4 1-2-3 p4 = 2-3 pI
1-3 pII

2-1
p4 > pI

1-3
p4 > pII

2-1
0 < α < 1
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6. The Application of the Contractive Self-Mapping of Polyline lu for Digital
Generalisation at Scales s < 1

In contractive self-mapping, ordered polyline lu belongs to metric space Lz. The poly-
line is transformed into contractive triangles TK with the application of the binary tree
system, the Lipschitz condition, and the “p” bases of TK triangles in the top–down ap-
proach. Additionally, the heights hmax of the triangles TK fulfil the p > h condition in
accordance with condition (2). The created triangles TK of the contractive self-mapping
also fulfil the recognition norm of the minimum dimensions of triangles, as defined by, for
example, A. Salishchev. If its recognition is set as a norm, the unequivocal removal of edges
from the self-mapping triangles not meeting the set norm is made possible (Figures A4–A7).
The remaining triangle edges form (in envelopes) the sequences of sections of the gen-
eralised line that belong to the metric space. The properties of the metric space of the
generalised polyline also allow for the summation of the segments created in the envelopes.
The sum of this is the objective and only result of the generalised polyline (Figures A4–A7).
Then, in the created envelope, there occurs an examination of the control of the points
removed from the generalised section of the segment. In the examination, this segment
forms the x axis of the coordinate system, while the y axis consists of the ordinates of the
points removed from the x axis. In the examined sequence of the envelope, the maximum y
coordinate point (Figures A4–A7) is the height of the triangle, with the height evaluating
the result in the examined envelope in accordance with the recognition norm. The results
received from the envelopes that do not meet the recognition norm, end the generalisation
of the polyline lu at the s < 1 scale.

There are cases that exist where the generalisation of the polyline of triangle TK does
not meet the norm on one edge. In such a case, the solution is to reject the second edge,
and the result is the base of the triangle meeting the norm (Figure A6).

7. The Application of the Contractive Self-Mapping in Digital Generalisation at Scales
s < 1, Exemplified by the Geometry of A Vistula River Fragment

The examination of the viability of contractive mapping for the objective digital
generalisation of linear objects was conducted using data obtained from the Centre of
Geodetic and Cartographic Documentation (NMA in Poland). The order of the data for the
examination and the automation of the process has been separated into algorithms for:

(A0) Contractive self-mapping (s = 1) of polyline lu,

• Input data (Figure A8):

(a) Loading of vertices of line lu (col. 3–5);
(b) Entering the thickness of line lu at scale s (col. 12);
(c) Examining the recognisability of line lu in accordance with the A. Salishchev

metric (col. 8–9);
(d) Determining the upper vertices of line lu, which are the polyline’s singular

points (col. 3–5).

• Creation of the base triangles TB (the so-called envelopes) on line lu (Figure A8):

(a) Loading of singular points, which form boundaries on line lu (and which
double as bases of triangles TB);

(b) Determination of the length of “p” chords of triangles TB from the beginning
and end points of their bases (col.11);

(c) Determination of the centres of the bases of TB triangles (col.11);
(d) Determination of the upper vertices of TB triangles, determined from the source

points of line ł (as a y intercept of the centre of the base TB with a side of line ł,
and its moving to a closer point on polyline lu) (col.10).

• Creation of triangles TK in envelopes of line lu in accordance with the binary tree
scheme (Figure A8.)

(a) Determination of the left and the right side of the base triangle TB (col.6–7);
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(a) Determination of the vertex for the left and the right edge in triangle TB, in the
same manner as described in point II.4. This results in the first triangles TK1

L

and TK1
P of the envelope (col.10);

(b) Determination of the consecutive iterations of triangles TKL
i+1, TKP

i+1 from the
edges of the triangles from the previous iteration step, in the same manner as
described in point III.2, and in accordance with the binary tree scheme (col 10);

(c) Creation/formation of triangles TK on the edges of triangles TBi
P, TBi

L in each
envelope with the top–down approach and in accordance with the binary tree
scheme (col 10);

(d) Contractive self-mapping ends the process in the segment of the section if the
lengths of the edges of either the TKLk or TKPk triangles are the lengths of a
segment of the polyline lu (col.12).

• Verification of the contractive self-mapping of line lu:

(a) In the envelope of each line ł, point III.5 is fulfilled.

(A1) Mapping of generalisations of line lu at the scale s < 1 with the use of contractive
self-mapping (Figure A4.).

• Algorithm A0 yields copies of:

(a) Input data,
(b) Triangles TB of base polylines ł, called envelopes, and
(c) Triangles TK in the envelopes of line ł, created in accordance with the binary

tree scheme.

• Creation of generalised triangles TK, depending on the scale s < 1 (Figure A8)

(a) In each envelope of the polyline ł, creating the generalised polyline has an
inverse relation to contracted self-mapping (i.e., bottom-up) (col.11–12);

(b) Comparison of the dimensions of bases and the height of triangles TK with the
A. Salishchev norm (col. 8–9);

i. Preservation of triangles TK meeting the A. Salishchev norm (col.12);
ii. The base of triangles TK remains while their edges are discarded if their

dimensions do not meet the A. Salishchev norm (Figures A5 and A6);

• Creating the generalised polyline ł from the remaining points, with an unchanged
order of markings of the source line (Figures A5 and A6).

(A2) Verification of generalised line lu of the mapping at the scale s < 1.

• Control of the results of the generalisation of line lu at scale s (Figure A9):

(a) Measurement of the rejected h points of the source line lu in the y coordi-
nate envelopes against the generalised line and its created segments p of the
generalised line (Figures A5–A7).

(b) Verification of dimensions of the Salishchev triangle at scale s through compar-
ison (Figures A5–A7) of the generalised maximum height of the y coordinate
h from the points of the source line lu to the generalised line with a height
dimension, as well as the segments p created for the generalised line with the
norm of the dimensions of the base.

(c) Fulfilment of the Cauchy condition from point 2 (Figure A4) and of the lengths
of dimensions of the bases and the height, in accordance with the Salishchev
for the generalised line ł, ends the process of Figures A5–A7.

The positive results of the test examinations showcased in (Figures A5–A7) and their
verification in Figures A4 and A5 allowed for the beginning of the development of the
objective automated digital generalisation algorithm which is in progress.
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8. Conclusions

The results of the test examinations on digital objective generalisation of object geom-
etry allow for the following conclusions:

Each linear object in metric space in contractive self-mapping based on the binary tree
structure, with the Lipschitz condition and the Banach theorem on self-contracting triangles
being fulfilled has a single objective solution, which is its source data. In metric space, the
multiplication operation does not change the properties of self-mapping. When adding a
fixed scale s < 1 to the self-mapping and by multiplying the dimensions of the sides of the
created contractive triangles by the constant “s”, we get the lengths of triangle sides for a
given simplification scale. The verification of the gained data at scale “s” occurs through
satisfying the Lipschitz condition and the Cauchy condition with the minimum dimensions
of Salishchev, and then eliminating the sides of any contractive triangles which do not
satisfy both conditions. The following conclusions are the result of their detailed study:

1. Mapping, which constructs iterative images of polyline lu in the form of triangles TK
according to the structure of a binary tree is a contraction (Figures A5–A7);

2. In every contraction iteration, the nodes of the polyline remaining before and after
contractive self-mapping f : X → X into contractive triangles are invariant and iden-
tical (columns 3, 4, 5 with column 11 in Figure A4). This proves that triplet (lu, f , TK)
is the only one contractive mapping of an ordered polyline into itself;

3. In a metric space, the contractive self-mapping f : X→ X is continuous, as it fulfils the
Lipschitz condition. The equation lu = f (lu) has one solution that results from the Ba-
nach fixed-point theorem. In addition, the sequence lu, f (lu), f ( f ((lu)), f ( f ( f (((lu)))
is convergent at the “fixed point”—the polyline lu;.

4. The ordered polyline with a binary tree structure belonging to the metric space is
a constant contractive self-mapping into the contractive triangles TK of the digital
generalisation at each scale s < 1, if the Lipschitz and Cauchy conditions, and the
Salishchev dimensions are fulfilled. Figure A8;

5. In metric space, the contractive mapping leading to generalisations of the polyline lu
follows the top–down approach;

6. In metric space L2, the contractive self-mapping of the polyline lu is verified via its
data (Figure A9). The positive result of the verification allows for the application of
the contractive mapping of the polyline at scales s < 1. (Figure A8, col 12);

7. The generalised polyline is unequivocally mapped if it fulfils the following conditions:

(a) Source data of the polyline lu belong to the metric space Lz, i.e., lu ⊂ Lz
(b) Data of the polyline lu have the binary tree structure in the mapping;
(c) Transformation f of polyline lu into triangles TK in its envelopes fulfils the

following conditions:

i. The contractive self-mapping (data after mapping an object are source
data) and at each scale s ≤ 1 fulfil: The Lipschitz contraction condition,
and The assumptions of the Banach theorem;

ii. at scales s < 1 (Every contraction is uniformly continuous in metric
space X, as it fulfils the Lipschitz condition. The continuity of a function
results from its uniform continuity.), also: the Cauchy condition with
minimum dimensions of Salishchev—compatibility of summation of
the after-the-mapping and removed vertices of the polyline with the
number of the vertices of the source polyline lu;

8. The method for the object geometry generalisation using the contractive self-mapping
is an objective digital generalisation and has economic rationale, as:

(a) One-time update of the source data can be used for all scales s ≤ 1, which
significantly lowers the costs of constantly updating through their automation;

(b) Data of an object at scales s < 1 are generalised with the contractive mapping,
which at each scale has a single solution, in turn increases the credibility of the
gained information. Contractive self-mapping used for the harmonisation of
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databases in which changing the scale of data is a common occurrence—and
contractive self-mapping should complement the metadata of every object.

9. The test examinations of the ordered polyline lu in the contractive self-mapping and its
generalisations included in Figures A8 and A9 yielded a positive result that validates
the creation of an automated application for the objective digital generalisation. Work
on this problem is in progress.

10. The generalisation of geospatial data appears broadly representative of current re-
search trends, where significant positive progress can be expected in the near fu-
ture [28,29]. As cartographers progress, they strategically expand existing techniques,
explore new computational paradigms, and broaden their field of view [30]. For-
mal methods of geometry generalisation and the assessment of their impact are
still not widespread or used. It seems that cartographic generalisation methods
should be developed, with the aim of becoming independent from the decisions
of an individual operator.

Finally, it should be emphasised that the generalisation of geospatial data is a timeless
research task. It has been topical ever since the year 1857, in which von Sydow defined
the three reefs of cartography. One of them is the generalisation of spatial objects, which is
necessary, among other things, for the realisation of the INSPIRE directive in terms of the
automation of harmonisation and the interoperability of data, which require the creation of
an objective method of cartographic generalisation, of which the results are independent
from the operator. The search for such a method is showcased in this paper.

An objective generalisation of data at any given scale is possible thanks to the use
of the following properties: metric space, the Lipschitz contractive self-mapping theory
for the triangles created with the binary tree system, the Banach theory, and the Cauchy
criterion. In the verification of the generalisation results for the triangles created through
the mapping, the Salishchev norms for drawing recognisability were used. The test results
fully confirm the premises of this paper, especially the Banach theorem on unique solutions
at each generalised scale. Currently, research on the creation of a calculation algorithm for
the showcased spatial data generalisation method is in progress.
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Lewiński (10%) Artur Krawczyk (5%.); resources, Opensource; writing—original draft preparation,
Tadeusz Chrobak; writing—review and editing, Joanna Bac-Bronowicz, Stanisław Lewiński; visual-
ization, Tadeusz Chrobak, Joanna Bac-Bronowicz. All authors have read and agreed to the published
version of the manuscript.

Funding: APC was financed by three scientific institutions: AGH University of Science and Technol-
ogy, Wroclaw University of Science and Technology and Space Research Centre of Polish Academy
of Sciences.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by
the author contribution or funding sections. This may include administrative and technical support,
or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



ISPRS Int. J. Geo-Inf. 2021, 10, 107 14 of 24

Appendix A

Figure A1. Scheme of the binary tree of polyline (ordered broken line) lu envelopes, in contractive self-mapping into contractive triangles TK.
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Figure A2. Ordered source line—lu with base triangle—TB. Scale 1:10,000.
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Figure A3. Ordered polyline—lu with contractive mapping of the triangles TK created in binary tree system. Scale 1:10,000.
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Figure A4. Generalisation of ordered polyline—lu to scale 1:25,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary tree system and the
verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS = 17.5 m, pmin = 18.0 m ± 4.0 m→ pAS < p min,
heights-hAS = 8.5 m, hmax = 8.5 m ± 2.0 m→ hAS > h max.
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Figure A5. Generalisation of ordered polyline—lu to scale 1:50,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary tree system and the
verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS = 38.0 m, pmin = 38.0 m ± 6.0 m→ pAS < p min,
heights-hAS = 16.5 m, hmax = 9.0 m ± 3.5 m→ hAS > h max.
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Figure A6. Generalisation of ordered polyline—lu to scale 1:75,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary tree system and
verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS = 54.0 m, pmin = 56.0 m ± 8.0 m→ pAS < p min,
heights-hAS = 21.5 m, hmax = 17.0 m ± 5.1 m→ hAS > h max.
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Figure A7. Generalisation of ordered polyline—lu to scale 1:100,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary tree system and
verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS = 98.5 m, pmin = 108.0 m ± 15.0 m→ pAS < p min,
heights-hAS = 31.5 m, hmax = 17.0 m ± 9.0 m→ hAS > h max.
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Figure A8. Analysis of polyline (broken line) lu data generalisation by contractive mappings X→ X.
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Figure A9. Verification of scale-dependent contractive mappings of polyline (broken line) into TK triangles of bases pi, according to the Cauchy condition and minimum dimensions
of Salishchev.
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27. Dziubiński, I.; Świątkowski, T. Poradnik Matematyczny; Warszawa PWN: Warszawa, Poland, 1982; wyd. III.

http://doi.org/10.3138/FM57-6770-U75U-7727
http://doi.org/10.1559/152304086783900059
http://doi.org/10.1080/15230406.2013.803707
http://doi.org/10.1179/caj.1966.3.1.10
http://doi.org/10.1080/10106049.2015.1133721
http://doi.org/10.1080/10106049.2017.1386721
http://doi.org/10.3390/ijgi6090276
http://doi.org/10.1179/caj.1993.30.1.46
https://inspire.ec.europa.eu/documents/directive-20072ec-european-parliament-and-council-14-march-2007-establishing
https://inspire.ec.europa.eu/documents/directive-20072ec-european-parliament-and-council-14-march-2007-establishing


ISPRS Int. J. Geo-Inf. 2021, 10, 107 24 of 24

28. Liu, Y.; Li, W. A New Algorithms of Stroke Generation Considering Geometric and Structural Properties of Road Network. ISPRS
Int. J. Geo Inf. 2019, 8, 304. [CrossRef]

29. Courtial, A.; El Ayedi, A.; Touya, G.; Zhang, X. Exploring the Potential of Deep Learning Segmentation for Mountain Roads
Generalisation. ISPRS Int. J. Geo Inf. 2020, 9, 338. [CrossRef]

30. Kronenfeld, B.; Buttenfield, B.; Stanislawski, L. Map generalisation for the Future. ISPRS Int. J. Geo Inf. 2020, 9, 468. [CrossRef]

http://doi.org/10.3390/ijgi8070304
http://doi.org/10.3390/ijgi9050338
http://doi.org/10.3390/ijgi9080468

	Introduction 
	Metric Space 
	Definitions and Notations 
	The Necessary and Sufficient Conditions for the Contractive Mapping in Digital Generalisation Process 
	Contractive Self-Mapping of Ordered Polyline (Segmented Line) lu  
	The Application of the Contractive Self-Mapping of Polyline lu  for Digital Generalisation at Scales s < 1 
	The Application of the Contractive Self-Mapping in Digital Generalisation at Scales s < 1, Exemplified by the Geometry of A Vistula River Fragment 
	Conclusions 
	
	References

