Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. InVEST Model
InVEST—Water Yield Module
2.3. Input Data for the Model
2.3.1. Precipitation (Current Data)
2.3.2. Precipitation (Future Data)
2.3.3. Evapotranspiration
2.3.4. Plant Available Water Capacity
2.3.5. Root Restraint Layer Depth
2.3.6. Land Use and Land Cover
2.3.7. Biophysical Table
2.3.8. Z-Parameter
2.4. Sensitivity Analysis
3. Results and Discussion
3.1. Variation in the Rainfall
3.2. Evolution of Land Use and Land Cover
3.3. Annual Water Yield in the Study Zone
3.4. Sensitivity Analysis
3.5. Validation of the Obtained Annual Water Yield
3.6. Public Policies and Decision Making
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Maes, J.; Crossman, N.D.; Burkhard, B. Mapping ecosystem services. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2017; p. 23. ISBN 978-954-642-829-5. [Google Scholar] [CrossRef]
- Vaughn, C.C. Ecosystem services provided by freshwater mussels. Hydrobiologia 2017, 810, 15–27. [Google Scholar] [CrossRef]
- Daily, G.C. Introduction: What are ecosystem services? In Nature’s Services: Societal Dependence on Natural Ecosystems, 1st ed.; Island Press: Washington, DC, USA, 1997; pp. 1–10. ISBN 1-55963-475-8. Available online: https://islandpress.org/books/natures-services#desc (accessed on 31 August 2024).
- Cudennec, C.; Leduc, C.; Koutsoyiannis, D. Dryland hydrology in Mediterranean regions—A review. Hydrol. Sci. J. 2007, 52, 1077–1087. [Google Scholar] [CrossRef]
- Van Reeth, W. Ecosystem Service Indicators. In Ecosystem Services; Elsevier: Amsterdam, The Netherlands, 2013; pp. 41–61. [Google Scholar]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Rohatyn, S. Differential Impacts of Land Use and Precipitation on “Ecosystem Water Yield”. Water Resour. Res. 2018, 54, 5457–5470. [Google Scholar] [CrossRef]
- Aber, J.D.; Ollinger, S.V.; Federer, C.A.; Reich, P.B.; Goulden, M.L.; Kicklighter, D.W.; Melillo, J.M.; Lathrop, R.G., Jr. Predicting the effects of climate change on water yield and forest production in the northeastern United States. Clim. Res. 1995, 5, 207–222. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. ScienceDirect Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Schröeter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Europe Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- McFarlane, D.; Stone, R.; Martens, S.; Thomas, J.; Silberstein, R.; Ali, R.; Hodgson, G. Climate change impacts on water yields and demands in south-western Australia. J. Hydrol. 2012, 475, 488–498. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Bergström, S. Principles and Confidence in Hydrological Modelling. Hydrol. Res. 1991, 22, 123–136. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water Yield of Xitiaoxi River Basin Based on InVEST Modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; White, M.J. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J.; Freer, J.E.; Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 2021, 25, 527–549. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef]
- Ceroni, M. ARIES (Artificial Intelligence for Ecosystem Services): A new tool for ecosystem services assessment, planning, and valuation. In Proceedings of the 11th Annual BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity, Venice, Italy, 21 September 2009. [Google Scholar]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef]
- Sharp, J.; Tallis, R.; Ricketts, H.T.; Guerry, T.; Wood, A.D.; Chaplin Ennaanay, S.A.; Wolny, D.; Olwero, S.; Kramer, N.; Nelson, R.; et al. InVEST 3.2.0 User’s Guide; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Gland, Switzerland, 2018. [Google Scholar]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.; Bullock, J. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the invest model to assess the impacts of climate and land use changes on water yield in the upstream regions of the shule river basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, Y.Y. Application of the InVEST model to quantify the water yield of North Korean forests. Forests 2020, 11, 804. [Google Scholar] [CrossRef]
- Scordo, F.; Lavender, T.M.; Seitz, C.; Perillo, V.L.; Rusak, J.A.; Piccolo, M.C.; Perillo, G.M.E. Modeling Water Yield: Assessing the role of site and region-specific attributes in determining model performance of the InVEST Seasonal Water Yield Model. Water 2018, 10, 1496. [Google Scholar] [CrossRef]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Minga-León, S.; Gómez-Albores, M.A.; Bâ, K.M.; Balcázar, L.; Manzano-Solís, L.R.; Cuervo-Robayo, A.P.; Mastachi-Loza, C.A. Estimation of water yield in the hydrographic basins of southern Ecuador. Hydrol. Earth Syst. Sci. 2018, 2018, 1–18. [Google Scholar]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Estrella, R.; Cattrysse, D.; Van Orshoven, J. Comparison of Three Ideal Point-Based Multi-Criteria Decision Methods for Afforestation Planning. Forests 2014, 5, 3222–3240. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Fu, B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser 2004, 3235, 32–35. [Google Scholar]
- MAE-PNUD. Tercera Comunicación Nacional del Ecuador a la Convención Marco de las Naciones Unidas sobre Cambio Climático; Ministerio de Ambiente y Agua: Quito, Ecuador, 2017. [Google Scholar]
- Armenta, G.; Villa, J.; Jácome, P.S. Proyecciones Climáticas de Precipitación y Temperatura para Ecuador, Bajo Distintos Escenarios de Cambio Climático; [Internet] Quito, Ecuador. 2016. Available online: https://info.undp.org/docs/pdc/Documents/ECU/14 Proyecciones de Clima Futuro para Ecuador en base a IPCC-AR5.pdf (accessed on 31 August 2024).
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5. [Google Scholar] [CrossRef]
- Zhiña, D.; Avilés, A.; Pacheco, J.; Mendoza, D. Spatiotemporal Features Of Drought Conditions: A Case Study In An Equatorial Andean Basin Using The Spei Index (1982–2015). In Estudios Teórico-Metodológicos en Ciencias Exactas, Tecnológicas y de la Tierra 4; Atena Editora: Ponta Grossa, Brazil, 2024; pp. 50–63. [Google Scholar]
- Campozano, L.; Ballari, D.; Montenegro, M.; Avilés, A. Future Meteorological Droughts in Ecuador: Decreasing Trends and Associated Spatio-Temporal Features Derived From CMIP5 Models. Front. Earth Sci. 2020, 8, 17. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Peñafiel, L.; Alcalá, F.J.; Jimeno-Sáez, P.; Pérez-Sánchez, J. Climate change impacts on renewable groundwater resources in the andosol-dominated Andean highlands, Ecuador. Catena 2024, 236, 107766. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Li, C.; Sinha, E.; Horton, D.E.; Diffenbaugh, N.S.; Michalak, A.M. Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res. Atmos. 2014, 119, 13153–13162. [Google Scholar] [CrossRef]
- Holdridge, L.R. Simple Method for Determining Potential Evapotranspiration from Temperature Data. Science 1959, 130, 572. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Martinez, A.; Matovelle-Bustos, C.M.; Astudillo, L. Geographic Information Systems in the protection of water resources in the micro-basin of Tabacay River, Ecuador. Kill. Técnica 2019, 3, 1–10. [Google Scholar]
- MAE-MAGAP. Protocolo Metodológico para la Elaboración del Mapa de Cobertura y uso de la Tierra del Ecuador Continental 2013–2014, Escala 1:100000; Ministerio del Ambiente del Ecuador y Ministerio de Agricultura, Ganadería, Acuacultura y Pesca: Quito, Ecuador, 2015. [Google Scholar]
- Espinoza-Mendoza, V. Dinámica EGO: Una Herramienta Gratuita para Modelar y Brindar Soporte en el Análisis de CCUS; Maimónides University: Buenos Aires, Argentina, 2017; pp. 1–20. [Google Scholar]
- Piontekowski, V.J.; da Silva, S.S.; Mendoza, E.R.H.; Costa, W.L.d.S.; Ribeiro, F.C. Modelagem do desmatamento para o Estado do Acre utilizando o programa DINAMICA EGO. In Proceedings of the 4o Simpósio Geotecnologias no Pantanal, Bonito, MS, Brazil; 2012; pp. 20–24. [Google Scholar]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and global factors controlling water-energy balances within the Budyko framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; Benito, A.L.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.M.; Lopes, A.G.; Santos, C.A.G. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J. Environ. Manag. 2023, 326, 116664. [Google Scholar] [CrossRef] [PubMed]
- Zhiña, D.X.; Mosquera, G.M.; Esquivel-Hernández, G.; Córdova, M.; Sánchez-Murillo, R.; Orellana-Alvear, J.; Crespo, P. Hydrometeorological factors controlling the stable isotopic composition of precipitation in the highlands of south Ecuador. J. Hydrometeorol. 2022, 23, 1059–1074. [Google Scholar] [CrossRef]
- Zhang, Q.; Ban, Y.; Liu, J.; Hu, Y. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput. Environ. Urban Syst. 2011, 35, 126–139. [Google Scholar] [CrossRef]
- Zhang, Q.; Wallace, J.; Deng, X.; Seto, K.C. Central versus local states: Which matters more in affecting China’s urban growth? Land Use Policy 2014, 38, 487–496. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Zhang, X.; Zhu, H.; Wei, X. Changes in soil physical and hydraulic properties following the conversion of forest to cropland in the black soil region of Northeast China. Catena 2021, 198, 104986. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Pinos-Morocho, D.; Morales-Matute, O.; Durán-López, M.E. Suelos de páramo: Análisis de percepciones de los servicios ecosistémicos y valoración económica del contenido de carbono en la sierra sureste del Ecuador. Rev. Cienc. Ambient. 2021, 55, 157–179. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2000. J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef]
- Ouyang, Y. New insights on evapotranspiration and water yield in crop and forest lands under changing climate. J. Hydrol. 2021, 603, 127192. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef]
- Buytaert, W.; Iñiguez, V.; De Bièvre, B. The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover-water yield debate: From demand- to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Mark, A.F.; Dickinson, K.J.M. Maximizing water yield with indigenous non-forest vegetation: A New Zealand perspective. Front. Ecol. Environ. 2008, 6, 25–34. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, 1–18. [Google Scholar] [CrossRef]
- Zhiña, D.; Montenegro, M.; Montalván, L.; Mendoza, D.; Contreras, J.; Campozano, L.; Avilés, A. Climate Change Influences of Temporal and Spatial Drought Variation in the Andean High Mountain Basin. Atmosphere 2019, 10, 558. [Google Scholar] [CrossRef]
- Lu, N.; Sun, G.; Feng, X.; Fu, B. Water yield responses to climate change and variability across the North-South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Yin, G.; Wang, X.; Zhang, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST model-based estimation of water yield in North China and its sensitivities to climate variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Sci. Total Environ. 2021, 793, 148559. [Google Scholar] [CrossRef]
- Ningrum, A.; Setiawan, Y.; Tarigan, S.D. Annual Water Yield Analysis with InVEST Model in Tesso Nilo National Park, Riau Province. IOP Conf. Ser. Earth Environ. Sci. 2022, 950, 012098. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- GAD del Cantón Azogues. Ordenanza para la Conservación, Restauración y Recuperación de las Fuentes de Agua, Zonas de Recarga Hídrica, Ecosistemas Frágiles y Otras Áreas Prioritarias para la Protección de la Biodiversidad, los Servicios Ambientales y el Patrimonio Natural del Can. R.O. 171, Azogues, Ecuador, 2014. p. 27. Available online: https://www.emapal.gob.ec/mdocuments-library/ (accessed on 31 August 2024).
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Robinson, B.E.; Liu, G.; Ma, D.; Wang, F.; Lu, F.; Ouyang, Z.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
X | Y | Qualitative Classification | Literature Classification | Field Tests | Final Classification |
---|---|---|---|---|---|
738996.59 | 9705017.924 | Superficial | <100 | 80 | 100 |
746905.33 | 9706492.673 | Shallow | 100–500 | 420 | 500 |
742884.14 | 9706173.413 | Moderately deep | 500–1000 | 650 | 1000 |
740168.82 | 9698183.620 | Moderately deep | 500–1000 | 700 | 1000 |
742064.25 | 9705251.796 | Deep | 1000–1500 | >1000 | 1500 |
Id | Lucode | LULC_Classes | LULC_Veg | Kc | Root_Depth |
---|---|---|---|---|---|
1 | 7 | Wooded grassland | 1 | 0.15 | 500 |
2 | 11 | Cropland (row crops) | 1 | 0.90 | 1500 |
3 | 12 | Bare ground | 0 | 1 | 10 |
4 | 13 | Urban and Built-Up | 0 | 1 | 10 |
5 | 14 | Water | 0 | 1.05 | 10 |
6 | 16 | Mixed forest | 1 | 0.25 | 1500 |
Land Cover and Land Use | Base Period | Trending Scenario | Rate Change | ||||||
---|---|---|---|---|---|---|---|---|---|
2014 | 2016 | 2018 | 2030 | 2040 | 2050 | 2030 | 2040 | 2050 | |
Mixed Forest | 21.25 | 20.56 | 20.32 | 18.34 | 17.02 | 16.38 | −9.7% | −16.3% | −19.4% |
Wooded Grassland | 11.34 | 11.20 | 10.88 | 9.77 | 8.95 | 8.53 | −10.2% | −17.8% | −21.6% |
Cropland | 50.33 | 51.06 | 51.50 | 53.83 | 55.10 | 55.56 | 4.5% | 7.0% | 7.9% |
Urban and Built-Up | 3.24 | 3.34 | 3.47 | 4.28 | 5.15 | 5.74 | 23.4% | 48.5% | 65.5% |
Wetland | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | −9.6% | −9.6% | −9.6% |
Bare Ground | 0.24 | 0.24 | 0.23 | 0.24 | 0.24 | 0.24 | 2.0% | 2.0% | 2.0% |
Land Cover and Land Use | Base Period | Pessimistic Scenario | Rate Change | ||||||
---|---|---|---|---|---|---|---|---|---|
2014 | 2016 | 2018 | 2030 | 2040 | 2050 | 2030 | 2040 | 2050 | |
Mixed Forest | 21.25 | 20.56 | 20.32 | 7.60 | 5.48 | 5.40 | −62.6% | −73.0% | −73.4% |
Wooded Grassland | 11.34 | 11.20 | 10.88 | 6.29 | 5.48 | 4.77 | −42.1% | −49.6% | −56.2% |
Cropland | 50.33 | 51.06 | 51.50 | 65.39 | 64.57 | 62.89 | 27.0% | 25.4% | 22.1% |
Urban and Built-Up | 3.24 | 3.34 | 3.47 | 6.79 | 10.56 | 13.03 | 96.1% | 204.7% | 276.1% |
Wetland | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | −9.6% | −9.6% | −9.6% |
Bare Ground | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.23 | −0.1% | −0.1% | −0.1% |
Year 2014 | Discharge (m3/s) | |
---|---|---|
Estimated | Observed | |
Condoryacu | 0.138 | 0.07 |
Llaucay | 0.230 | 0.06 |
Mapayacu | 0.062 | 0.07 |
Nudpud | 0.177 | 0.07 |
Year 2016 | ||
Condoryacu | 0.095 | 0.08 |
Llaucay | 0.140 | 0.07 |
Mapayacu | 0.042 | 0.07 |
Nudpud | 0.115 | 0.07 |
Year 2018 | ||
Condoryacu | 0.166 | 0.06 |
Llaucay | 0.258 | 0.13 |
Mapayacu | 0.076 | 0.08 |
Nudpud | 0.221 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhiña, D.X.; Avilés, A.; González, L.; Astudillo, A.; Astudillo, J.; Matovelle, C. Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin. Hydrology 2024, 11, 157. https://doi.org/10.3390/hydrology11090157
Zhiña DX, Avilés A, González L, Astudillo A, Astudillo J, Matovelle C. Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin. Hydrology. 2024; 11(9):157. https://doi.org/10.3390/hydrology11090157
Chicago/Turabian StyleZhiña, Darío Xavier, Alex Avilés, Lorena González, Ana Astudillo, José Astudillo, and Carlos Matovelle. 2024. "Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin" Hydrology 11, no. 9: 157. https://doi.org/10.3390/hydrology11090157
APA StyleZhiña, D. X., Avilés, A., González, L., Astudillo, A., Astudillo, J., & Matovelle, C. (2024). Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin. Hydrology, 11(9), 157. https://doi.org/10.3390/hydrology11090157