Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA
Abstract
1. Introduction
Background
2. Details of the Field Site
2.1. Lithology of the Watershed
2.2. Basin Precipitation
2.3. Drought Impacts in the Basin
3. Datasets Used in the Study
3.1. Groundwater Level Monitoring Well Data
3.2. Streamflow Data
3.3. GLDAS Soil Moisture Data
3.4. Precipitation Data
4. Interpolated Groundwater Level Data Using GWDM
5. Results
5.1. Correlation Between Precipitation and Flow Data
5.2. Groundwater Storage Change
5.3. Groundwater–Streamflow Correlation
5.4. Groundwater Storage Change and Rainfall Correlation
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ochoa, C.G.; Jarvis, W.T.; Hall, J. A Hydrogeologic Framework for Understanding Surface Water and Groundwater Interactions in a Watershed System in the Willamette Basin in Western Oregon, USA. Geosciences 2022, 12, 109. [Google Scholar] [CrossRef]
- Conaway, J.S. Hydrogeology and Paleohydrology in the Williamson River Basin, Klamath County Oregon. Master’s Thesis, Portland State University, Portland, OR, USA, 2000. [Google Scholar]
- Mayer, T.; Wurster, F.; Craver, D. Klamath Marsh Hydrology and Water Rights; USFWS: Washington, DC, USA, 2007; p. 22. [Google Scholar]
- Leonard, A.R.; Harris, A.B. Ground Water in Selected Areas in the Klamath Basin, Oregon; Oregon Water Science Center: Portland, OR, USA, 1974; p. 104. [Google Scholar]
- Melady, J. Hydrogeologic Investigation of the Klamath Marsh, Klamath County, Oregon. Master’s Thesis, Portland State University, Portland, OR, USA, 2002. [Google Scholar]
- Gannett, M.W.; Lite, K.E., Jr.; Marche, J.L.L.; Fisher, B.J.; Polette, D.J. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California; Geological Survey (U.S.): Reston, VA, USA, 2007. [Google Scholar]
- Cummings, M.L. Hydrogeology of the Williamson River Basin, Upper Klamath Basin, Klamath County, Oregon. Master’s Thesis, Portland State University, Portland, OR, USA, 2007; p. 70. [Google Scholar]
- Stannard, D.I.; Gannett, M.W.; Polette, D.J.; Cameron, J.M.; Waibel, M.S.; Spears, J.M. Evapotranspiration from Wetland and Open-Water Sites at Upper Klamath Lake, Oregon, 2008–2010; USGS: Reston, VA, USA, 2013; p. 66. [Google Scholar]
- Gannett, M.W.; Wagner, B.J.; Lite, K.E., Jr. Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California; U.S. Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Risley, J.C. Using the Precipitation-Runoff Modeling System to Predict Seasonal Water Availability in the Upper Klamath River Basin, Oregon and California; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Markstrom, S.L.; Regan, R.S.; Hay, L.E.; Viger, R.J.; Webb, R.M.; Payn, R.A.; LaFontaine, J.H. PRMS-IV, the Precipitation-Runoff Modeling System, Version 4; U.S. Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Chang, H.; Jones, J. Climate Change and Freshwater Resources in Oregon. In Oregon Climate Assessment Report; Oregon Climate Change Research Institute: Portland, OR, USA, 2010. [Google Scholar]
- Carroll, R.W.H.; Niswonger, R.G.; Ulrich, C.; Varadharajan, C.; Siirila-Woodburn, E.R.; Williams, K.H. Declining Groundwater Storage Expected to Amplify Mountain Streamflow Reductions in a Warmer World. Nat. Water 2024, 2, 419–433. [Google Scholar] [CrossRef]
- Mayer, T.D.; Naman, S.W. Streamflow Response to Climate as Influenced by Geology and Elevation1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 724–738. [Google Scholar] [CrossRef]
- Hess, G.W.; Stonewall, A.J. Comparison of Historical Streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon; U.S. Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Tague, C.; Grant, G.; Farrell, M.; Choate, J.; Jefferson, A. Deep Groundwater Mediates Streamflow Response to Climate Warming in the Oregon Cascades. Clim. Change 2008, 86, 189–210. [Google Scholar] [CrossRef]
- Brutsaert, W. Long-Term Groundwater Storage Trends Estimated from Streamflow Records: Climatic Perspective. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Dudley, R.W.; Hodgkins, G.A. Historical Groundwater Trends in Northern New England and Relations with Streamflow and Climatic Variables. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1198–1212. [Google Scholar] [CrossRef]
- Huntington, J.L.; Niswonger, R.G. Role of Surface-Water and Groundwater Interactions on Projected Summertime Streamflow in Snow Dominated Regions: An Integrated Modeling Approach. Water Resour. Res. 2012, 48, W11524. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Schilling, K.; Jones, C.; Brookfield, A.; Zipper, S.C.; Farmer, W.H. The Role of Climate in Monthly Baseflow Changes across the Continental United States. J. Hydrol. Eng. 2022, 27, 04022006. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M. Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow Records. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Winter, T.C. Ground Water and Surface Water: A Single Resource; Diane Publishing: Collingdale, PA, USA, 2000. [Google Scholar]
- The NCAR WRF-Hydro® Modeling System Technical Description — WRF-Hydro Modeling System 5.4.0 Documentation. Available online: https://wrf-hydro.readthedocs.io/en/latest/ (accessed on 4 June 2025).
- NOAA. The National Water Model. Available online: https://water.noaa.gov/about/nwm (accessed on 8 July 2024).
- Zealand, C.M.; Burn, D.H.; Simonovic, S.P. Short Term Streamflow Forecasting Using Artificial Neural Networks. J. Hydrol. 1999, 214, 32–48. [Google Scholar] [CrossRef]
- Day, G.N. Extended Streamflow Forecasting Using NWSRFS. J. Water Resour. Plan. Manag. 1985, 111, 157–170. [Google Scholar] [CrossRef]
- Boyle, D.P.; Gupta, H.V.; Sorooshian, S.; Koren, V.; Zhang, Z.; Smith, M. Toward Improved Streamflow Forecasts: Value of Semidistributed Modeling. Water Resour. Res. 2001, 37, 2749–2759. [Google Scholar] [CrossRef]
- Snow, A.D.; Christensen, S.D.; Swain, N.R.; Nelson, E.J.; Ames, D.P.; Jones, N.L.; Ding, D.; Noman, N.S.; David, C.H.; Pappenberger, F.; et al. A High-Resolution National-Scale Hydrologic Forecast System from a Global Ensemble Land Surface Model. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 950–964. [Google Scholar] [CrossRef] [PubMed]
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A Review of Advances in Flash Flood Forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW—Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). Available online: https://pubs.usgs.gov/tm/tm6d1/ (accessed on 8 July 2024).
- Hunt, R.J.; Walker, J.F.; Selbig, W.R.; Westenbroek, S.M.; Regan, R.S. Simulation of Climate-Change Effects on Streamflow, Lake Water Budgets, and Stream Temperature Using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin; U.S. Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling Groundwater and Surface Water Interaction: An Overview of Current Status and Future Challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef]
- Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, Groundwater Storage and Stream Flow Decline in Southwestern Australia. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Zipper, S.; Brookfield, A.; Ajami, H.; Ayers, J.R.; Beightel, C.; Fienen, M.N.; Gleeson, T.; Hammond, J.; Hill, M.; Kendall, A.D.; et al. Streamflow Depletion Caused by Groundwater Pumping: Fundamental Research Priorities for Management-Relevant Science. Water Resour. Res. 2024, 60, e2023WR035727. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. The Potential for Satellite-Based Monitoring of Groundwater Storage Changes Using GRACE: The High Plains Aquifer, Central US. J. Hydrol. 2002, 263, 245–256. [Google Scholar] [CrossRef]
- NASA. JPL Monthly Mass Grids—Global Mascons (JPL RL06.1_v03) | Get Data. Available online: https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons (accessed on 9 January 2024).
- NASA. Studying the Earth’s Gravity from Space: The Gravity Recovery and Climate Experiment (GRACE); NASA Facts—FS-2002-1-029-GSFC; NASA: Washington, DC, USA, 2002. [Google Scholar]
- McStraw, T.C.; Pulla, S.T.; Jones, N.L.; Williams, G.P.; David, C.H.; Nelson, J.E.; Ames, D.P. An Open-Source Web Application for Regional Analysis of GRACE Groundwater Data and Engaging Stakeholders in Groundwater Management. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 1002–1016. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, C.; Alley, W.M.; McGuire, V.L.; McMahon, B. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater Storage Changes: Present Status from GRACE Observations. Surv. Geophys. 2015, 37, 397–417. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Reager, J.T.; Famiglietti, J.S. Characteristic Mega-Basin Water Storage Behavior Using GRACE. Water Resour. Res. 2013, 49, 3314–3329. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, J.-F.; Li, X.; Zhou, D.; Zhao, W. Subregional-Scale Groundwater Depletion Detected by GRACE for Both Shallow and Deep Aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Alshehri, F.; Mohamed, A. Analysis of Groundwater Storage Fluctuations Using GRACE and Remote Sensing Data in Wadi As-Sirhan, Northern Saudi Arabia. Water 2023, 15, 282. [Google Scholar] [CrossRef]
- Purdy, A.J.; David, C.H.; Sikder, M.S.; Reager, J.T.; Chandanpurkar, H.A.; Jones, N.L.; Matin, M.A. An Open-Source Tool to Facilitate the Processing of GRACE Observations and GLDAS Outputs: An Evaluation in Bangladesh. Front. Environ. Sci. 2019, 7, 155. [Google Scholar] [CrossRef]
- Kuss, A.; Brandt, W.T.; Randall, J.; Floyd, B.; Bourai, A.; Newcomer, M.; Schmidt, C. Comparison of Changes in Groundwater Storage Using GRACE Data and a Hydrological Model in California’s Central Valley. In Proceedings of the ASPRS 2012 Annual Conference, Sacramento, CA, USA, 19–23 March 2012. [Google Scholar]
- Zhang, X. Impacts of Water Resources Management on Land Water Storage in the Lower Lancang River Basin: Insights from Multi-Mission Earth Observations. Remote Sens. 2023, 15, 1747. [Google Scholar] [CrossRef]
- Evans, S.W.; Jones, N.L.; Williams, G.P.; Ames, D.P.; Nelson, E.J. Groundwater Level Mapping Tool: An Open Source Web Application for Assessing Groundwater Sustainability. Environ. Model. Softw. 2020, 131, 104782. [Google Scholar] [CrossRef]
- Jones, N.L. GWDM—Ground Water Data Mapper 2.0 Documentation. Available online: https://gwdm.readthedocs.io/en/latest/ (accessed on 22 March 2024).
- Evans, S.; Williams, G.P.; Jones, N.L.; Ames, D.P.; Nelson, E.J. Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine. Remote Sens. 2020, 12, 2044. [Google Scholar] [CrossRef]
- Ramirez, S.G.; Williams, G.P.; Jones, N.L. Groundwater Level Data Imputation Using Machine Learning and Remote Earth Observations Using Inductive Bias. Remote Sens. 2022, 14, 5509. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehr, A.D.; et al. Groundwater Level Prediction Using Machine Learning Models: A Comprehensive Review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Stevens, M.D.; Ramirez, S.G.; Martin, E.-M.H.; Jones, N.L.; Williams, G.P.; Adams, K.H.; Ames, D.P.; Pulla, S.T. Groundwater Storage Loss in the Central Valley Analysis Using a Novel Method Based on In Situ Data Compared to GRACE-Derived Data. Environ. Model. Softw. 2025, 186, 106368. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. J. Geophys. Res. Solid Earth 2002, 107, ETG 3-1–ETG 3-13. [Google Scholar] [CrossRef]
- Vasco, D.W.; Kim, K.H.; Farr, T.G.; Reager, J.T.; Bekaert, D.; Sangha, S.S.; Rutqvist, J.; Beaudoing, H.K. Using Sentinel-1 and GRACE Satellite Data to Monitor the Hydrological Variations within the Tulare Basin, California. Sci. Rep. 2022, 12, 3867. [Google Scholar] [CrossRef]
- Famiglietti, J.; Lo, M.; Ho, S.; Bethune, J.; Anderson, K.; Syed, T.; Swenson, S.; De Linage, C.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Newcomb, R.C.; Hart, D.H. Preliminary Report on the Ground-Water Resources of the Klamath River Basin, Oregon; U.S. Geological Survey: Reston, VA, USA, 1958. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution (With Publisher Correction). Sci. Data 2020, 7, 274. [Google Scholar] [CrossRef]
- Jones, N.; Williams, G.; Daniel, S. 2024 Oregon Williamson Basin Groundwater Study Data. Available online: http://www.hydroshare.org/resource/1d9791b2ef74454d8b335aab72d9bc97 (accessed on 14 November 2024).
- NASA. Global Land Data Assimilation System (GLSDAS). Available online: https://ldas.gsfc.nasa.gov/gldas (accessed on 10 July 2024).
- NASA. Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/ (accessed on 10 July 2024).
- UCSB. CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate Hazards Center—UC Santa Barbara. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 10 July 2024).
- NASA. SERVIR ClimateSERV 2.0—Data and Tools for Sustainable Development. Available online: https://climateserv.servirglobal.net/ (accessed on 10 July 2024).
- Ramirez, S.G.; Williams, G.P.; Jones, N.L.; Ames, D.P.; Radebaugh, J. Improving Groundwater Imputation through Iterative Refinement Using Spatial and Temporal Correlations from In Situ Data with Machine Learning. Water 2023, 15, 1236. [Google Scholar] [CrossRef]
- Nelson, E.J.; Pulla, S.T.; Matin, M.A.; Shakya, K.; Jones, N.; Ames, D.P.; Ellenburg, W.L.; Markert, K.N.; David, C.H.; Zaitchik, B.F. Enabling Stakeholder Decision-Making with Earth Observation and Modeling Data Using Tethys Platform. Front. Environ. Sci. 2019, 7, 148. [Google Scholar] [CrossRef]
- NOAA. Fisheries 2002 Klamath Project Biological Opinion | NOAA Fisheries. Available online: https://www.fisheries.noaa.gov/resource/document/2002-klamath-project-biological-opinion (accessed on 27 August 2024).
- U.S. National Marine Fisheries Service. 2002 Klamath Project Biological Opinion; U.S. National Marine Fisheries Service: Silver Spring, MD, USA, 2002. [Google Scholar]
- Gannet, M.W.; Lite, K.E., Jr.; la Marche, J.L.; Polette, D.J. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Reportentific Investigations Report; Scientific Investigations Report; Geological Survey (US): Reston, VA, USA, 2007; p. 84. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shepard, D.; Jones, N.L.; Williams, G.P. Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA. Hydrology 2025, 12, 140. https://doi.org/10.3390/hydrology12060140
Shepard D, Jones NL, Williams GP. Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA. Hydrology. 2025; 12(6):140. https://doi.org/10.3390/hydrology12060140
Chicago/Turabian StyleShepard, Daniel, Norman L. Jones, and Gustavious P. Williams. 2025. "Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA" Hydrology 12, no. 6: 140. https://doi.org/10.3390/hydrology12060140
APA StyleShepard, D., Jones, N. L., & Williams, G. P. (2025). Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA. Hydrology, 12(6), 140. https://doi.org/10.3390/hydrology12060140