An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support
Abstract
1. Introduction
2. Study Area
2.1. Location and General Characteristics
2.2. Water and Land Use
2.3. Geology and Hydrogeology
3. Methodology
3.1. Identification of the Groundwater Ecosystem Service to Be Evaluated
3.2. Nitrate Transport Numerical Model
- (1)
- Maintaining current abstraction rates (Business as Usual, BAU).
- (2)
- Reducing abstractions to an Exploitation Index (EI) = 0.8 by the year 2050, in alignment with the settled objectives of the Duero River Basin Authority. The EI is the mean annual total withdrawal of groundwater relative to the average annual groundwater renewable resources.
- (A)
- RCP 4.5, corresponding to a moderate stabilization scenario. It was associated with a projected 3% increase in annual precipitation in the study area, based on climate change analyses of a climate-change specialist NAIAD partner.
- (B)
- RCP 8.5, a high-emission scenario. It was associated with an 8% decrease in precipitation in the area, based on national assessments (CEDEX, 2017).
- (C)
- A No-Change scenario was also included as a baseline.
3.2.1. Nitrate Observations
3.2.2. Temporal and Spatial Evolution of Nitrogen Supply to the Soil
3.2.3. Nitrogen Leaching to Groundwater
3.2.4. Sensitivity Analysis of Transport Parameters
3.2.5. Porosity Calibration
3.3. Assessment of the Current Status of the Groundwater Ecosystem Service Evaluated
3.4. Assessment of the Possible Future Evolution of the Groundwater Ecosystem Service Evaluated
- (1)
- Business as Usual (BAU): No changes in the EI with respect to the current value in the MCGB (EI = 2.0, according to [9]).
- (2)
- EI0.8: Reduction in EI from 2.0 to 0.8 by the year 2050 and beyond (this is the target of the DRBA).
- (A)
- N20%: A linear reduction of 20% in the application of N fertilizers from current numbers (in 2018) by 2030 and beyond.
- (B)
- ZeroN: A linear reduction in N fertilizer application from current levels (year 2018) to zero by year 2030 and beyond.
4. Results and Discussion
4.1. Nitrate Input to Groundwater
4.2. Assessment of the Current Status of the Abiotic Provisioning Service Groundwater of Good Quality for Human Supply
4.3. Assessment of the Possible Future Evolution of the Abiotic Provisioning Service Groundwater of Good Quality for Human Supply
4.4. Uncertainty of the Numerical Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCGB | Medina del Campo Groundwater Body |
GWES | Groundwater ecosystem service |
APS-GWGQHS | Abiotic Provisioning Service—Groundwater of Good Quality for Human Supply |
ESA | Ecosystem Service Assessment |
References
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural ‘diffuse’ pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Vinod, P.N.; Chandramouli, P.N.; Koch, M. Estimation of Nitrate Leaching in Groundwater in an Agriculturally Used Area in the State Karnataka, India, Using Existing Model and GIS. Aquat. Procedia 2015, 4, 1047–1053. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Worrall, F.; Davies, H.; Burt, T.; Howden, N.J.K.; Whelan, M.J.; Bhogal, A.; Lilly, A. The flux of dissolved nitrogen from the UK—Evaluating the role of soils and land use. Sci. Total Environ. 2012, 434, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Griebler, C.; Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 2015, 24, 355–367. [Google Scholar] [CrossRef]
- Abbasi, M.R.; Sepaskhah, A.R. Nitrogen leaching and groundwater N contamination risk in saffron/wheat intercropping under different irrigation and soil fertilizers regimes. Sci. Rep. 2023, 13, 6587. [Google Scholar] [CrossRef]
- Aziz, T.; Frey, S.K.; Lapen, D.R.; Preston, S.; Russell, H.A.J.; Khader, O.; Erler, A.R.; Sudicky, E.A. Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model. Hydrol. Earth Syst. Sci. 2025, 29, 1549–1568. [Google Scholar] [CrossRef]
- Borowiecka, M.; Alcaraz, M.; Manzano, M. Assessment of Ecosystem Services with numerical modelling to support groundwater dependent ecosystems and aquifer management: A demo study in the Medina del Campo Groundwater Body, Spain. Case Stud. Chem. Environ. Eng. 2024, 10, 100914. [Google Scholar] [CrossRef]
- Saccò, M.; Mammola, S.; Altermatt, F.; Alther, R.; Bolpagni, R.; Brancelj, A.; Brankovits, D.; Fišer, C.; Gerovasileiou, V.; Griebler, C.; et al. Groundwater is a hidden global keystone ecosystem. Glob. Change Biol. 2024, 30, 17066. [Google Scholar] [CrossRef]
- Nsoh, W. Achieving Groundwater Governance: Ostrom’s Design Principles and Payments for Ecosystem Services Approaches. Transnatl. Environ. Law. 2022, 11, 381–406. [Google Scholar] [CrossRef]
- Griebler, C.; Malard, F.; Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 2014, 27, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Bastani, M. Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. J. Contam. Hydrol. 2019, 226, 103521. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zheng, C.; Andrews, C.B.; Wang, C. Applying a Regional Transport Modeling Framework to Manage Nitrate Contamination of Groundwater. Groundwater 2021, 59, 292–307. [Google Scholar] [CrossRef]
- Whiteis, A.M.; Zou, C.B.; Joshi, O.; Ferguson, B.; Roberts, S. Quantitative assessment of ecosystem services in diverse land uses within the forest-grassland transition zone of southern Great Plains, USA. Ecosyst. Serv. 2025, 71, 101697. [Google Scholar] [CrossRef]
- Lovrić, M.; Torralba, M.; Orsi, F.; Pettenella, D.; Mann, C.; Geneletti, D.; Plieninger, T.; Primmer, E.; Hernandez-Morcillo, M.; Thorsen, B.J.; et al. Mind the income gap: Income from wood production exceed income from providing diverse ecosystem services from Europe’s forests. Ecosyst. Serv. 2025, 71, 101689. [Google Scholar] [CrossRef]
- Kok, S.; Le Clec’h, S.; Penning, W.E.; Buijse, A.D.; Hein, L. Trade-offs in ecosystem services under various river management strategies of the Rhine Branches. Ecosyst. Serv. 2025, 72, 101692. [Google Scholar] [CrossRef]
- Sheng, J. Collaborative models and uncertain water quality in payments for watershed services: China’s Jiuzhou River eco-compensation. Ecosyst. Serv. 2024, 70, 101671. [Google Scholar] [CrossRef]
- Younesi, M.; Saadatpour, M.; Afshar, A. Integration of the system of environmental economic accounting-ecosystem accounting (SEEA-EA) framework with a semi-distributed hydrological and water quality simulation model. Ecosyst. Serv. 2024, 70, 101672. [Google Scholar] [CrossRef]
- Peña, L.; de Manuel, B.F.; Méndez-Fernández, L.; Viota, M.; Ametzaga-Arregi, I.; Onaindia, M. Co-Creation of Knowledge for Ecosystem Services Approach to Spatial Planning in the Basque Country. Sustainability 2020, 12, 5287. [Google Scholar] [CrossRef]
- Peña, L.; Onaindia, M.; de Manuel, B.F.; Ametzaga-Arregi, I.; Casado-Arzuaga, I. Analysing the Synergies and Trade-Offs between Ecosystem Services to Reorient Land Use Planning in Metropolitan Bilbao (Northern Spain). Sustainability 2018, 10, 4376. [Google Scholar] [CrossRef]
- Murray, B.R.; Hose, G.C.; Eamus, D.; Licari, D. Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services. Aust. J. Bot. 2006, 54, 221. [Google Scholar] [CrossRef]
- Danielopol, D.L.; Gibert, J.; Griebler, C.; Gunatilaka, A.; Hahn, H.J.; Messana, G.; Notenboom, J.; Sket, B. Incorporating ecological perspectives in European groundwater management policy. Environ. Conserv. 2004, 31, 185–189. [Google Scholar] [CrossRef]
- Quevauviller, P. Groundwater monitoring in the context of EU legislation: Reality and integration needs. J. Environ. Monit. 2005, 7, 89. [Google Scholar] [CrossRef]
- Anzaldua, G.; Gerner, N.V.; Lago, M.; Abhold, K.; Hinzmann, M.; Beyer, S.; Winking, C.; Riegels, N.; Jensen, J.K.; Termes, M.; et al. Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework. Ecosyst. Serv. 2018, 30, 318–326. [Google Scholar] [CrossRef]
- EU-GWD. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater Against Pollution and Deterioration. Official Journal of the European Communities; European Parliament and of the Council: Brussels, Belgium, 2006; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0118 (accessed on 1 May 2025).
- BOE. Real Decreto 1159/2021, de 28 de Diciembre, por el Que se Modifica el Real Decreto 907/2007, de 6 de Julio, por el que se Aprueba el Reglamento de la Planificación Hidrológica. 2021. Available online: https://www.boe.es/eli/es/rd/2021/12/28/1159 (accessed on 5 March 2025).
- Manzano, M.; Lambán, L.J. Una aproximación a la evaluación de los servicios de las aguas subterráneas al ser humano en España. Ambient. Rev. Del Minist. De Medio Ambiente 2012, 1, 32–41. Available online: https://doi.org/10261/277184 (accessed on 5 March 2025).
- Guswa, A.J.; Brauman, K.A.; Brown, C.; Hamel, P.; Keeler, B.L.; Sayre, S.S. Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making. Water Resour. Res. 2014, 50, 4535–4544. [Google Scholar] [CrossRef]
- Iliopoulos, V.G.; Damigos, D. Groundwater Ecosystem Services: Redefining and Operationalizing the Concept. Resources 2024, 13, 13. [Google Scholar] [CrossRef]
- Mayor, B.; Gunn, E.L.; Marcos, C.; Vay, L. PROYECTO NAIAD: Evaluación del Estado Y Simulación Hidrogeológica Del Comportamiento Del Acuífero de Medina del Campo; Ministerio para la Transición Ecológica y el reto Demográfico. Confederación Hidrográfica del Duero: Valladolid, Spain, 2021; Available online: https://www.chduero.es/documents/20126/427605/NAIAD+Evaluaci%C3%B3n+del+estado+y+simulaci%C3%B3n+hidrogeol%C3%B3gica+del+comportamiento+del+acu%C3%ADfero+de+Medina+del+Campo.pdf/e5e07db6-e542-614a-317f-4548bad6b254?t=1648728521852 (accessed on 1 May 2025).
- DRBA. Plan Hidrológico de la Parte Española de la Demarcación Hidrográfica del Duero 2009-15. 2012, Volume 776. Available online: https://www.chduero.es/documents/20126/104329/Memoria_20131023_AGS_v12_Negro.pdf (accessed on 1 May 2025).
- Mayor, B.; de la Hera-Portillo, M.; Llorente, Á.; Heredia, J.; Calatrava, J.; Martínez, D.; Manzano, M.; Robles-Arenas, V.; Borowiecka, G.; Mediavilla, R.; et al. Greening Water Risks; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- IGME. Mapa Geológico de España 1: 50000, hoja 427 Medina del Campo. 2007, Volume 75. Available online: http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=427&language=es (accessed on 14 September 2021).
- MIRAME—IDEDuero. Distribución Espacial de la Precipitación en el Periodo 1940–2005. 2020. Available online: https://mirame.chduero.es/chduero/viewer (accessed on 1 May 2025).
- Llorente, M.; Bejarano, M.D.; De la Hera, A.; Aguilera, H. Aguilera, Precipitation trends in the Medina del Campo groundwater body region (Spain): Towards implementing nature-based solutions for droughts and floods events. In Proceedings of the European Geosciences Union (EGU 2018), Vienna, Austria, 8–13 April 2018. [Google Scholar] [CrossRef]
- Roca, N.L.; Lozano, P.J.; Cadiñamos, J.A.; Latasa, I.; Longares, L.A.; Meaza, G. Los Mantos Eólicos del Sector Sudoccidental de la Provincia de Valladolid. Una investigación geomorfológica y Edafológica. 2015, pp. 1699–1708. Available online: https://www.researchgate.net/publication/283485210_Los_mantos_eolicos_del_sector_sudoccidental_de_la_provincia_de_Valladolid_Una_investigacion_geomorfologica_y_edafologica (accessed on 14 September 2021).
- IGME. Apoyo a la caracterización adicional de las masas de agua subterránea en riesgo de no cumplir los objetivos medioambientales en 2015. Demarcación Hidrográfica del Duero. Masa de Agua Subterránea: 47 Medina del Campo. Encomienda de Gestión Para la Realización de Trabajos Científico-Técnicos de Apoyo a la Sostenibilidad y Protección de las Aguas Subterráneas. (Actividad 2 2009); pp. 1–42. Available online: http://info.igme.es/SidPDF/139000/899/139899_0000019.pdf (accessed on 14 September 2021).
- Porée, L. Evolución de las Zonas Riparias de Los Ríos Trabancos, Zapardiel, Adaja y Guareña (Cuenca del Duero) Entre 1956 y la Actualidad. 2019, Volume 37. Available online: https://repositorio.upct.es/server/api/core/bitstreams/1b8d4923-59da-47eb-9e70-49ad99de1237/content (accessed on 27 September 2021).
- ITACyL. Mapa de Cultivos y Superficies Naturales de 2018. Instituto Tecnológico Agrario de Castilla y León. 2023. Available online: https://mcsncyl.itacyl.es/ (accessed on 22 June 2024).
- del Campo, S.G. El uso de Fertilizantes, Bajo la Lupa. Diario de Castilla y León, 2023. Available online: https://www.diariodecastillayleon.es/mundo-agrario/230410/27956/fertilizantes-lupa.html (accessed on 21 May 2024).
- MIRAME-DRBA. Ficha Técnica de la Masa de Agua Subterránea de Medina del Campo—400047. 2024. Available online: https://mirame.chduero.es/chduero/public/groundWaterBody/gwb/search/general/400047 (accessed on 21 June 2024).
- Sánchez-Moya, Y.; Sopeña, A. El rift mesozoico ibérico. In Proc. 1a Jorn. Geol. Médica España, Salamanca, Vera, A., Ed.; Geología de España, Sociedad Geológica de España-Instituto Geológico de España: Salamanca, España, 2004; pp. 484–522. [Google Scholar]
- Alonso-Gavilán, G.; Armenteros, I.; Carballeira, A.; Corrochano, A.; Huerta, P.; Rodríguez, J.M. Cuencas Cenozoicas. In Geol. España; Vera, J.D., Civis, J., Eds.; Sociedad Geológica de España e Instituto Geológico y Minero de España: Salamanca, España, 2004; p. 890. Available online: https://oa.upm.es/4007/2/TORRES_CL_2004_01.pdf (accessed on 5 March 2025).
- Cunha, P.P.; de Vicente, G.; Martín-González, F. Cenozoic Sedimentation Along the Piedmonts of Thrust Related Basement Ranges and Strike-Slip Deformation Belts of the Iberian Variscan Massif; Springer: Cham, Switzerland, 2019; pp. 131–165. [Google Scholar] [CrossRef]
- Marin, C.; Constaán, A.R.; López-Gutiérez, J.C.; Rubio-Sánchez, F.M.; De la Hera, A. Modelo Geológico 3D del Acuífero de Medina del Campo (SE Cuenca del Duero)—Dialnet. 2021. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8474291 (accessed on 26 May 2024).
- Rey-Moral, C.; Gómez-Ortiz, D.; Giménez, E.; López, M.T. Control morfoestructural de la distribución de arsénico en el sur de la Cuenca del Duero. In Proc. 1a Jorn. Geol. Médica España, Salamanca 2016; Giménez-Forcada, E., Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 2016; pp. 83–88. Available online: https://www.igme.es/Publicaciones/publiFree/Libro%20en%20flash/mobile/index.html (accessed on 1 May 2025).
- IGME. Plan Hidrológico de la Cuenca del Duero. Proyecto de Investigación Hidrogeológica de la Cuenca del Duero, Sistemas 8 y 12. Instituto Geológico y Minero de España. 75 p + gráficos y mapas. 1980. Available online: http://info.igme.es/SidPDF/018000/318/Tomo%201/18318_0001.pdf (accessed on 1 May 2025).
- MIRAME-DRBA. Presión Difusa Sobre la Masa Medina del Campo—30100045. DRBA. 2024. Available online: https://mirame.chduero.es/chduero/public/pressures/groundContamination/search/technical/30100045 (accessed on 22 June 2024).
- DRBA. La Masa de Agua Subterránea Medina del Campo. Meeting on the Status of Groundwater Bodies in Duero River Basin. 2014. Available online: https://www.chduero.es/documents/20126/77728/24140618_LA_MASA_DE_AGUA_MEDINA_DEL_CAMPO.pdf (accessed on 17 September 2021).
- DRBA. Plan Hidrológico de la Parte Española de la Demarcación Hidrográfica del Duero Revisión de Tercer Ciclo (2022–2027). 2022, Volume 5, p. 998. Available online: https://www.chduero.es/web/guest/propuesta-de-proyecto-de-plan-hidrológico (accessed on 26 February 2024).
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES V5.1). One Ecosystem. 2018, Volume 3. Available online: https://www.zemeunvalsts.lv/documents/view/8b6dd7db9af49e67306feb59a8bdc52c/Common International Classification of Ecosystem Services Guidance-V51-01012018.pdf (accessed on 1 May 2025).
- Harbaugh, A.W. MODFLOW-2005: The U.S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process; University of Alabama Tuscaloosa: Tuscaloosa, AL, USA, 2000. [Google Scholar] [CrossRef]
- Zheng, C. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; US Army Corps of Engineers: Washington, DC, USA, 1999; Volume 220. [Google Scholar]
- BOCyL. Código de Buenas Prácticas Agrarias. 2020, pp. 22346–22399. Available online: https://agriculturaganaderia.jcyl.es/web/es/produccion-agricola/codigo-buenas-practicas-agrarias.html (accessed on 1 May 2025).
- INE. Fondo Documental—Anuarios Historicos de España. Instituto Nacional de Estadística. 2024. Available online: https://www.ine.es/inebaseweb/libros.do?tntp=25687 (accessed on 22 June 2024).
- MAPA. Anuario de Estadística. Ministerio de Agricultura, Pesca y Alimentación. 2024. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/ (accessed on 22 June 2024).
- JCyL. Anuario de estadística agraria de Castilla y León. Junta de Castilla y León. 2024. Available online: http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100/1284228463984/_/_/_ (accessed on 22 June 2024).
- MAPA. Estadística de Consumo de Fertilizantes en la Agricultura. Ministerio de Agricultura, Pesca y Alimentación. 2024. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/estadisticas-medios-produccion/fertilizantes.aspx (accessed on 26 June 2024).
- JCyL. Agricultura y Ganadería. Junta de Castilla y León. 2024. Available online: https://agriculturaganaderia.jcyl.es/web/es/produccion-agricola/situacion-castilla-leon.html (accessed on 18 May 2024).
- Seoane, S.S. Efectos Ecológicos del Abandono de Tierras de Cultivo en la Provincia de León (Municipio de Chozas de Abajo). 1998, p. 265. Available online: https://buleria.unileon.es/bitstream/handle/10612/16851/Efectos_Ecológicos_Derivados_Abandono_Tierras.PDF?sequence=1 (accessed on 1 May 2025).
- Alonso, F.; Martínez-Hernández, C.; Serrato, F.B.; Angel, M.; Carrillo, F. Principales Causas Del Abandono de Cultivos en la Región de Murcia. Abandono de cultivos en la Región de Murcia. Consecuencias Ecogeomorfológicas, 2016; pp. 203–226. Available online: https://docta.ucm.es/entities/publication/a049ceac-26dc-4eec-9126-167e569a23af (accessed on 1 May 2025).
- Benito, C.; Tobar, S. De Andalucía a Castilla y León: La Sequía Amenaza al Cultivo de los Cereales, Frutos Secos, Aceite de Oliva y Arroz. Prensa El Español, 2023. Available online: https://www.elespanol.com/invertia/empresas/distribucion/20230416/andalucia-castilla-leon-sequia-amenaza-cultivo-cereales/755924856_0.html (accessed on 1 May 2025).
- Pratt, P.F. Nitrogen Use and Nitrate Leaching in Irrigated Agriculture; American Society of Agronomy: Madison, WI, USA, 1984. [Google Scholar] [CrossRef]
- Delgado, J.; Gagliardi, P.M.; Rau, E.J.; Fry, R.; Figueroa, U.; Gross, C.; Cueto-Wong, J.; Shaffer, M.J.; Kowalski, K.; Neer, D.; et al. Nitrogen Index 4.4 User Manual. Data Base 2012, 3304, 1–148. Available online: https://vtechworks.lib.vt.edu/server/api/core/bitstreams/26bc1f82-85bd-479d-8f0c-59731e108548/content (accessed on 1 May 2025).
- Vramontes, U.F.; Delgado, J.A.; Wong, J.A.C. Manual del Usuario—Índice de Nitrógeno Ver. 4.4; Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias: Mexico City, Mexico, 2016. [Google Scholar]
- Meisinger, J.; Jorge, D.; Alva, A. Nitrogen Leaching Management. Encycl. Soils Environ. 2006, 2, 1122–1124. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=157476 (accessed on 1 May 2025).
- Ramos, C.; Agut, A.; Lidón, A.L. Nitrate leaching in important crops of the Valencian Community region (Spain). Environ. Pollut. 2002, 118, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.Z.; Robertson, G.P.; Basso, B.; Hamilton, S.K. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest. Sci. Total Environ. 2020, 734, 139379. [Google Scholar] [CrossRef] [PubMed]
- Craswell, E.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Jiménez-Martínez, J.; Candela, L.; Molinero, J.; Tamoh, K. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis. Hydrogeol. J. 2010, 18, 1811–1824. [Google Scholar] [CrossRef]
- Hornero, J.; Manzano, M.; Ortega, L.; Custodio, E. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Sci. Total Environ. 2016, 568, 415–432. [Google Scholar] [CrossRef]
- Hiscock, K.M.; Bense, V.F. Hydrogeology Principles and Practice, 2nd ed.; John Wiley & Sons Ltd.: Oxford, UK, 2014; Available online: https://books.google.com/books/about/Hydrogeology.html?hl=es&id=j9njAgAAQBAJ (accessed on 1 May 2025).
- Custodio, E.; Llamas, M.R. Hidrología Subterránea, 2nd ed.; Ediciones Omega: Barcelona, Spain, 1983. [Google Scholar]
- IGME. Conceptos básicos de la hidrogeología. Angew. Chem. Int. Ed. 1967, 6, 951–952. [Google Scholar]
- CHD. Red de Control del Nivel—CHDuero. 2019. Available online: https://www.chduero.es/web/guest/red-de-control-del-nivel (accessed on 26 May 2019).
- CHD. Red de Control del Estado Químico—CHDuero. 2019. Available online: https://www.chduero.es/web/guest/red-control-estado-quimico (accessed on 20 June 2019).
- Parlamento Europeo. Reglamento UE 2019/1009 del Parlamento Europeo por el Que se Establecen Disposiciones Relativas a la Puesta en Disoiosición en el Mercado de los Productos Fertilizantes y se Modifican los Reglamentos (CE) no 1069/2009 y (CE) no 1107/2009 y se deroga el Re. 2019. Available online: https://www.boe.es/doue/2019/170/L00001-00114.pdf (accessed on 1 May 2025).
Crop Groups | N applied to Soil (kg/ha/yr) | N leaching to the Saturated Zone (%) | N Leaching to the Saturated Zone (kg/ha/yr) |
---|---|---|---|
Group I | 0 | 0 | 0 |
Group II | 40 | 5 | 2 |
Group III | 50 | 5 | 2.5 |
Group IV | 110 | 16.6 | 18.26 |
Group V | 250 | 35.6 | 89 |
Nitrogen (N) Application | |||
---|---|---|---|
Method 1. Recommended N Doses and Temporal Evolution of Cultivated Surface Per Crop Groups | Method 2. Temporal Evolution of N Fertilizer Sales | ||
Nitrogen leaching to groundwater | Method A. Pratt equation | 1.A. Doses + Pratt | 2.A. Sales + Pratt |
Method B. Nitrogen Index model | 1.B. Doses + NI | 2.B. Sales + NI |
Observed and Simulated NO3− (mg/L) in Observation Points | Observed | Model 1.B Doses + NI | Model 1.B Doses + NI After Porosity Calibration | |
---|---|---|---|---|
Average | UAq-Aqt | 54.0 | 15.5 | 41.0 |
LAq | 27.0 | 0.8 | 19.6 | |
Maximum | UAq-Aqt | 321.5 | 92.0 | 166.4 |
LAq | 220.0 | 8.0 | 101.0 | |
Nº of points with NO3− > 37.5 mg/L | UAq-Aqt | 78 | 21 | 81 |
LAq | 72 | 0 | 23 |
N Fertilizer Use Scenarios | Groundwater Exploitation Scenarios | |
---|---|---|
1. IE = BAU | 2. IE Reduction to 0.8 by Year 2050 and Beyond | |
A. 20% reduction by 2030 and beyond | 1.A BAU-N20% | 2.A EI0.8-N20% |
B. Reduction to zero by 2030 and beyond | 1.B BAU-ZeroN | 2.B EI0.8-ZeroN |
Observed and Simulated NO3− (mg/L) | Observed | Model 1.A Doses + Pratt | Model 1.B Doses + NI | Model 2.A Sales + Pratt | Model 2.B Sales + NI | |
---|---|---|---|---|---|---|
Average | Uaq-Aqt | 54.0 | 9.7 | 15.5 | 1.9 | 8.7 |
Laq | 27.0 | 0.4 | 0.8 | 0.07 | 0.3 | |
Maximum | UAq-Aqt | 321.5 | 29.0 | 92.0 | 8.7 | 41.8 |
LAq | 220.0 | 2.5 | 8.0 | 0.3 | 1.4 | |
Nº of points with NO3− > 37.5 mg/L | UAq-Aqt | 78 | 0 | 21 | 0 | 0 |
LAq | 72 | 0 | 0 | 0 | 0 |
N Fertilizer Use Scenarios | Groundwater Exploitation Scenarios | |||
---|---|---|---|---|
1. IE = BAU | 2. IE Reduction to 0.8 by Year 2050 and Beyond | |||
A. 20% reduction by 2030 and beyond | Layer 1 | In 2050 | +4.4 | +4.8 |
In 2100 | +7.9 | +8.5 | ||
Layer 3 | In 2050 | +9.4 | +8.7 | |
In 2100 | +20.1 | +18.2 | ||
B. Reduction to zero by 2030 and beyond | Layer 1 | In 2050 | −49.4 | −49.1 |
In 2100 | −65.9 | −65.8 | ||
Layer 3 | In 2050 | +2.7 | +2.5 | |
In 2100 | −4.9 | −4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowiecka, M.; Alcaraz, M.; Manzano, M. An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support. Hydrology 2025, 12, 137. https://doi.org/10.3390/hydrology12060137
Borowiecka M, Alcaraz M, Manzano M. An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support. Hydrology. 2025; 12(6):137. https://doi.org/10.3390/hydrology12060137
Chicago/Turabian StyleBorowiecka, Malgorzata, Mar Alcaraz, and Marisol Manzano. 2025. "An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support" Hydrology 12, no. 6: 137. https://doi.org/10.3390/hydrology12060137
APA StyleBorowiecka, M., Alcaraz, M., & Manzano, M. (2025). An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support. Hydrology, 12(6), 137. https://doi.org/10.3390/hydrology12060137