Special Issue "Groundwater Pollution: Sources, Mechanisms, and Prevention"

A special issue of Hydrology (ISSN 2306-5338).

Deadline for manuscript submissions: 29 February 2024 | Viewed by 2233

Special Issue Editors

Assistant Professor, School of Rural and Surveying Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Interests: analysis, modelling, and forecasting of groundwater resources; spatiotemporal analysis of groundwater quantity and quality variables; deterministic and stochastic groundwater modelling and optimization; water resources management; applications of GIS; design and supervision of hydrotechnical projects
Dr. Augustina Clara Alexander
E-Mail Website
Guest Editor
Department of Water Resources Engineering, College of Engineering and Technology, University of Dar es Salaam, MJKN, Main Campus, 16103 Dar es Salaam, Tanzania
Interests: groundwater modeling pollution monitoring and remediation; groundwater-surface water interaction; impact of climate change and variability on water resources; mining impact on groundwater and stochastic optimization

Special Issue Information

Dear Colleagues,

Groundwater resources are vital for ecosystems and for human health and prosperity. Groundwater pollution continues to increase, a fact that further limits the potential of groundwater resources for use. The sources of contaminants can be natural (e.g., salinity or arsenic) or anthropogenic (excess fertilizers, pesticides, industrial chemicals, sewage effluent). Groundwater pollution may emerge from point sources (which can be well identified in space) and nonpoint sources, which are more difficult to identify, measure, and control than the former. To deal with this phenomenon, the sources of pollution and the mechanisms of the fate and transport of pollutants in the groundwater must be identified. This procedure is quite important because it forms the basis on which the appropriate prevention or mitigation measures will be generated. The latter are preferable to any remediation effort, as adverse effects on the environment and the health of living organisms are prevented. However, since groundwater contamination is less obvious than surface water pollution, it frequently goes unnoticed. In this case, it is mandatory that a remediation strategy be undertaken.

This Special Issue entitled “Groundwater Pollution: Sources, Mechanisms, and Prevention” aims to present new research contributions in the area of groundwater contamination, and will focus on the sources, effects, and exposure of natural and artificial groundwater pollutants, hydrological processes, and hydrochemical properties of groundwater; the intrinsic and specific vulnerability of groundwater to pollution; human health risk assessment; and recent trends in management and pollution mitigation, prevention and remediation strategies.

Potential themes include, but are not limited to, the following:

  • Investigating anthropogenic and natural sources of groundwater contamination;
  • Intrinsic and specific vulnerability of groundwater to pollution;
  • Monitoring of groundwater quality;
  • GIS spatial analyses;
  • Numerical simulation and statistical analysis of groundwater flow and contamination transport;
  • Human health risk assessment of groundwater;
  • Impact of climate change on groundwater pollution;
  • Prevention and mitigation measures, remediation techniques and policy-making.

Dr. Pantelis Sidiropoulos
Dr. Augustina Clara Alexander
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Hydrology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • groundwater
  • pollution
  • hydrochemistry
  • water quality
  • monitoring
  • modeling
  • vulnerability
  • prevention
  • remediation

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Applying Geophysical and Hydrogeochemical Methods to Evaluate Groundwater Potential and Quality in Middle Egypt
Hydrology 2023, 10(8), 173; https://doi.org/10.3390/hydrology10080173 - 18 Aug 2023
Viewed by 790
Abstract
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on [...] Read more.
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on 24 VESs (vertical electrical soundings), and its quality was determined based on the analyses of 57 groundwater samples. EC (salinity index), Na% (salt hazard), SAR (ratio of sodium adsorption), chloride risks, SSP (soluble sodium percentage), MH (magnesium hazard), and other indicators were used to determine whether the collected water samples were suitable for irrigation. Four layers in the study area are mentioned in the geoelectrical cross-sections that have been constructed. The first is made up of silt and clay from the Nile River, while the second is made up of sandy clay, which has a resistivity range of 15 to 32 Ohm.m and a range thickness of 2 to 68 m. Dry limestone makes up the third layer; its resistivity ranges from 1222 to 3000 Ohm.m and its thickness varies between 75 and 95 m. The Eocene aquifer in the research area is represented by the final layer, which has a thickness of more than 250 m and resistivity values that range from 602 to 860 Ohm.m. Most groundwater samples that were collected are safe for drinking; however, none of them are fit for home usage because of their extreme hardness. According to the SAR and US diagram, RSC, KR, and PI, most groundwater samples from the Pleistocene and Eocene aquifers are fit for irrigation. Full article
(This article belongs to the Special Issue Groundwater Pollution: Sources, Mechanisms, and Prevention)
Show Figures

Figure 1

Article
Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria
Hydrology 2023, 10(8), 171; https://doi.org/10.3390/hydrology10080171 - 14 Aug 2023
Viewed by 911
Abstract
In this study, we analyzed the quality and the potential noncarcinogenic health risk of nitrate in groundwater in the El Milia plain, Kebir Rhumel Basin, Algeria. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern [...] Read more.
In this study, we analyzed the quality and the potential noncarcinogenic health risk of nitrate in groundwater in the El Milia plain, Kebir Rhumel Basin, Algeria. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. The potential noncarcinogenic health risks associated with nitrate contamination in groundwater for adults and children through the drinking water pathway were assessed using the hazard quotient (HQ). The results revealed that approximately 5.7% of the total groundwater samples exceeded the HQ limit for adults, indicating potential health risks. Moreover, a higher percentage, 14.28%, of the total groundwater samples exceeded the HQ limit for children, highlighting their increased vulnerability to noncarcinogenic health hazards associated with nitrate contamination in the study area. Taking timely action and ensuring strict compliance with regulations in groundwater management are crucial for protecting public health, preserving the environment, addressing water scarcity, and achieving sustainable development goals. Full article
(This article belongs to the Special Issue Groundwater Pollution: Sources, Mechanisms, and Prevention)
Show Figures

Figure 1

Back to TopTop