Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models
Abstract
1. Introduction
2. Materials and Methods
Drug | Pharmacological Target | Indications | Known Biomarkers | Drug-Related References | GDSC Version | Number of Cell Lines with Assigned IC50 Values |
---|---|---|---|---|---|---|
Afatinib | EGFR, ERBB2 | NSCLC | EGFR mutations | [66,67,68] | GDSC2 | 866 |
Capivasertib | AKT (PI3K/MTOR signaling) | Breast Cancer | HER2, PIK3CA, AKT1, PTEN | [66,69,70,71,72] | GDSC1 | 838 |
Dabrafenib | BRAF | LGG, Melanoma, Metastatic anaplastic thyroid cancer, NSCLC | BRAF (BRAF V600 mutation) | [66,73,74,75,76] | GDSC2 | 856 |
Gefitinib | EGFR | NSCLC | EGFR, ABCB1, CYP2D6, IKBKB, KIAA1429, FGL1 | [66,77,78,79,80] | GDSC2 | 858 |
Nutlin-3a | MDM2 | - | p53, KRAS, MDM4, p73 | [66,81,82,83] | GDSC2 | 868 |
Osimertinib | EGFR | NSCLC | EGFR | [66,84,85,86,87] | GDSC2 | 857 |
Palbociclib | CDK4/6 | Breast Cancer | ERBB2, ESR1, ESR2, PGR, CCND1 amplification, CDKN2A loss | [61,66,80,88,89] | GDSC2 | 868 |
3. Results
3.1. Comparative Predictive Value of IC50 and AUC
3.2. Comparison of Feature Selection Strategies
3.2.1. Data-Driven Feature Selection Methods vs. KEGG Biologically Derived Features
3.2.2. Data-Driven Feature Methods vs. Biologically Derived Features from CTD
3.3. Venn Diagram Analysis of Computationally Selected Genes and Pharmacological Target Pathways
3.4. Integrative Modeling
3.5. Cross-Omics Model Transferability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IC50 | Half maximal inhibitory concentration |
RFE | Recursive Feature Elimination |
SVR | Support Vector Regression |
ML | Machine Learning |
AUC | Area Under the Curve |
R2 | Coefficient of Determination |
RMSE | Root Mean Squared Error |
GEx | Gene Expression |
CTD | Comparative Toxicogenomics Database |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
NSCLC | Non-Small Cell Lung Cancer |
References
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- Oren, M. p53: Not just a tumor suppressor. J. Mol. Cell Biol. 2019, 11, 539–543. Available online: https://pubmed.ncbi.nlm.nih.gov/31291648/ (accessed on 8 June 2025). [CrossRef]
- Malumbres, M.; Barbacid, M. RAS oncogenes: The first 30 years. Nat. Rev. Cancer 2003, 3, 459–465. [Google Scholar] [CrossRef]
- Bahrin, N.W.S.; Matusin, S.N.I.; Mustapa, A.; Huat, L.Z.; Perera, S.; Hamid, M.R.W.H.A. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: A systematic review and meta-analysis. Syst. Rev. 2024, 13, 1–31. [Google Scholar] [CrossRef]
- Guo, Y.; Song, J.; Wang, Y.; Huang, L.; Sun, L.; Zhao, J.; Zhang, S.; Jing, W.; Ma, J.; Han, C. Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Front. Oncol. 2020, 10, 610923. [Google Scholar] [CrossRef] [PubMed]
- Varnai, R.; Sipeky, C. Genetic Biomarkers to Guide Poly(ADP-Ribose) Polymerase Inhibitor Precision Treatment of Prostate Cancer. Pharmacogenomics 2020, 21, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F.; Lopomo, A.; Spisni, R.; Migliore, L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J. Gastroenterol. 2014, 20, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Ghazimoradi, M.H.; Karimpour-Fard, N.; Babashah, S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes 2023, 14, 131. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, C.; Zhao, Y.; Wang, Q.; Guo, J.; Ye, B.; Yu, G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int. J. Mol. Sci. 2022, 23, 11389. [Google Scholar] [CrossRef]
- Belczacka, I.; Latosinska, A.; Metzger, J.; Marx, D.; Vlahou, A.; Mischak, H.; Frantzi, M. Proteomics biomarkers for solid tumors: Current status and future prospects. Mass Spectrom. Rev. 2018, 38, 49–78. [Google Scholar] [CrossRef]
- Toden, S.; Goel, A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br. J. Cancer 2022, 126, 351–360. [Google Scholar] [CrossRef]
- Beylerli, O.; Gareev, I.; Sufianov, A.; Ilyasova, T.; Guang, Y. Long noncoding RNAs as promising biomarkers in cancer. Non-coding RNA Res. 2022, 7, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Jin, H.C.; Chan, M.W.Y.; Chu, W.K.; Grusch, M. Epigenetic Biomarkers in Cancer. Dis. Markers. 2018, 20, 4987103. Available online: https://pubmed.ncbi.nlm.nih.gov/29675115/ (accessed on 8 June 2025). [CrossRef] [PubMed]
- Qi, S.A.; Wu, Q.; Chen, Z.; Zhang, W.; Zhou, Y.; Mao, K.; Li, J.; Li, Y.; Chen, J.; Huang, Y.; et al. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 2021, 11, 11805. Available online: https://pubmed.ncbi.nlm.nih.gov/34083687/ (accessed on 8 June 2025). [CrossRef] [PubMed]
- Shams ul Hassan, S.; Abbas, S.Q.; Hassan, M.; Jin, H.-Z. Computational Exploration of Anti-Cancer Potential of GUAIANE Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking, and MD Simulation Studies. Anticancer Agents Med. Chem. 2022, 22, 731–746. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018, 23, 1538–1546. [Google Scholar] [CrossRef]
- Ávalos-Moreno, M.; López-Tejada, A.; Blaya-Cánovas, J.L.; Cara-Lupiañez, F.E.; González-González, A.; Lorente, J.A.; Sánchez-Rovira, P.; Granados-Principal, S. Drug Repurposing for Triple-Negative Breast Cancer. J. Pers. Med. 2020, 10, 200. [Google Scholar] [CrossRef]
- Ayala-Orozco, C.; Teimouri, H.; Medvedeva, A.; Li, B.; Lathem, A.; Li, G.; Kolomeisky, A.B.; Tour, J.M. Chemoinformatics Insights on Molecular Jackhammers and Cancer Cells. J. Chem. Inf. Model. 2024, 64, 5570–5579. [Google Scholar] [CrossRef]
- Soltan, M.A.; Eldeen, M.A.; Sajer, B.H.; Abdelhameed, R.F.A.; Al-Salmi, F.A.; Fayad, E.; Jafri, I.; Ahmed, H.E.M.; Eid, R.A.; Hassan, H.M.; et al. Integration of Chemoinformatics and Multi-Omics Analysis Defines ECT2 as a Potential Target for Cancer Drug Therapy. Biology 2023, 12, 613. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Yang, W.; Lin, Y.; Wu, Y.; Zhang, Z.; Lin, N.; Wang, X.; Tong, M.; Yu, R. Application of individualized differential expression analysis in human cancer proteome. Briefings Bioinform. 2022, 23, bbac096. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, B.; Li, Z.; Li, Y.; Chen, X.; Ma, Y.; Yan, S.; Yang, X.; Zhong, L.; Wu, N. Proteomic Analyses Identify Differentially Expressed Proteins and Pathways Between Low-Risk and High-Risk Subtypes of Early-Stage Lung Adenocarcinoma and Their Prognostic Impacts. Mol. Cell. Proteom. 2021, 20, 100015. [Google Scholar] [CrossRef]
- Jokelainen, O.; Rintala, T.J.; Fortino, V.; Pasonen-Seppänen, S.; Sironen, R.; Nykopp, T.K. Differential expression analysis identifies a prognostically significant extracellular matrix–enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci. Rep. 2024, 14, 10626. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, G.; Yuan, Y.; Zhao, J.; Yang, Y.; Li, Y. Analysis of differential gene expression profile identifies novel biomarkers for breast cancer. Oncotarget 2017, 8, 114613–114625. [Google Scholar] [CrossRef] [PubMed]
- Przytycki, P.F.; Singh, M. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes. Genome Med. 2017, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Matsuta, R.; Yamamoto, H.; Tomita, M.; Saito, R. iDMET: Network-based approach for integrating differential analysis of cancer metabolomics. BMC Bioinform. 2022, 23, 508. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.-M.; Liu, Y.; Wan, L.-H.; Zhu, Y.-X. Comprehensive Analysis of Differential Gene Expression to Identify Common Gene Signatures in Multiple Cancers. Med. Sci. Monit. 2020, 26, e919953-1–e919953-13. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Q.; Shi, X.; Ye, Q.; Lei, M.; Wang, B. Development of a web-based calculator to predict three-month mortality among patients with bone metastases from cancer of unknown primary: An internally and externally validated study using machine-learning techniques. Front. Oncol. 2022, 12, 1095059. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [Google Scholar] [CrossRef]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- Mondello, A.; Bo, M.D.; Toffoli, G.; Polano, M. Machine learning in onco-pharmacogenomics: A path to precision medicine with many challenges. Front. Pharmacol. 2024, 14, 1260276. [Google Scholar] [CrossRef]
- Zhu, E.Y.; Dupuy, A.J. Machine learning approach informs biology of cancer drug response. BMC Bioinform. 2022, 23, 187. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kim, D.; Kim, S.Y. Prediction of Acquired Taxane Resistance Using a Personalized Pathway-Based Machine Learning Method. Cancer Res. Treat. 2019, 51, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Sotudian, S.; Paschalidis, I.C. Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 2324–2333. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Liu, Q.; Li, H.; Zhou, M.; Jiang, R.; Zhang, X. DualGCN: A dual graph convolutional network model to predict cancer drug response. BMC Bioinform. 2022, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Kardamiliotis, K.; Karanatsiou, E.; Aslanidou, I.; Stergiou, E.; Vizirianakis, I.S.; Malousi, A. Unraveling Drug Response from Pharmacogenomic Data to Advance Systems Pharmacology Decisions in Tumor Therapeutics. Futur. Pharmacol. 2022, 2, 31–44. [Google Scholar] [CrossRef]
- Rashid, M.M.; Selvarajoo, K. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): A case study on breast cancer clinical data. Briefings Bioinform. 2024, 25, bbae300. [Google Scholar] [CrossRef]
- Baptista, D.; Ferreira, P.G.; Rocha, M. Deep learning for drug response prediction in cancer. Briefings Bioinform. 2020, 22, 360–379. [Google Scholar] [CrossRef]
- Avci, C.B.; Bagca, B.G.; Shademan, B.; Takanlou, L.S.; Takanlou, M.S.; Nourazarian, A. Machine learning in oncological pharmacogenomics: Advancing personalized chemotherapy. Funct. Integr. Genom. 2024, 24, 182. [Google Scholar] [CrossRef]
- Ding, M.Q.; Chen, L.; Cooper, G.F.; Young, J.D.; Lu, X. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics. Mol. Cancer Res. 2018, 16, 269–278. [Google Scholar] [CrossRef]
- Jin, Y.; Lan, A.; Dai, Y.; Jiang, L.; Liu, S. Development and testing of a random forest-based machine learning model for predicting events among breast cancer patients with a poor response to neoadjuvant chemotherapy. Eur. J. Med Res. 2023, 28, 394. [Google Scholar] [CrossRef]
- Mehmood, A.; Nawab, S.; Jin, Y.; Hassan, H.; Kaushik, A.C.; Wei, D.-Q. Ranking Breast Cancer Drugs and Biomarkers Identification Using Machine Learning and Pharmacogenomics. ACS Pharmacol. Transl. Sci. 2023, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Cheng, L.; Li, L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Briefings Bioinform. 2021, 22, bbab271. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Kadani, A.Z.U.A.; Tahir, M.A.; Malick, R.A.S.; Jiang, R. DRPO: A deep learning technique for drug response prediction in oncology cell lines. Alex. Eng. J. 2024, 105, 88–97. [Google Scholar] [CrossRef]
- Li, Y.; Umbach, D.M.; Krahn, J.M.; Shats, I.; Li, X.; Li, L. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genom. 2021, 22, 272. [Google Scholar] [CrossRef]
- Scarborough, J.A.; Eschrich, S.A.; Torres-Roca, J.; Dhawan, A.; Scott, J.G. Exploiting convergent phenotypes to derive a pan-cancer cisplatin response gene expression signature. NPJ Precis. Oncol. 2023, 7, 38. [Google Scholar] [CrossRef]
- Zanella, L.; Facco, P.; Bezzo, F.; Cimetta, E. Feature Selection and Molecular Classification of Cancer Phenotypes: A Comparative Study. Int. J. Mol. Sci. 2022, 23, 9087. [Google Scholar] [CrossRef]
- Cheng, S.; Ma, L.; Lu, H.; Lei, X.; Shi, Y. Evolutionary computation for solving search-based data analytics problems. Artif. Intell. Rev. 2020, 54, 1321–1348. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Moemen, Y.S.; Hassanien, A.E.; Xiong, S. Toxicity risks evaluation of unknown FDA biotransformed drugs based on a multi-objective feature selection approach. Appl. Soft Comput. 2020, 97, 105509. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, N.; Li, C.; Wang, H.; Fang, Y.; Wang, J.; Zheng, X. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer 2015, 15, 489. [Google Scholar] [CrossRef]
- Gakii, C.; Rimiru, R. Identification of cancer related genes using feature selection and association rule mining. Informatics Med. Unlocked 2021, 24, 100595. [Google Scholar] [CrossRef]
- Al Mamun, A.; Duan, W.; Mondal, A.M. Pan-cancer Feature Selection and Classification Reveals Important Long Non-coding RNAs. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020, Seoul, Republic of Korea, 16–19 December 2020; pp. 2417–2424. [Google Scholar] [CrossRef]
- Vidyasagar, M. Identifying Predictive Features in Drug Response Using Machine Learning: Opportunities and Challenges. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Koras, K.; Juraeva, D.; Kreis, J.; Mazur, J.; Staub, E.; Szczurek, E. Feature selection strategies for drug sensitivity prediction. Sci. Rep. 2020, 10, 9377. [Google Scholar] [CrossRef] [PubMed]
- Emdadi, A.; Eslahchi, C. Auto-HMM-LMF: Feature selection based method for prediction of drug response via autoencoder and hidden Markov model. BMC Bioinform. 2021, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- MEl-Kenawy, E.S.; Khodadadi, N.; Eid, M.M.; Khodadadi, E.; Khodadadi, E.; Khafaga, D.S.; Alhussan, A.A.; Ibrahim, A.; Saber, M. Improved cancer detection through feature selection using the binary Al Biruni Earth radius algorithm. Sci. Rep. 2025, 15, 9483. [Google Scholar] [CrossRef]
- Parca, L.; Pepe, G.; Pietrosanto, M.; Galvan, G.; Galli, L.; Palmeri, A.; Sciandrone, M.; Ferrè, F.; Ausiello, G.; Helmer-Citterich, M. Modeling cancer drug response through drug-specific informative genes. Sci. Rep. 2019, 9, 15222. [Google Scholar] [CrossRef]
- Shin, J.; Piao, Y.; Bang, D.; Kim, S.; Jo, K. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer. Int. J. Mol. Sci. 2022, 23, 13919. [Google Scholar] [CrossRef]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012, 41, D955–D961. [Google Scholar] [CrossRef]
- Smirnov, P.; Safikhani, Z.; El-Hachem, N.; Wang, D.; She, A.; Olsen, C.; Freeman, M.; Selby, H.; Gendoo, D.M.; Grossmann, P.; et al. PharmacoGx: An R package for analysis of large pharmacogenomic datasets. Bioinformatics 2015, 32, 1244–1246. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef]
- Cope, L.; Hartman, S.M.; Göhlmann, H.W.; Tiesman, J.P.; Irizarry, R.A. Analysis of Affymetrix GeneChip® Data Using Amplified RNA. BioTechniques 2006, 40, 165–170. [Google Scholar] [CrossRef]
- Kim, C.S.; Hwang, S.; Zhang, S.-D. RMA with quantile normalization mixes biological signals between different sample groups in microarray data analysis. In Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, UK, 2–5 November 2014; pp. 139–143, IEEE, 2014. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Codicè, F.; Pancotti, C.; Rollo, C.; Moreau, Y.; Fariselli, P.; Raimondi, D. The specification game: Rethinking the evaluation of drug response prediction for precision oncology. J. Cheminform. 2025, 17, 33. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11907791/ (accessed on 9 June 2025). [CrossRef] [PubMed]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2023, 52, D1265–D1275. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, H.; Wang, X.; Wang, Y.; Duan, J.; Chen, H.; Xue, Z.; Tian, Y.; Cseh, A.; Huang, D.C.-L.; et al. Biomarker Subset Analysis of a Phase IIIb, Open-Label Study of Afatinib in EGFR Tyrosine Kinase Inhibitor-Naive Patients with EGFR m+ Non-Small-Cell Lung Cancer. Futur. Oncol. 2022, 18, 1485–1497. [Google Scholar] [CrossRef]
- Wecker, H.; Waller, C.F. Afatinib. Recent Results Cancer Res. 2018, 211, 199–215. Available online: https://pubmed.ncbi.nlm.nih.gov/30069769/ (accessed on 8 June 2025).
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortés, J.; Gomez, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. A plain language summary of the CAPItello-291 study: Capivasertib in hormone receptor-positive advanced breast cancer. Futur. Oncol. 2024, 20, 2901–2913. [Google Scholar] [CrossRef]
- Andrikopoulou, A.; Chatzinikolaou, S.; Panourgias, E.; Kaparelou, M.; Liontos, M.; Dimopoulos, M.-A.; Zagouri, F. The emerging role of capivasertib in breast cancer. Breast 2022, 63, 157–167. [Google Scholar] [CrossRef]
- Shirley, M. Capivasertib: First Approval. Drugs 2024, 84, 337–346. [Google Scholar] [CrossRef]
- Luboff, A.J.; DeRemer, D.L. Capivasertib: A Novel AKT Inhibitor Approved for Hormone-Receptor-Positive, HER-2-Negative Metastatic Breast Cancer. Ann. Pharmacother. 2024, 58, 1229–1237. [Google Scholar] [CrossRef]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAFV600–Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022, 40, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.-J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Flaherty, K.T.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; De Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017, 28, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Kainthla, R.; Kim, K.B.; Falchook, G.S. Dabrafenib. Recent Results Cancer Res. 2014, 201, 227–240. Available online: https://pubmed.ncbi.nlm.nih.gov/24756796/ (accessed on 8 June 2025).
- Wang, M.; Zhang, Z.; Liu, J.; Song, M.; Zhang, T.; Chen, Y.; Hu, H.; Yang, P.; Li, B.; Song, X.; et al. Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: A multi-omics study with drug exploration. Signal Transduct. Target. Ther. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Sun, C.; Gao, W.; Liu, J.; Cheng, H.; Hao, J. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respir. Res. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Lin, X.; Ye, R.; Li, Z.; Zhang, B.; Huang, Y.; Du, J.; Wang, B.; Meng, H.; Xian, H.; Yang, X.; et al. KIAA1429 promotes tumorigenesis and gefitinib resistance in lung adenocarcinoma by activating the JNK/MAPK pathway in an m6A-dependent manner. Drug Resist. Updat. 2022, 66, 100908. [Google Scholar] [CrossRef]
- PharmGKB. Stanford University. Website. 2020. Available online: https://www.pharmgkb.org (accessed on 13 December 2021).
- Cipriano, R.; Patton, J.T.; Mayo, L.D.; Jackson, M.W. Inactivation of p53 signaling by p73 or PTEN ablation results in a transformed phenotype that remains susceptible to Nutlin-3 mediated apoptosis. Cell Cycle 2010, 9, 1373–1379. [Google Scholar] [CrossRef]
- Kim, D.; Min, D.; Kim, J.; Kim, M.J.; Seo, Y.; Jung, B.H.; Kwon, S.; Ro, H.; Lee, S.; Sa, J.K.; et al. Nutlin-3a induces KRAS mutant/p53 wild type lung cancer specific methuosis-like cell death that is dependent on GFPT2. J. Exp. Clin. Cancer Res. 2023, 42, 338. [Google Scholar] [CrossRef]
- Yee-Lin, V.; Pooi-Fong, W.; Soo-Beng, A.K. Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini-Reviews Med. Chem. 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Hydbring, P. Plasma-derived immune-related factors as biomarkers of osimertinib resistance in EGFR-mutant non-small cell lung cancer patients. Transl. Lung Cancer Res. 2023, 12, 405–407. [Google Scholar] [CrossRef]
- Choudhury, N.J.; Marra, A.; Sui, J.S.; Flynn, J.; Yang, S.-R.; Falcon, C.J.; Selenica, P.; Schoenfeld, A.J.; Rekhtman, N.; Gomez, D.; et al. Molecular Biomarkers of Disease Outcomes and Mechanisms of Acquired Resistance to First-Line Osimertinib in Advanced EGFR-Mutant Lung Cancers. J. Thorac. Oncol. 2022, 18, 463–475. [Google Scholar] [CrossRef]
- Lamb, Y.N. Osimertinib: A Review in Previously Untreated, EGFR Mutation-Positive, Advanced NSCLC. Target. Oncol. 2021, 16, 687–695. [Google Scholar] [CrossRef]
- Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol. 2022, 15, 173. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Rugo, H.S.; Im, S.-A.; Slamon, D.J.; Harbeck, N.; Bondarenko, I.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Women with HR+/HER2− ABC: Updated Exploratory Analyses of PALOMA-3, a Double-blind, Phase III Randomized Study. Clin. Cancer Res. 2022, 28, 3433–3442. [Google Scholar] [CrossRef]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Matsuura, Y.; Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2024, 53, D672–D677. [Google Scholar] [CrossRef] [PubMed]
- Kalocsay, M.; Berberich, M.J.; Everley, R.A.; Nariya, M.K.; Chung, M.; Gaudio, B.; Victor, C.; Bradshaw, G.A.; Eisert, R.J.; Hafner, M.; et al. Proteomic profiling across breast cancer cell lines and models. Sci. Data 2023, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: https://jmlr.org/papers/v12/pedregosa11a.html (accessed on 9 June 2025).
- r2_Score—Scikit-Learn 1.7.0 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html (accessed on 9 June 2025).
- Root_Mean_Squared_Error—Scikit-Learn 1.7.0 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_error.html (accessed on 9 June 2025).
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Z.; Liu, X.; Li, Z.; Zhang, T.; Yang, B.; Su, J.; Song, Q. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Briefings Bioinform. 2023, 24, bbad338. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhou, M.; Wang, Y.; Wang, X.; Zhou, X.; Song, Q. DrugFormer: Graph-Enhanced Language Model to Predict Drug Sensitivity. Adv. Sci. 2024, 11, e2405861. [Google Scholar] [CrossRef]
KEGG | CTD | ||||
---|---|---|---|---|---|
Biological Pathway | Number of genes | Number of genes with gene expression data | Number of genes | Number of genes with gene expression data | Drugs |
ErbB | 86 | 80 | 86 | 81 | Afatinib, Dabrafenib, Gefitinib, Osimertinib |
MAPK | 300 | 287 | 255 | 245 | Afatinib, Dabrafenib, Gefitinib, Osimertinib |
PI3K-Akt | 362 | 337 | 341 | 319 | Capivasertib, Palbociclib |
Cancer | 533 | 507 | 395 | 383 | Capivasertib, Dabrafenib, Gefitinib, Osimertinib, Palbociclib |
NSCLC | 73 | 70 | 58 | 57 | Gefitinib, Osimertinib |
p53 | 75 | 72 | 69 | 66 | Nutlin-3a |
Ubiquitin | 142 | 135 | 137 | 137 | Nutlin-3a |
Cell Cycle | 158 | 151 | 124 | 119 | Palbociclib |
Breast Cancer | 148 | 143 | 144 | 139 | Palbociclib |
EGFR tyrosine kinase inhibitor resistance | - | - | 79 | 77 | Gefitinib, Osimertinib |
Drug | Biological Pathway | Feature Selection Algorithm after Combination |
---|---|---|
Afatinib | MAPK (KEGG) | RFE-SVR estimator |
Capivasertib | PI3K-Akt (KEGG) | RFE-SVR estimator |
Dabrafenib | ErbB (KEGG) | RFE-Linear Regression estimator |
Gefitinib | Cancer (KEGG) | RFE-SVR estimator |
Nutlin-3a | p53 (KEGG) | RFE-Linear Regression estimator |
Osimertinib | EGFR tyrosine kinase inhibitor resistance (CTD) | RFE-Linear Regression estimator |
Palbociclib | Cell Cycle (KEGG) | RFE-Linear Regression estimator |
Drug | Origin of Genes in Final Dataset DD/BD/DD∩BD | R2 Values Difference | R2 Values Difference (%) | RMSE Values Difference | RMSE Values Difference (%) |
---|---|---|---|---|---|
Afatinib | 416/71/12 | 0.001 | 0.14 | 0.004 | 1.39 |
Capivasertib | 443/56/12 | 0.004 | 0.37 | 0.018 | 5.08 |
Dabrafenib | 478/35/2 | 0.007 | 0.73 | 0.031 | 8.42 |
Gefitinib | 377/117/12 | 0.014 | 1.45 | 0.033 | 11.72 |
Nutlin-3a | 435/20/7 | 0.003 | 0.31 | 0.014 | 4.70 |
Osimertinib | 475/34/5 | 0.005 | 0.55 | 0.016 | 5.83 |
Palbociclib | 389/50/7 | 0.007 | 0.77 | 0.033 | 10.05 |
Drug | Proteomic BRCA Cell Lines | Common Genes | Total Common Genes (excl. NA) |
---|---|---|---|
Afatinib | 40 | 341 | 180 |
Capivasertib | 38 | 323 | 171 |
Dabrafenib | 41 | 300 | 167 |
Gefitinib | 41 | 277 | 138 |
Nutlin-3a | 42 | 304 | 176 |
Osimertinib | 41 | 326 | 167 |
Palbociclib | 42 | 333 | 177 |
GEx Data | Proteomics Data Raw Data | Proteomics Data Z-Score | ||
---|---|---|---|---|
Drug | R2 | RMSE | RMSE | RMSE |
Afatinib | 0.395 | 1.596 | 11.368 | 8.401 |
Capivasertib | 0.491 | 1.332 | 13.106 | 6.865 |
Dabrafenib | 0.378 | 1.406 | 8.823 | 6.719 |
Gefitinib | 0.444 | 0.847 | 8.756 | 1.252 |
Nutlin-3a | 0.662 | 0.983 | 6.908 | 3.055 |
Osimertinib | 0.353 | 0.996 | 10.080 | 6.572 |
Palbociclib | 0.616 | 1.030 | 10.120 | 1.617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateras, E.; Vizirianakis, I.S.; Zhang, M.; Aivaliotis, G.; Tzimagiorgis, G.; Malousi, A. Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models. Future Pharmacol. 2025, 5, 58. https://doi.org/10.3390/futurepharmacol5040058
Pateras E, Vizirianakis IS, Zhang M, Aivaliotis G, Tzimagiorgis G, Malousi A. Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models. Future Pharmacology. 2025; 5(4):58. https://doi.org/10.3390/futurepharmacol5040058
Chicago/Turabian StylePateras, Efstathios, Ioannis S. Vizirianakis, Mingrui Zhang, Georgios Aivaliotis, Georgios Tzimagiorgis, and Andigoni Malousi. 2025. "Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models" Future Pharmacology 5, no. 4: 58. https://doi.org/10.3390/futurepharmacol5040058
APA StylePateras, E., Vizirianakis, I. S., Zhang, M., Aivaliotis, G., Tzimagiorgis, G., & Malousi, A. (2025). Decoding Anticancer Drug Response: Comparison of Data-Driven and Pathway-Guided Prediction Models. Future Pharmacology, 5(4), 58. https://doi.org/10.3390/futurepharmacol5040058