Topic Editors

Department of Pharmacy, University of Salerno, Campus di Fisciano, Salerno, Italy
Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy

Natural Products and Drug Discovery—2nd Edition

Abstract submission deadline
30 June 2026
Manuscript submission deadline
30 September 2026
Viewed by
5386

Topic Information

Dear Colleagues,

Natural products are the oldest medicaments that have evolved throughout human history. They have always represented promising lead compounds for new drugs. Indeed, more than 50% of drugs approved in the past four decades are of natural origins. Natural products and their derivatives have historically made significant contributions to pharmacotherapy, especially for treating cancer and inflammatory and infectious diseases. They are now used as antibiotics, antimitotics, antidiabetics, anti-metabolites, anti-aging and neuroprotective agents, and antitumor drugs. In addition, fruits and vegetables, along with their nutritional constituents, are rich in bioactive compounds, often cited as ‘phytochemicals’, with health-promoting properties. Bioactives found in food plants, particularly polyphenols, exhibit activities that are considered of great interest in preventing and treating diseases largely present in an aging society. Thus, natural products as drug leads continue to be highly attractive, but the strategy for disease-based drug discovery must be achieved in parallel with the investigation of each natural compound's molecular mechanisms and intracellular targets. This General Topic is focused on, but not limited to the following: (1) The isolation of new active natural compounds and their structural identification; (2) The characterization, purification, and stabilization of bioactive natural compounds and their derivatives; (3) The bioavailability, enzyme inhibition, neuro-protective, anti-inflammatory, anti-proliferative, and anti-bacterial activities of natural products; (4) Biochemical and signaling pathways involved in the activity of natural compounds; (5) Different therapeutic applications of well-known natural compounds to explore new directions for future research. The General Topic “Natural Products and Drug Discovery—2nd Edition” will include original articles and reviews on in vitro or animal studies and human studies to define their efficacy as therapeutic agents.

Prof. Dr. Sonia Piacente
Prof. Marta Menegazzi
Topic Editors

Keywords

  • bioactive phytochemicals
  • functional food ingredients
  • chemical identification of natural compounds
  • structure–bioactivity relations
  • mechanisms of action
  • inflammatory diseases
  • autoimmune diseases
  • neurodegenerative diseases
  • cardiovascular disease
  • metabolic diseases
  • cancer
  • skin diseases

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Biomedicines
biomedicines
3.9 6.8 2013 17 Days CHF 2600 Submit
International Journal of Molecular Sciences
ijms
4.9 9.0 2000 20.5 Days CHF 2900 Submit
Scientia Pharmaceutica
scipharm
2.5 4.6 1930 38.1 Days CHF 1000 Submit
Molecules
molecules
4.6 8.6 1996 16.1 Days CHF 2700 Submit
Future Pharmacology
futurepharmacol
2.7 - 2021 21.8 Days CHF 1200 Submit
Biomolecules
biomolecules
4.8 9.2 2011 19.4 Days CHF 2700 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
28 pages, 7307 KB  
Article
Multi-Omics Reveals Active Components and Mechanisms of Heat-Processed Gypenosides Hepatoprotective Against APAP Injury
by Peng Xie, Qiuru Li, Shu Jiang, Miao Sun, Yu Duan, Changping Hu and Xianglan Piao
Biomolecules 2025, 15(11), 1555; https://doi.org/10.3390/biom15111555 (registering DOI) - 5 Nov 2025
Abstract
This study elucidates the hepatoprotective mechanisms of heat-processed Gynostemma pentaphyllum (Thunb.) Makino saponins (HGyp) against APAP-induced liver injury using serum pharmacochemistry, metabolomics, and network pharmacology. HGyp significantly mitigated liver damage in mice, as confirmed by biochemical and histopathological analyses. UPLC-MS identified 38 bioactive [...] Read more.
This study elucidates the hepatoprotective mechanisms of heat-processed Gynostemma pentaphyllum (Thunb.) Makino saponins (HGyp) against APAP-induced liver injury using serum pharmacochemistry, metabolomics, and network pharmacology. HGyp significantly mitigated liver damage in mice, as confirmed by biochemical and histopathological analyses. UPLC-MS identified 38 bioactive compounds, including 16 prototype saponins and 11 metabolites. Network pharmacology and molecular docking revealed damulin A/B, gypenosides (L/LI/LVI/XLVI), and ginsenosides (Rg3/Rd) as key components targeting GRB2, FGF2, MMP2, STAT3, CASP3, and HSP90A. Western blotting confirmed the HGyp-mediated downregulation of hepatic HSP90A and STAT3. Metabolomics identified four critical pathways, PPAR, ferroptosis, and the inflammatory mediator regulation of TRP channels involved in hepatoprotection. HGyp exerts multi-target effects via anti-inflammatory activity, apoptosis, and metabolism, providing a framework for Chinese medicine and ethnomedicine research. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

20 pages, 8232 KB  
Article
Abietic Acid Induces DNA Damage and Cell Apoptosis in Lung Cancer Cells Through Targeting TOP2A
by Zhiyu Zhu, Jie Gu, Zehua Liao, Mengting Chen, Yun Wang, Jingyi Song, Jing Xia, Xinbing Sui, Shuang Lin and Xueni Sun
Biomolecules 2025, 15(11), 1498; https://doi.org/10.3390/biom15111498 - 24 Oct 2025
Viewed by 354
Abstract
Background: This study investigated the therapeutic effects and underlying mechanisms of abietic acid, an abietane diterpene extracted from Pimenta racemosa var. grissea, against lung cancer. Methods: Initially, cell viability, colony formation, flow cytometry, and mitochondrial membrane potential detection were conducted [...] Read more.
Background: This study investigated the therapeutic effects and underlying mechanisms of abietic acid, an abietane diterpene extracted from Pimenta racemosa var. grissea, against lung cancer. Methods: Initially, cell viability, colony formation, flow cytometry, and mitochondrial membrane potential detection were conducted to determine the impact of abietic acid on lung cancer cells. Subsequently, the antitumor mechanisms of abietic acid were predicted using network pharmacology and validated via immunofluorescence, reactive oxygen species (ROS) detection, molecular docking, gene knockdown techniques and Western blotting. Finally, an in vivo xenograft model assessed its tumor-suppressive potential, with Hematoxylin–Eosin (H&E) staining, Western blotting, and immunohistochemistry performed to examine pathological changes and protein expression alterations. Results: The proliferation of lung cancer cells was significantly inhibited by abietic acid. Additionally, abietic acid induced apoptosis and reduced mitochondrial membrane potential. Network pharmacology and Gene Ontology (GO) enrichment analysis revealed that the DNA damage response was a key biological process affected by abietic acid. Further results demonstrated that abietic acid induces DNA damage in lung cancer cells through targeting DNA topoisomerase II alpha (TOP2A). In vivo studies confirmed the antitumor efficacy of abietic acid and its low systemic toxicity. Conclusions: Abietic acid demonstrated significant antitumor effects in lung cancer cells by downregulating TOP2A, which induced DNA damage and apoptosis, revealing its clinical potential. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

16 pages, 4427 KB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 - 4 Aug 2025
Viewed by 1020
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

21 pages, 1003 KB  
Article
Alpinia zerumbet Extract Mitigates PCB 126-Induced Neurotoxicity and Locomotor Impairment in Adult Male Mice
by Paula Hosana Fernandes da Silva, Jemima Isnardo Fernandes, Matheus Pontes de Menezes, Fabrícia Lima Fontes-Dantas, André Luiz Nunes Freitas, Rayane Efraim Correa, Ulisses Cesar de Araujo, Dayane Teixeira Ognibene, Cristiane Aguiar da Costa, Cláudio Carneiro Filgueiras, Alex Christian Manhães, Júlio Beltrame Daleprane, Angela de Castro Resende and Graziele Freitas de Bem
Sci. Pharm. 2025, 93(2), 23; https://doi.org/10.3390/scipharm93020023 - 25 May 2025
Viewed by 1948
Abstract
Polychlorinated biphenyls (PCBs) are synthetic chemical compounds that have bioaccumulated and contaminated the entire global ecosystem, causing neurotoxic effects. However, polyphenols may have protective effects against this neurotoxicity. We aimed to investigate the neuroprotective effect of a hydroalcoholic extract of fresh leaves of [...] Read more.
Polychlorinated biphenyls (PCBs) are synthetic chemical compounds that have bioaccumulated and contaminated the entire global ecosystem, causing neurotoxic effects. However, polyphenols may have protective effects against this neurotoxicity. We aimed to investigate the neuroprotective effect of a hydroalcoholic extract of fresh leaves of Alpinia zerumbet (ALE), which is rich in polyphenols, on the neurobehavioral changes induced by 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). We divided C57BL/6 male mice into four groups (n = 40): Control, Control + ALE, PCB, and PCB + ALE. We administered the ALE (50 mg/kg/day) through drinking water and PCB 126 (2 mg/kg/once a week) intraperitoneally for four weeks. The mice were subjected to the elevated plus maze (EPM) and open field (OF) tests in the last week of treatment. PCB 126 reduced locomotor activity, DOPAC levels, dopamine turnover, and D2 receptor expression. This compound also increased lipid peroxidation, tyrosine levels, and BAX expression in the cerebral cortex. Notably, ALE treatment prevented locomotor activity reduction and increased DOPAC levels, dopamine turnover, and D2 receptor expression. Moreover, the extract prevented the PCB-induced increases in BAX expression and lipid peroxidation. Finally, the ALE increased SOD antioxidant activity. Our investigation highlights that using the ALE may serve as a therapeutic strategy against PCB-induced neurotoxicity. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Graphical abstract

20 pages, 3398 KB  
Article
Genome Mining of Pseudarthrobacter sp. So.54, a Rhizospheric Bacteria from Colobanthus quitensis Antarctic Plant
by Dayaimi González, Pablo Bruna, María J. Contreras, Karla Leal, Catherine V. Urrutia, Kattia Núñez-Montero and Leticia Barrientos
Biomolecules 2025, 15(4), 534; https://doi.org/10.3390/biom15040534 - 5 Apr 2025
Viewed by 1329
Abstract
Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study [...] Read more.
Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study its genomic characteristics and metabolic potential, linked to environmental adaptation and the production of secondary metabolites with possible biotechnological applications. Whole-genome sequencing, assembly, phylogenetic analysis, functional annotation, and genomic islands prediction were performed to determine the taxonomic affiliation and differential characteristics of the strain So.54. Additionally, Biosynthetic Gene Clusters (BGCs) responsible for secondary metabolites production were identified. The assembled genome of strain So.54 has 3,871,805 bp with 66.0% G + C content. Phylogenetic analysis confirmed that strain So.54 belongs to the Pseudarthrobacter genus; nevertheless, its nucleotide and amino acid identity values were below the species threshold. The main metabolic pathways and 64 genomic islands associated with stress defense and environmental adaptation, such as heavy metal resistance genes, were identified. AntiSMASH analysis predicted six BGCs with low or no similarity to known clusters, suggesting potential as novel natural products. These findings indicate that strain So.54 could be a novel Pseudarthrobacter species with significant environmental adaptation and biotechnological potential. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

Back to TopTop