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Abstract: Microbial shelf life refers to the duration of time during which a food product remains
safe for consumption in terms of its microbiological quality. Predictive microbiology is a field of
science that focuses on using mathematical models and computational techniques to predict the
growth, survival, and behaviour of microorganisms in food and other environments. This approach
allows researchers, food producers, and regulatory bodies to assess the potential risks associated
with microbial contamination and spoilage, enabling informed decisions to be made regarding
food safety, quality, and shelf life. Two-step and one-step modelling approaches are modelling
techniques with primary and secondary models being used, while the machine learning approach
does not require using primary and secondary models for describing the quantitative behaviour of
microorganisms, leading to the spoilage of food products. This comprehensive review delves into
the various modelling techniques that have found applications in predictive food microbiology for
estimating the shelf life of food products. By examining the strengths, limitations, and implications of
the different approaches, this review provides an invaluable resource for researchers and practitioners
seeking to enhance the accuracy and reliability of microbial shelf life predictions. Ultimately, a deeper
understanding of these techniques promises to advance the domain of predictive food microbiology,
fostering improved food safety practices, reduced waste, and heightened consumer confidence.
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1. Introduction

The term “food shelf life” refers to the duration in which a food product sustains its
safety, quality, and nutritional attributes within specified storage conditions. This interval
encompasses the period during which the food item remains appropriate for consump-
tion and retains its intended sensory, physical, chemical, and microbiological properties,
aligning with the manufacturer’s intentions [1]. The assessment and determination of shelf
life play a pivotal role in guaranteeing consumer well-being, minimising food waste, and
ensuring economic sustainability.

Shelf life pertains to the time frame during which a food product maintains its intended
quality and safety characteristics while subjected to specific storage conditions [2]. Its
influencing factors comprise microbial growth, chemical reactions, physical alterations, and
sensory degradation. To ensure consumer safety and satisfaction, the precise estimation of
shelf life and the formulation of strategies for its extension are of the utmost importance.

In the realm of the food industry, food shelf life constitutes a fundamental cornerstone,
embodying a nuanced equilibrium among safety, quality, and consumer contentment. The
intricate interplay among sensory, physical, chemical, and microbiological elements neces-
sitates a rigorous scientific approach and comprehensive comprehension [3]. Through an
accurate determination and the proficient management of shelf life, stakeholders within the
food supply chain can uphold consumer safety, mitigate wastage, and maintain economic
feasibility, thereby contributing to a sustainable and responsible food sector.
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Food shelf life pertains to the timeframe in which a food product retains its intended
quality, safety, and nutritional characteristics under specific storage conditions. This dura-
tion represents the period during which the food item remains suitable for consumption
while retaining its desired sensory, physical, chemical, and microbiological attributes, as
intended by the manufacturer or producer. The process of determining food shelf life
involves evaluating factors such as microbial growth, chemical reactions, physical changes,
and sensory deterioration, ensuring the product’s ongoing safety and satisfactory attributes
for consumers. The accurate determination and effective management of shelf life are
imperative to ensure consumer safety, minimise food waste, and sustain economic viability
within the context of the food industry. Several factors influence the shelf life of food
products [4–6]:

â Microbial Activity: Microorganisms, including bacteria, yeasts, and moulds, play
significant roles in food spoilage and degradation. Their growth can lead to changes
in flavour, texture, odour, and overall quality [7].

â Chemical Reactions: Chemical reactions such as oxidation, enzymatic reactions,
and hydrolysis can cause changes in colour, taste, nutritional content, and texture.
These reactions are often accelerated by factors like temperature, light, and oxygen
exposure [8].

â Physical Changes: Physical changes like moisture migration, crystallisation, and
phase separation can affect the appearance, texture, and stability of food products [9].

â Water Activity (Aw): Water activity refers to the amount of available water in a
product. Microbial growth and chemical reactions are often inhibited at lower water
activity levels [10].

â Temperature: Temperature is a critical factor influencing shelf life. Higher tem-
peratures can accelerate chemical reactions and microbial growth, leading to faster
deterioration [11].

â Packaging: Packaging materials and methods can impact the shelf life of a product
by influencing factors such as oxygen and moisture permeability [12].

â pH: The pH level of a food product can affect microbial growth and enzyme activity.
Acidic environments can inhibit the growth of spoilage organisms [13].

â Preservatives: The addition of preservatives like antioxidants, antimicrobials, and
flavour enhancers can extend shelf life by inhibiting microbial growth and delaying
oxidation [14].

â Storage Conditions: Storage conditions, including temperature, humidity, and expo-
sure to light, significantly impact the rate of deterioration. Proper storage is essential
to maintaining product quality [15].

Microbial Shelf Life

Microbial shelf life refers to the duration of time during which a food product remains
safe for consumption in terms of its microbiological quality. It is the period during which the
microbial population within the product remains within acceptable limits, ensuring that the
food item is free from harmful microorganisms that can cause spoilage or pose health risks
to consumers [16]. The determination of microbial shelf life involves monitoring the growth
and activity of microorganisms, such as bacteria, yeasts, and moulds, to ensure that their
populations remain controlled and do not reach levels that compromise the safety or quality
of the food product. An accurate estimation of microbial shelf life is crucial for ensuring the
safety and freshness of foods and preventing the onset of microbial-related deterioration.

Microbial shelf life is influenced by a variety of factors that impact the growth and
activity of microorganisms within a food product [17]. These factors determine how long
a product can remain safe for consumption before microbial populations reach levels
that compromise its quality and safety. Some of the key factors affecting microbial shelf
life include:

Microbial growth is influenced by a variety of factors that determine how quickly
microorganisms multiply and proliferate within a given environment. These factors play a
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crucial role in determining the safety, quality, and shelf life of food products. Some of the
key factors affecting microbial growth include:

â Nutrients: Microorganisms require nutrients such as carbohydrates, proteins, and
fats for growth. Foods rich in these nutrients can provide an environment conducive
to microbial proliferation [18].

â Water Activity (Aw): Water activity refers to the availability of water for microbial
growth. Microorganisms require water to carry out metabolic processes. Foods with
higher water activity levels offer more favourable conditions for microbial growth [19].

â Temperature: Temperature has a profound impact on microbial growth rates. The
relationship between temperature and microbial growth is often described by the
“temperature danger zone”, within which microorganisms multiply most rapidly.
Cold temperatures slow down microbial growth, while temperatures above the danger
zone can kill some microorganisms [20].

â pH: Microorganisms have specific pH ranges in which they thrive. Bacteria generally
prefer neutral pH conditions, while moulds and yeasts can tolerate a wider pH range.
Extreme pH values can inhibit microbial growth [21].

â Oxygen Availability: Microorganisms can be classified into aerobic (requiring oxy-
gen), anaerobic (thriving in the absence of oxygen), and facultative aerobe (growing
in presence or absence of oxygen) categories [22]. Oxygen availability influences the
types of microorganisms that can grow and the rate of their growth [23].

â Redox Potential: Redox potential measures the availability of electrons in an environ-
ment. It affects the growth of both aerobic and anaerobic microorganisms [19].

â Presence of Antimicrobial Compounds: Some foods naturally contain compounds
with antimicrobial properties, such as spices, herbs, and essential oils. These com-
pounds can inhibit or slow microbial growth [24].

â Surface Area: Larger surface areas provide more opportunities for microorganisms
to attach and grow. Cutting or grinding food increases its surface area, potentially
promoting microbial growth.

â Moisture Content: The moisture content of a food product affects its water activity
and can impact microbial growth. High-moisture foods are generally more prone to
microbial proliferation [25].

â Intrinsic Factors: Intrinsic factors are inherent characteristics of the food itself, such
as its composition, structure, and natural microflora. These factors can influence the
types of microorganisms that grow and the rate at which they do so.

By understanding these factors and how they interact, food producers and scientists
can develop strategies for controlling and managing microbial growth, ensuring the safety
and quality of food products throughout their shelf life. A sensory analysis assesses
food attributes like taste and texture, but it does not directly improve microbial shelf
life predictions. These predictions rely on specific data about microorganisms and food
spoilage. However, combining a sensory analysis with microbial data can offer a full picture
of product stability, covering safety and taste. A sensory analysis alone is not enough; it
should work with microbial data, environmental monitoring, and advanced modelling for
a complete quality and safety assessment.

2. Predictive Microbiology

Predictive microbiology is a field of science that focuses on using mathematical models
and computational techniques to predict the growth, survival, and behaviour of microor-
ganisms in food and other environments [26]. This approach allows researchers, food
producers, and regulatory bodies to assess the potential risks associated with microbial
contamination and spoilage, enabling informed decisions to be made regarding food safety,
quality, and shelf life.

â Microbial Growth Models: Predictive microbiology often involves the develop-
ment of mathematical models that describe the growth of microorganisms under
specific conditions. These models take into account factors such as temperature,
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pH, water activity, and initial microbial load to estimate the rate and extent of
microbial proliferation.

â Risk Assessment: Predictive models are used to assess the potential risks of microbial
contamination in food products. By simulating different scenarios, regarding the
various crucial factors that influence microbial contamination in food products such
as the specific environmental conditions [27,28], intrinsic and extrinsic parameters of
the food [29], processing techniques, and storage conditions [30,31], researchers can
determine how different environmental conditions impact the growth of pathogenic
and spoilage microorganisms.

â Shelf Life Estimation: Predictive microbiology helps in estimating the shelf life
of food products. By considering microbial growth rates and spoilage thresholds,
manufacturers can determine how long a product can remain safe and of an acceptable
quality under various storage conditions.

â Quality Control: Predictive models aid in establishing critical control points in the
production process where microbial growth can be controlled or prevented. This
supports quality assurance and helps to prevent foodborne illnesses.

â Regulatory Compliance: Regulatory bodies often rely on predictive microbiology
models to set standards and guidelines for food safety. These models provide insights
into safe storage conditions and acceptable microbial levels.

â Advancements in Technology: With the integration of data science and advanced
computational tools, predictive microbiology has evolved to include machine learning
and artificial intelligence algorithms that can analyse complex datasets to enhance
predictions.

Predictive microbiology plays a pivotal role in enhancing our understanding of micro-
bial behaviour, food safety, and quality control. By leveraging mathematical models and
computational tools, this field empowers the food industry to make data-driven decisions
that ensure consumer safety and satisfaction. The application of predictive microbiology
has greatly enhanced the food industry’s capacity to forecast and regulate microbial shelf
life, leading to advancements in food safety and quality. Through the utilisation of mathe-
matical models and computational methods, researchers have gained valuable insights into
the dynamics of microorganism growth and behaviour of various food products [32]. These
predictive models enable the evaluation of potential risks linked to microbial contamination,
facilitating informed decisions concerning food preservation, storage, and distribution [33].
Moreover, the implementation of predictive microbiology has facilitated the formulation of
effective approaches to prolonging the shelf life of food products, thereby reducing food
waste and ensuring consumer health and satisfaction [34].

2.1. Primary Models

The modified Gompertz, logistic, Baranyi, and Huang models, in particular, are the most
often utilised sigmoid functions for describing bacterial growth behaviour. Equations (1) and (2),
respectively, define the modified Gompertz and logistic models under constant environ-
mental circumstances [35]:

x(t) = x0 + (xmax − x0).exp
{
−exp

[
rmax.e

(x max − x0)
.(λ− t) + 1

]}
(1)

x(t) = x0 +
(x max − x0){

1 + exp
[

4.rmax
(x max−x0)

.(λ− t) + 2
]} (2)

where t is the time (h), x(t) is the bacterial population concentration (log CFU/g) at time
t, x0 is the initial bacterial population concentration (log CFU/g), xmax is the maximum
bacterial population concentration (log CFU/g), rmax is the maximum bacterial growth rate
(log CFU/h), and λ is the lag phase duration (h).
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Other widely used primary functions include the Baranyi and Huang models, which
are represented by Equations (3) and (4), respectively [36,37]:

y(t) = y0 + µmaxF(t)− ln

(
1 +

eµmaxF(t) − 1
e(ymax−y0)

)
(3)

y(t) = y0 + ymax − ln
(

ey0 + [eymax − ey0 ].e−µmaxB(t) (4)

where t is the time (h), y(t) is the bacterial population concentration (ln CFU/g) at time
t, y0 is the initial bacterial population concentration (ln CFU/g), ymax is the maximum
bacterial population concentration (ln CFU/g), µmax is the maximum specific bacterial
growth rate (1/h), λ is the lag phase duration (h), and F(t) and B(t) are the adjustment
functions described [36,37].

Because the major models utilise different scales for counting microbe populations,
after fitting, the growth rate values (rmax) derived from the Modified Gompertz and logistic
models are translated into maximum specific growth rate values (µmax) by multiplying
ln [38].

2.2. Secondary Models

Secondary models are used to describe the impacts of many environmental conditions
on the parameters of main models, such as water activity, acidity, and temperature [38].
These secondary models are typically applied subsequent to fitting the growth data to pri-
mary models. Understanding the impact of water activity [39] acidity [39], and temperature
on growth rate is critical for effectively managing food preservation and ensuring product
safety and quality [39–42]. The Ratkowsky model is used to explain the link between tem-
perature and maximal specific growth rate [43]. The Arrhenius model is frequently used
to characterise the influence of storage temperature on microbial development in foods
and is commonly used to describe the temperature dependency of chemical processes [44].
To characterise the influence of water activity, acidity, and temperature on the maximum
specific growth rate and lag phase duration, (Equations (5)–(9)) models are widely used:

µmax = b1(aw − aw_min) (5)

µmax = b1(pH− PHmin).(pH− PHmax) (6)

µmax = b1(T− T0)
2 (7)

µmax = b1

[
exp

(
−Ea

Rθ

)]
(8)

µmax =
1
λ

(9)

where µmax is the maximum specific growth rate (1/h) obtained from the primary model,
aw is the water activity, and aw_min is the minimal water activity at which growth stops.
pHmin is the minimal pH and pHmax is the maximal pH at which growth stops. T is the
temperature (◦C), T0 is the theoretical minimum temperature (◦C) for microbial growth, λ is
the lag phase duration (h) collected from the primary model, b1 is the regression coefficient,
Ea is the activation energy (J/mol), R is the universal gas constant (8.314 J/mol K), and θ is
the absolute temperature (K).
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2.3. Comparison of the Goodness of Fit of the Models

The root mean square error (RMSE), adjusted coefficient of determination (R2
adj),

Akaike information criteria (AIC), and Bayesian information criterion (BIC) may be used to
compare the models’ estimate skills using Equations (10)–(13) correspondingly [45]:

RMSE =

√√√√ n

∑
i=1

(xobs − xfit)
2

n− s
(10)

R2
adj = 1−

(
n− 1
n− s

)(
SSE
SST

)
(11)

AIC = n ln
(

SSE
n

)
+ 2s (12)

BIC = n ln
(

SSE
n

)
+ s ln(n) (13)

where xobs represents the experimental bacterial growth concentration, xfit represents the
fitted value, n represents the number of experiments, s represents the number of model
parameters, SSE represents the sum of squares of errors, and SST represents the total sum
of squares.

2.4. The Models’ Validation

The validation of models is the process through which the predictive power of the
constructed models is validated using previously published or newly generated data. The
ability of the models to forecast may be assessed using the microbes’ growth kinetics.
Each of the global models’ related bias (Bf) and accuracy (Af) factors are presented in
Equations (14) and (15), respectively, for comparison [46]:

Bf = 10
∑n

i=1 log (
xpred
xobs

)

n (14)

Af = 10
∑n

i=1 |log(xpred/xobs)|
n (15)

where xpred denotes the projected maximum values (1/h) and (h), xobs denotes the experi-
mental µmax (1/h) and λ (h), and n is the number of experimental growth data.

3. Two-Step Modelling Approach

A two-step modelling approach, often referred to as a two-stage or dual-stage mod-
elling approach, involves using two separate modelling techniques or stages to analyse
a complex problem or dataset. Each stage serves a specific purpose and builds upon the
results or insights from the previous stage [47]. This approach is commonly used when a
problem is too intricate to be solved with a single model or when different aspects of the
problem require different modelling techniques.

Step 1: First-stage Modelling
In the first stage, a preliminary model is developed to address a specific aspect of

the problem [48]. This model is usually simpler and aims to provide initial insights or
predictions. The output of this stage is used as the input for the second stage. For example,
a basic microbial growth model might be used to predict the growth of a specific microor-
ganism under varying temperature conditions. This provides an initial understanding of
the relationship between temperature and microbial growth.

Step 2: Second-stage Modelling
In the second stage, a more complex or refined model is developed to incorporate

additional factors or address other aspects of the problem. The output from the first stage
serves as the input for the second-stage model. This stage typically provides more detailed
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and accurate predictions or insights. The output from the first-stage model (microbial
growth under varying temperatures) can be used as the input for a more comprehensive
model that considers other variables such as pH, water activity, and initial microbial
load [38]. This refined model would offer a more accurate prediction of microbial growth
in a broader range of conditions.

The two-step modelling approach, involving the use of two separate modelling stages,
offers some disadvantages, depending on the problem at hand and the specific goals of the
analysis [49]:

â Dependency: The success of the second-stage model heavily relies on the accuracy
and reliability of the outputs from the first stage. Errors or uncertainties introduced in
the initial stage can propagate to subsequent stages [50].

â Resource Intensive: Developing and running two models instead of one can require
more time, computational resources, and expertise. This may not be feasible in cases
with limited resources.

â Limited Coverage: The initial stage might focus on a subset of variables or simplified
relationships, potentially missing out on important aspects of the problem. This could
limit the accuracy and comprehensiveness of the final analysis.

â Reduced Simplicity: While the approach aims to tackle complexity, it can inadver-
tently lead to additional complexities due to the interaction between different models
and stages.

4. One-Step Modelling Approach

The one-step modelling approach, also known as a single-stage modelling approach,
involves using a single comprehensive model to analyse a complex problem or dataset [51].
Instead of breaking down the analysis into multiple stages, as performed in the two-step
approach, all the relevant variables and relationships are incorporated into a single model.
This approach has its own set of advantages, depending on the nature of the problem and
the goals of the analysis [52].

â Holistic Understanding: A one-step model offers a holistic view of the problem,
allowing for the exploration of complex interactions and relationships among variables
in a single framework.

â Simplicity in Execution: With a single model, there is no need to manage multiple
stages or integrate outputs from different models. This can simplify the execution and
interpretation of the analysis [53].

â Integrated Insights: All insights and predictions are generated within a single model,
providing a unified output that does not require further integration or consideration.

â Reduced Propagation of Errors: Since there is no dependency on outputs from a
previous stage, the potential for error propagation is reduced compared to multi-stage
approaches [54].

The two-step approach helps to study different parts of a problem step by step, but it
can spread mistakes, needs more resources, and might not show the full picture. On the
other hand, the one-step approach looks at the whole problem at once, which makes it
easier to use and reduces mistakes [49,54].

Recent findings have confirmed that the one-step fitting method is more accurate
than the traditional two-step method, especially for extreme environmental conditions. It
provides better interpretations and estimates of important parameters and is more efficient
with smaller datasets. Although the two-step approach can be helpful in early stages, the
one-step approach is preferable for a detailed analysis and precise results [49,54].

5. Machine Learning Modelling Approach

Machine learning (ML) approaches have become increasingly popular in the field of
predictive food microbiology. These techniques leverage data-driven algorithms to develop
models that can predict the microbial growth, spoilage, and safety of food products. ML
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methods offer the potential to capture the complex relationships between the various
factors influencing microbial behaviour, leading to more accurate predictions and enhanced
food safety. Here is an overview of how machine learning is applied in predictive food
microbiology [55–58]:

1. Data Collection and Preprocessing: Machine learning models require substantial
amounts of relevant data. In predictive food microbiology, these data include infor-
mation about factors such as temperature, pH, water activity, nutrient content, and
more. Data preprocessing involves cleaning, transforming, and normalising the data
to ensure their quality and suitability for modelling.

2. Feature Selection: Feature selection involves identifying the most relevant variables
(features) that influence microbial growth. Not all factors may be equally significant,
and ML algorithms help in determining which features contribute most to the model’s
predictive accuracy.

3. Model Selection: There are various machine learning algorithms available, each with
their strengths and weaknesses. Commonly used algorithms include decision trees,
random forests, support vector machines, k-nearest neighbours, and neural networks.
The choice of algorithm depends on the complexity of the problem and the nature of
the data.

4. Model Training: The selected ML algorithm is trained on the prepared dataset. Dur-
ing this training, the algorithm learns the relationships between the input features
(e.g., temperature and pH) and the output (microbial growth). The goal is to minimise
the difference between the predicted microbial growth and the actual observed data.

5. Model Validation and Evaluation: Once the model is trained, it is essential to validate
its performance on unseen data. This helps to ensure that the model can be generalised
well to new situations. Common evaluation metrics include accuracy, precision, recall,
F1-score, and area under the ROC curve (AUC-ROC).

Machine learning models developed using this approach can be used to predict
microbial growth and behaviour under different conditions. For example, a model might
predict the growth of a specific microorganism in a particular food product given various
combinations of temperature, pH, and other factors. There are numerous advantages of
machine learning in predictive food microbiology:

â Complex Relationships: ML algorithms can capture the intricate relationships be-
tween the multiple factors affecting microbial growth that might be difficult to model
using traditional methods.

â Flexibility: Machine learning models can adapt to different types of data and are
capable of handling non-linear relationships.

â Data-Driven: ML models can uncover patterns and insights in large datasets that
might not be immediately apparent through a manual analysis.

â Improved Accuracy: The predictive accuracy of ML models can be higher compared
to conventional models, as they can learn from diverse and extensive datasets.

â Automation: Once trained, ML models can automate predictions, allowing for real-
time decision making in food production and safety management.

Machine learning approaches have the potential to revolutionise predictive food
microbiology by providing accurate and adaptable models that predict microbial growth
and behaviour [59,60]. However, their success depends on the availability of high-quality
data, appropriate model selection, and continuous validation to ensure reliable predictions
for food safety and quality management.

6. Comparison of the Machine Learning Modelling Approach to the Traditional
Modelling Approach

Machine learning and traditional modelling techniques differ in their approaches to
predicting the behaviour of microorganisms and estimating the shelf life of food prod-
ucts [61]. While traditional techniques rely on established mathematical models and
computational methods, machine learning utilises algorithms to identify patterns and
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make predictions based on data [62]. Machine learning can handle complex and nonlinear
relationships more effectively, allowing for analyses of large and diverse datasets. However,
it often requires substantial amounts of data for training and may lack the interpretability
of traditional models [63]. On the other hand, traditional modelling techniques offer more
straightforward interpretations and are often based on well-understood biological and
chemical principles. They may be more suitable for scenarios with limited data or when
interpretability is crucial.

7. Shelf Life Prediction with Two-Step Modelling Approach

Predictive models have been employed to elucidate the growth dynamics of spoilage
microorganisms, with a particular emphasis on the pivotal parameter of time required to
attain a designated threshold level under fluctuating temperature conditions. Notably, the
growth patterns of Pseudomonas spp., a prevalent microorganism frequently encountered
across diverse food sources, have been meticulously examined and modelled through the
application of various predictive frameworks.

Koutsoumanis [64] employed a logistic model to delineate the growth kinetics of
Pseudomonas spp. in fish, stored over a temperature range spanning from 0 to 15 ◦C.
Gospavic et al. [65] applied modified Gompertz and Baranyi models to construct a growth
model facilitating the estimation of Pseudomonas spp. proliferation in poultry subjected to
varying temperature conditions. Zhang et al. [66] used the Baranyi model to fit the number
of Pseudomonas spp. in beef stored between 0 and 20 ◦C. Bruckner et al. [67] employed a
modified Gompertz model to characterise the growth patterns of Pseudomonas spp. in pork
and poultry meat, confined within the temperature range from 2 to 15 ◦C. Dabadé et al. [68]
adeptly employed the Baranyi and modified Gompertz models to portray the growth dy-
namics of Pseudomonas spp. in tropical fresh shrimp, encompassing temperatures ranging
from 0 to 28 ◦C. Lytou et al. [69] used the Baranyi model to describe the growth of total
viable bacteria including Pseudomonas spp. in marinated and unmarinated chicken breast
fillets stored at 4, 10, and 15 ◦C, and correlated these data with shelf life. Wang et al. [70]
used a modified Gompertz model as their primary model to study the growth behaviour
of Pseudomonas spp. on fresh mushroom under isothermal conditions. The aim of the
study conducted by Tsironi et al. [71] was to develop and test the applicability of predic-
tive models for a shelf life estimation of ready-to-eat (RTE) fresh cut salads in realistic
distribution temperature conditions in the food supply chain. Tarlak et al. [72] used the
modified Gompertz, logistic, and Baranyi models to describe the microbial growth data of
Pseudomonas spp. on sliced mushroom (Agaricus bisporus) at different storage temperatures.
They found that the Baranyi model gave better a goodness of fit for describing the growth
behaviour of Pseudomonas spp. on sliced mushrooms than the modified Gompertz and
logistic models. The growth behaviour of Pseudomonas spp. on button mushrooms under
isothermal storage temperatures between 4 and 28 ◦C was described by the Baranyi model.
The µmax values obtained from the Baranyi model were correlated with the temperature
using the Ratkowsky and Arrhenius models [73].

8. Shelf Life Prediction with One-Step Modelling Approach

The investigation conducted by Manthou et al. [74] encompassed an evaluation of the
growth kinetics of naturally occurring Pseudomonas spp. on oyster mushrooms (Pleurotus
ostreatus) during storage under varying isothermal conditions (4, 10, and 16 ◦C). A one-step
modelling approach was utilised to quantitatively describe this behaviour. Within this
framework, the Baranyi model was employed to estimate growth kinetic parameters such
as maximum specific growth rate and lag phase duration, while a secondary square-root
type model captured the impact of temperature on µmax. The overall fitness of the global
model was evaluated through the root mean square error and the adjusted coefficient of
determination, yielding values of 0.206 and 0.948, respectively.

The primary goal of this study was to propose an alternative approach, the one-step
modelling approach, for the assessment and prediction of mushroom spoilage, particularly
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considering the presence of Pseudomonas spp. in the natural microflora of button mush-
rooms (Agaricus bisporus) stored across a temperature range spanning from 4 to 28 ◦C, as
explained by Tarlak [75]. To achieve this, Pseudomonas spp. growth data were extracted
from previously published curves for button mushrooms and subjected to simulation using
both two-step and one-step modelling approaches. Various primary models, including
the modified Gompertz, logistic, Baranyi, and Huang models, were implemented in these
approaches to predict Pseudomonas spp. counts, integrating time and storage temperature.
The relative performance of the two-step and one-step modelling approaches, as well as
their employed primary models, were assessed in terms of goodness-of-fit indices, with the
optimal modelling approach being determined based on these metrics.

In a similar manner, Tarlak and Khosravi-Darani [76] aimed to scrutinise and simulate
the influence of storage temperature on the spoilage of aerobically stored chicken meat,
employing both two-step and one-step modelling approaches. In this pursuit, diverse
primary models were evaluated to assess their fitting capability for total bacterial counts in
aerobically stored chicken meat. The one-step modelling approach demonstrated a notable
enhancement in fitting capacity, irrespective of the selected primary model. Statistical
indices, including the bias factor and accuracy factor, highlighted the superior predictive
performance of the one-step modelling approach, particularly when coupled with the
Huang model for predicting maximum specific bacterial growth rate values. Furthermore,
the Huang model’s predictive prowess was evaluated under various non-isothermal stor-
age conditions, exhibiting satisfactory statistical indices within the specified range. The
validated one-step modelling approach emerged as a robust prediction tool for ascertaining
chicken meat spoilage, enabling the prediction of shelf life as a function of storage tempera-
ture. Notably, the shelf life of chicken meat exhibited a decrement from 58 h to 16 h with an
increase in storage temperature from 4 ◦C to 15 ◦C.

In a concurrent exploration, Tarlak and Pérez-Rodríguez [77] embarked on examining
the effect of storage temperature on aerobically stored chicken meat spoilage, employing
both two-step and one-step modelling approaches and incorporating diverse primary
models, including the modified Gompertz, logistic, Baranyi, and Huang models. The
study involved the collation of growth data points for Pseudomonas spp. from published
studies conducted on aerobically stored chicken meat products. Temperature-dependent
kinetic parameters, namely the maximum specific growth rate and lag phase duration,
were characterised as a function of storage temperature using the Ratkowsky model within
the framework of different primary models. The comparative evaluation of the modelling
approaches encompassed the root mean square error, adjusted coefficient of determination,
and corrected Akaike information criterion as the criteria for assessing fitting capability.
The one-step modelling approach consistently exhibited a marked improvement in fitting
performance, regardless of the chosen primary model. The models derived from the
one-step modelling approach were subsequently validated against maximum growth
rate data sourced from the independent published literature, where the Baranyi model
demonstrated the optimal predictive capability, with both the bias and accuracy factors
closely approximating 1. Ultimately, the shelf life of chicken meat, as influenced by storage
temperature, was effectively predicted using both modelling approaches when employing
the Baranyi model.

9. Shelf Life Prediction with Machine Learning Modelling Approach

The primary objective of the study conducted by Yildirim-Yalcin et al. [78] was to
devise a predictive tool for forecasting the proliferation of total mesophilic bacteria in
spinach through the application of machine-learning-based regression models, namely
support vector regression, decision tree regression, and Gaussian process regression. The
effectiveness of these models was subsequently juxtaposed against conventionally em-
ployed models, encompassing modified Gompertz, Baranyi, and Huang models, with the
evaluation anchored in statistical metrics such as the coefficient of determination and root
mean square error. The findings distinctly demonstrated that the machine-learning-based
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regression models yielded enhanced the predictive precision, showcasing a minimum R2 of
0.960 and a maximum RMSE of 0.154. This discerned accuracy underscores their viability
as a credible alternative to conventional methodologies in the realm of predictive modelling
for total mesophilic bacteria proliferation. Consequently, the software developed as a result
of this study holds substantial promise as an alternative simulation approach within the
domain of predictive food microbiology, capable of supplementing or even supplanting
traditional methods.

The primary objective of the work performed by Yucel and Tarlak, [79] was to for-
mulate distinct machine-learning-based regression methodologies, specifically decision
tree regression (DTR), generalised additive model regression (GAMR), and random forest
regression (RFR), for the anticipation of bacterial populations in beef. To achieve this goal, a
dataset comprising 2654 bacterial data points pertaining to Listeria monocytogenes, Escherichia
coli, and Pseudomonas spp., the most extensively investigated bacterial genera in beef, was
procured from the ComBase database (www.combase.cc, accessed on 3 October 2023).
The key predictor variables encompassed temperature, salt concentration, water activity,
and acidity, pivotal in estimating the growth or survival behaviour of microorganisms
within beef. Notably, the hyperparameters governing the proposed machine-learning-
based regression methodologies were meticulously fine-tuned through a process of nested
cross-validation. The efficacy of the proposed machine learning algorithms was appraised
through the lens of their fitting capabilities, with statistical indices such as the coefficient
of determination and root mean square error serving as evaluative metrics. Each of the
applied regression techniques yielded commendable predictive outcomes, as evidenced
by R2 values ranging from 0.931 to 0.949 and RMSE values spanning from 0.597 to 0.692,
for individual microorganism populations. Among these, random forest regression (RFR)
exhibited the most robust prediction capacity, prompting a more in-depth assessment of its
efficacy. Upon external validation, the RFR model exhibited statistical indices within the
range from 1.017 to 1.151 for the bias factor and from 1.137 to 1.370 for the accuracy factor,
thereby affirming its reliability as an alternative means for simultaneously characterising
the survival and growth behaviour of microorganisms in beef. Moreover, the RFR’s notable
potential lay in its ability to circumvent the secondary model step intrinsic to the two-step
modelling approach often utilised in predictive microbiology, thus presenting an efficient
alternative simulation methodology in this field.

10. Conclusions

The realm of predictive food microbiology stands as a pivotal and vital domain within
the broader field of food microbiology. With its intricate focus on forecasting and as-
sessment, this field plays a significant role in enhancing our understanding of food shelf
life dynamics. Irrespective of the primary model employed in the traditional approach,
the utilisation of the one-step modelling approach substantially enhanced the predictive
capacity of the models in quantitatively describing microbial counts. This improvement
is attributed to the avoidance of error accumulation and propagation, which commonly
occurs in two-step sequential nonlinear regression procedures. By connecting advanced
methodologies, such as machine-learning-based regression models and comprehensive
predictive approaches, predictive food microbiology provides invaluable insights into
the intricate interplay between microorganisms and food products. Through its system-
atic evaluation of factors that influence microbial growth and behaviour, predictive food
microbiology offers a comprehensive understanding of food product stability and safety
over time. The insights gained from predictive food microbiology are indispensable for
safeguarding consumer health, reducing food waste, and ensuring economic viability
across the food industry. The ability to accurately estimate and extend the shelf life of food
products not only contributes to consumer safety, but also has far-reaching implications for
sustainability and resource management. As consumer demands continue to evolve and
regulations become increasingly stringent, the predictive food microbiology field remains
at the forefront of ensuring the quality and safety of our food supply. In essence, predic-

www.combase.cc
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tive food microbiology serves as a beacon of innovation and progress, bridging scientific
rigor with practical applications. Its role in enhancing our ability to evaluate and manage
food shelf life underscores its significance in shaping the future of the food industry. As
technological advancements and interdisciplinary collaborations continue to propel this
field forward, the continued exploration of predictive food microbiology promises to yield
novel strategies for enhancing food preservation, minimising waste, and upholding the
integrity of the global food supply.
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