Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption
Abstract
:1. Introduction
2. Cryptosporidium spp.
Evidence of Fish as a Source of Zoonotic Cryptosporidium spp. Transmission
3. Giardia duodenalis
Evidence of Fish as a Source of Zoonotic Giardia duodenalis Transmission
4. Toxoplasma gondii
Evidence of Fish as a Source of Zoonotic Toxoplasma gondii Transmission
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Available online: http://www.fao.org/3/ca9229en/online/ca9229en.html (accessed on 10 September 2020).
- Broglia, A.; Kapel, C. Changing dietary habits in a changing world: Emerging drivers for the transmission of foodborne parasitic zoonoses. Vet. Parasitol. 2011, 182, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020, 99, 273–283. [Google Scholar] [CrossRef]
- Chai, J.Y.; Murrell, K.D.; Lymbery, A.J. Fish-borne parasitic zoonoses: Status and issues. Int. J. Parasitol 2005, 35, 1233–1254. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, S. Seafood-borne parasitic diseases: A “one-health” approach is needed. Fishes 2019, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, R.M.; Robertson, L.J.; Dorny, P.; Jordan, S.; Kärssin, A.; Katzer, F.; La Carbona, S.; Lalle, M.; Lassen, B.; Mladineo, I.; et al. Parasite detection in food: Current status and future needs for validation. Trends Food Sci. Technol. 2020, 99, 337–350. [Google Scholar] [CrossRef]
- Robertson, L.J. Parasites in Food: From a Neglected Position to an Emerging Issue. Adv. Food Nutr. Res. 2018, 86, 71–113. [Google Scholar] [CrossRef]
- Fayer, R.; Dubey, J.P.; Lindsay, D.S. Zoonotic protozoa: From land to sea. Trends Parasitol 2004, 20, 531–536. [Google Scholar] [CrossRef]
- Ryan, U.; Fayer, R.; Xiao, L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014, 141, 1667–1685. [Google Scholar] [CrossRef] [Green Version]
- Šlapeta, J. Cryptosporidiosis and Cryptosporidium species in animals and humans: A thirty colour rainbow? Int. J. Parasitol. 2013, 43, 957–970. [Google Scholar] [CrossRef]
- Khan, A.; Shaik, J.S.; Grigg, M.E. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop. 2018, 184, 1–14. [Google Scholar] [CrossRef]
- Thompson, R.C.A.; Ash, A. Molecular epidemiology of Giardia and Cryptosporidium infections. Infect. Genet. Evol. 2016, 40, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO (World Health Organization). Risk Assessment of Cryptosporidium in Drinking Water. Available online: https://apps.who.int/iris/bitstream/handle/10665/70117/WHO_HSE_WSH_09.04_eng.pdf;jsessionid=59F99D9425B45F7CC05CE88FCC1A9F58?sequence=1 (accessed on 24 September 2020).
- Mac Kenzie, W.R.; Hoxie, N.J.; Proctor, M.E.; Gradus, M.S.; Blair, K.; Peterson, D.E.; Kazmierczak, J.J.; Addiss, D.G.; Fox, K.R.; Rose, J.B. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med. 1994, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Efstratiou, A.; Ongerth, J.E.; Karanis, P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks—An update 2011–2016. Water Res. 2017, 114, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; La Carbona, S.; Dumètre, A.; Robertson, L.J.; Gargala, G.; Escotte-Binet, S.; Favennec, L.; Villena, I.; Gérard, C.; Aubert, D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: A review of methods. Parasite 2018, 25, 14:1–14:21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/WHO (Food and Agriculture Organization of the United Nations and World Health Organization). Multicriteria-Based Ranking for Risk Management of Food-Borne Parasites. Available online: https://apps.who.int/iris/bitstream/handle/10665/112672/9789241564700_eng.pdf?sequence=1 (accessed on 14 October 2020).
- Ryan, U.; Hijjawi, N.; Xiao, L. Foodborne cryptosporidiosis. Int. J. Parasitol. 2018, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Couso, H.; Freire-Santos, F.; Amar, C.F.L.; Grant, K.A.; Williamson, K.; Ares-Mazás, M.E.; McLauchlin, J. Detection of Cryptosporidium and Giardia in molluscan shellfish by multiplexed nested-PCR. Int. J. Food Microbiol. 2004, 91, 279–288. [Google Scholar] [CrossRef]
- Schets, F.M.; van den Berg, H.H.J.L.; Engels, G.B.; Lodder, W.J.; de Roda Husman, A.M. Cryptosporidium and Giardia in commercial and non-commercial oysters (Crassostrea gigas) and water from the Oosterschelde, the Netherlands. Int. J. Food Microbiol. 2007, 113, 189–194. [Google Scholar] [CrossRef]
- Giangaspero, A.; Papini, R.; Marangi, M.; Koehler, A.V.; Gasser, R.B. Cryptosporidium parvum genotype IIa and Giardia duodenalis assemblage A in Mytilus galloprovincialis on sale at local food markets. Int. J. Food Microbiol. 2014, 171, 62–67. [Google Scholar] [CrossRef]
- Mariné Oliveira, G.F.; do Couto, M.C.M.; de Freitas Lima, M.; do Bomfim, T.C.B. Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. Int. J. Parasitol Parasites Wildl 2016, 5, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, J.; Greenwood, S.J.; McClure, J.T.; Davidson, J.; Sanchez, J. Effects of rain events on Cryptosporidium spp. levels in commercial shellfish zones in the Hillsborough River, Prince Edward Island, Canada. Food Waterborne Parasitol 2016, 5, 7–13. [Google Scholar] [CrossRef]
- Ghozzi, K.; Marangi, M.; Papini, R.; Lahmar, I.; Challouf, R.; Houas, N.; Ben Dhiab, R.; Normanno, G.; Babba, H.; Giangaspero, A. First report of Tunisian coastal water contamination by protozoan parasites using mollusk bivalves as biological indicators. Mar Pollut Bull 2017, 117, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Marquis, N.D.; Bishop, T.J.; Record, N.R.; Countway, P.D.; Fernández Robledo, J.A. Molecular epizootiology of toxoplasma gondii and cryptosporidium parvum in the eastern oyster (Crassostrea virginica) from maine (USA). Pathogens 2019, 8, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedde, T.; Marangi, M.; Papini, R.; Salza, S.; Normanno, G.; Virgilio, S.; Giangaspero, A. Toxoplasma gondii and other zoonotic protozoans in mediterranean mussel (Mytilus galloprovincialis) and blue mussel (mytilus edulis): A food safety concern? J. Food Prot. 2019, 82, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Manore, A.J.W.; Harper, S.L.; Sargeant, J.M.; Weese, J.S.; Cunsolo, A.; Bunce, A.; Shirley, J.; Sudlovenick, E.; Shapiro, K. Cryptosporidium and Giardia in locally harvested clams in Iqaluit, Nunavut. Zoonoses Public Health 2020, 67, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Ligda, P.; Claerebout, E.; Casaert, S.; Robertson, L.J.; Sotiraki, S. Investigations from Northern Greece on mussels cultivated in areas proximal to wastewaters discharges, as a potential source for human infection with Giardia and Cryptosporidium. Exp. Parasitol 2020, 210, 107848:1–107848:7. [Google Scholar] [CrossRef]
- Alvarez-Pellitero, P.; Sitjà-Bobadilla, A. Cryptosporidium molnari n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, Sparus aurata L. and Dicentrarchus labrax L. Int. J. Parasitol. 2002, 32, 1007–1021. [Google Scholar] [CrossRef]
- Palenzuela, O.; Alvarez-Pellitero, P.; Sitjá-Bobadilla, A. Molecular characterization of Cryptosporidium molnari reveals a distinct piscine clade. Appl. Environ. Microbiol. 2010, 76, 7646–7649. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Pellitero, P.; Quiroga, M.I.; Sitjà-Bobadilla, A.; Redondo, M.J.; Palenzuela, O.; Padrós, F.; Vázquez, S.; Nieto, J.M. Cryptosporidium scophthalmi n. sp. (Apicomplexa: Cryptosporidiidae) from cultured turbot Scophthalmus maximus. Light and electron microscope description and histopathological study. Dis. Aquat. Organ. 2004, 62, 133–145. [Google Scholar] [CrossRef]
- Ryan, U.; Paparini, A.; Tong, K.; Yang, R.; Gibson-Kueh, S.; O’Hara, A.; Lymbery, A.; Xiao, L. Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Exp. Parasitol. 2015, 150, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Bolland, S.J.; Zahedi, A.; Oskam, C.; Murphy, B.; Ryan, U. Cryptosporidium bollandi n. sp. (Apicomplexa: Cryptosporidiiae) from angelfish (Pterophyllum scalare) and Oscar fish (Astronotus ocellatus). Exp. Parasitol 2020, 217, 107956:1–107956:7. [Google Scholar] [CrossRef]
- Ryan, U.; O’Hara, A.; Xiao, L. Molecular and biological characterization of a Cryptosporidium molnari-like isolate from a guppy (Poecilia reticulata). Appl. Environ. Microbiol. 2004, 70, 3761–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, B.G.; Bradway, D.; Walsh, T.; Sanders, G.E.; Snekvik, K. Gastric cryptosporidiosis in freshwater angelfish (Pterophyllum scalare). J. Vet. Diagnostic Investig. 2009, 21, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, A.; Lymbery, A.; Ng, J.; Tweedle, S.; Ryan, U. Identification of novel and zoonotic Cryptosporidium species in marine fish. Vet. Parasitol 2010, 168, 190–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanguee, N.; Lymbery, J.A.; Lau, J.; Suzuki, A.; Yang, R.; Ng, J.; Ryan, U. Identification of novel Cryptosporidium species in aquarium fish. Vet. Parasitol 2010, 174, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morine, M.; Yang, R.; Ng, J.; Kueh, S.; Lymbery, A.J.; Ryan, U.M. Additional novel Cryptosporidium genotypes in ornamental fishes. Vet. Parasitol. 2012, 190, 578–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koinari, M.; Karl, S.; Ng-Hublin, J.; Lymbery, A.J.; Ryan, U.M. Identification of novel and zoonotic Cryptosporidium species in fish from Papua New Guinea. Vet. Parasitol. 2013, 198, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Palermo, C.; Chen, L.; Edwards, A.; Paparini, A.; Tong, K.; Gibson-Kueh, S.; Lymbery, A.; Ryan, U. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections. Vet. Parasitol. 2015, 214, 255–263. [Google Scholar] [CrossRef]
- Yang, R.; Dorrestein, G.M.; Ryan, U. Molecular characterisation of a disseminated Cryptosporidium infection in a Koi carp (Cyprinus carpio). Vet. Parasitol. 2016, 226, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Paparini, A.; Yang, R.; Chen, L.; Tong, K.; Gibson-Kueh, S.; Lymbery, A.; Ryan, U.M. Cryptosporidium in fish: Alternative sequencing approaches and analyses at multiple loci to resolve mixed infections. Parasitology 2017, 144, 1811–1820. [Google Scholar] [CrossRef] [Green Version]
- Couso-Pérez, S.; Ares-Mazás, E.; Gómez-Couso, H. Identification of a novel piscine Cryptosporidium genotype and Cryptosporidium parvum in cultured rainbow trout (Oncorhynchus mykiss). Parasitol. Res. 2018, 117, 2987–2996. [Google Scholar] [CrossRef]
- Certad, G.; Follet, J.; Gantois, N.; Hammouma-Ghelboun, O.; Guyot, K.; Benamrouz-Vanneste, S.; Fréalle, E.; Seesao, Y.; Delaire, B.; Creusy, C.; et al. Prevalence, molecular identification, and risk factors for Cryptosporidium infection in edible marine fish: A survey across sea areas surrounding France. Front. Microbiol. 2019, 10, 1037:1–1037:15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Certad, G.; Dupouy-Camet, J.; Gantois, N.; Hammouma-Ghelboun, O.; Pottier, M.; Guyot, K.; Benamrouz, S.; Osman, M.; Delaire, B.; Creusy, C.; et al. Identification of cryptosporidium species in fish from Lake Geneva (Lac Léman) in France. PLoS ONE 2015, 10, e00133047:1–e0133047:13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazi, P.; Sheikhzadeh, N.; Nematollahi, A.; Helan, J.A. Identification of zoonotic Cryptosporidium parvum in fresh water ornamental fish: First report. Case Rep. JZD 2020, 3, 48–55. [Google Scholar]
- Couso-Pérez, S.; Ares-Mazás, E.; Gómez-Couso, H. First Report of Cryptosporidium molnari-Like Genotype and Cryptosporidium parvum Zoonotic Subtypes (IIaA15G2R1 and IIaA18G3R1) in Brown Trout (Salmo trutta). J. Parasitol. 2019, 105, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Sitjà-Bobadilla, A.; Padrós, F.; Aguilera, C.; Alvarez-Pellitero, P. Epidemiology of Cryptosporidium molnari in Spanish gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) cultures: From hatchery to market size. Appl. Environ. Microbiol. 2005, 71, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baragahare, R.; Becker, J.A.; Landos, M.; Šlapeta, J.; Dennis, M.M. Gastric cryptosporidiosis in farmed Australian Murray cod, Maccullochella peelii peelii. Aquaculture 2011, 314, 1–6. [Google Scholar] [CrossRef]
- Alvarez-Pellitero, P.; Perez, A.; Quiroga, M.I.; Redondo, M.J.; Vázquez, S.; Riaza, A.; Palenzuela, O.; Sitjà-Bobadilla, A.; Nieto, J.M. Host and environmental risk factors associated with Cryptosporidium scophthalmi (Apicomplexa) infection in cultured turbot, Psetta maxima (L.) (Pisces, Teleostei). Vet. Parasitol. 2009, 165, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Arcay, L.; Baez de Borges, E.; Bruzual, E. Criptosporidiosis experimental en la escala de vertebrados: I infecciones experimentales, II estudio histopatológico. Parasitol día 1995, 19, 20–29. [Google Scholar]
- Graczyk, T.K.; Fayer, R.; Cranfield, M.R. Cryptosporidium parvum is not transmissible to fish, amphibians, or reptiles. J. Parasitol. 1996, 82, 748–751. [Google Scholar] [CrossRef]
- Freire-Santos, F.; Vergara-Castiblanco, C.A.; Tojo-Rodriguez, J.L.; Santamarina-Fernandez, T.; Ares-Mazas, E. Cryptosporidium parvum: An attempt at experimental infection in rainbow trout Oncorhynchus mykiss. J. Parasitol. 1998, 84, 935–938. [Google Scholar] [CrossRef]
- Xiao, L. Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol. 2010, 124, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Gibson-Kueh, S.; Yang, R.; Thuy, N.T.N.; Jones, J.B.; Nicholls, P.K.; Ryan, U. The molecular characterization of an Eimeria and Cryptosporidium detected in Asian seabass (Lates calcarifer) cultured in Vietnam. Vet. Parasitol. 2011, 181, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturbaum, G.D.; Reed, C.; Hoover, P.J.; Jost, B.H.; Marshall, M.M.; Sterling, C.R. Species-Specific, Nested PCR-Restriction Fragment Length Polymorphism Detection of Single Cryptosporidium parvum Oocysts. Appl. Environ. Microbiol. 2001, 67, 2665–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.D.; Silbergeld, E.K.; Graczyk, T. A probabilistic risk assessment of cryptosporidium exposure among baltimore urban anglers. J. Toxicol. Environ. Heal. Part A Curr. Issues 2007, 70, 1568–1576. [Google Scholar] [CrossRef]
- Einarsson, E.; Ma’ayeh, S.; Svärd, S.G. An up-date on Giardia and giardiasis. Curr. Opin. Microbiol. 2016, 34, 47–52. [Google Scholar] [CrossRef]
- Ryan, U.; Hijjawi, N.; Feng, Y.; Xiao, L. Giardia: An under-reported foodborne parasite. Int. J. Parasitol. 2019, 49, 1–11. [Google Scholar] [CrossRef]
- Ryan, U.; Cacciò, S.M. Zoonotic potential of Giardia. Int. J. Parasitol. 2013, 43, 943–956. [Google Scholar] [CrossRef]
- Cacciò, S.M.; Lalle, M.; Svärd, S.G. Host specificity in the Giardia duodenalis species complex. Infect Genet. Evol. 2018, 66, 335–345. [Google Scholar] [CrossRef]
- Yaoyu, F.; Xiao, L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin. Microbiol. Rev. 2011, 24, 110–140. [Google Scholar] [CrossRef] [Green Version]
- Monis, P.T.; Caccio, S.M.; Thompson, R.C.A. Variation in Giardia: Towards a taxonomic revision of the genus. Trends Parasitol. 2009, 25, 93–100. [Google Scholar] [CrossRef]
- Liu, H.; Shen, Y.; Yin, J.; Yuan, Z.; Jiang, Y.; Xu, Y.; Pan, W.; Hu, Y.; Cao, J. Prevalence and genetic characterization of Cryptosporidium, Enterocytozoon, Giardia and Cyclospora in diarrheal outpatients in china. BMC Infect Dis. 2014, 14, 25:1–25:6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štrkolcová, G.; Madár, M.; Hinney, B.; Goldová, M.; Mojžišová, J.; Halánová, M. Dog’s genotype of Giardia duodenalis in human: First evidence in Europe. Acta Parasitol 2015, 60, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Broglia, A.; Weitzel, T.; Harms, G.; Cacció, S.M.; Nöckler, K. Molecular typing of Giardia duodenalis isolates from German travellers. Parasitol. Res. 2013, 112, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Foronda, P.; Bargues, M.D.; Abreu-Acosta, N.; Periago, M.V.; Valero, M.A.; Valladares, B.; Mas-Coma, S. Identification of genotypes of Giardia intestinalis of human isolates in Egypt. Parasitol. Res. 2008, 103, 1177–1181. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Klotz, C.; Wilking, H.; Krücken, J.; Nöckler, K.; Von Samson-Himmelstjerna, G.; Zessin, K.H.; Aebischer, T. Epidemiology of Giardia duodenalis infection in ruminant livestock and children in the Ismailia province of Egypt: Insights by genetic characterization. Parasites Vectors 2014, 7, 321:1–321:11. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moein, K.A.; Saeed, H. The zoonotic potential of Giardia intestinalis assemblage E in rural settings. Parasitol. Res. 2016, 115, 3197–3202. [Google Scholar] [CrossRef]
- Scalia, L.A.M.; Fava, N.M.N.; Soares, R.M.; Limongi, J.E.; da Cunha, M.J.R.; Pena, I.F.; Kalapothakis, E.; Cury, M.C. Multilocus genotyping of Giardia duodenalis in Brazilian children. Trans. R Soc. Trop. Med. Hyg. 2016, 110, 343–349. [Google Scholar] [CrossRef]
- Zahedi, A.; Field, D.; Ryan, U. Molecular typing of giardia duodenalis in humans in Queensland—first report of assemblage e. Parasitology 2017, 114, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Fantinatti, M.; Bello, A.R.; Fernandes, O.; Da-Cruz, A.M. Identification of Giardia lamblia Assemblage E in Humans Points to a New Anthropozoonotic Cycle. J. Infect. Dis. 2016, 214, 1256–1259. [Google Scholar] [CrossRef] [Green Version]
- Gelanew, T.; Lalle, M.; Hailu, A.; Pozio, E.; Cacciò, S.M. Molecular characterization of human isolates of Giardia duodenalis from Ethiopia. Acta Trop. 2007, 102, 92–99. [Google Scholar] [CrossRef]
- Adam, E.A.; Yoder, J.S.; Gould, L.H.; Hlavsa, M.C.; Gargano, J.W. Giardiasis outbreaks in the United States, 1971-2011. Epidemiol. Infect 2016, 144, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budu-Amoako, E.; Greenwood, S.J.; Dixon, B.R.; Barkema, H.W.; McClure, J.T. Foodborne illness associated with Cryptosporidium and Giardia from livestock. J. Food Prot. 2011, 74, 1944–1955. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Thompson, R.C.A.; Fayer, R.; Adams, P.; Morgan, U.M.; Lewis, E.J. Giardia duodenalis cysts of genotype a recovered from clams in the Chesapeake Bay subestuary, Rhode River. Am. J. Trop. Med. Hyg. 1999, 61, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Couso, H.; Méndez-Hermida, F.; Castro-Hermida, J.A.; Ares-Mazás, E. Giardia in shellfish-farming areas: Detection in mussels, river water and waste waters. Vet. Parasitol. 2005, 133, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Couso, H.; Méndez-Hermida, F.; Castro-Hermida, J.A.; Ares-Mazás, E. Occurrence of Giardia cysts in mussels (Mytilus galloprovincialis) destined for human consumption. J. Food Prot. 2005, 68, 1702–1705. [Google Scholar] [CrossRef] [PubMed]
- Lucy, F.E.; Graczyk, T.K.; Tamang, L.; Miraflor, A.; Minchin, D. Biomonitoring of surface and coastal water for Cryptosporidium, Giardia, and human-virulent microsporidia using molluscan shellfish. Parasitol. Res. 2008, 103, 1369–1375. [Google Scholar] [CrossRef]
- Giangaspero, A.; Cirillo, R.; Lacasella, V.; Lonigro, A.; Marangi, M.; Cavallo, P.; Berrilli, F.; Di Cave, D.; Brandonisio, O. Giardia and Cryptosporidium in inflowing water and harvested shellfish in a Lagoon in Southern Italy. Parasitol. Int. 2009, 58, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Lévesque, B.; Barthe, C.; Dixon, B.R.; Parrington, L.J.; Martin, D.; Doidge, B.; Proulx, J.F.; Murphy, D. Microbiological quality of blue mussels (Mytilus edulis) in Nunavik, Quebec: A pilot study. Can J. Microbiol. 2010, 56, 968–977. [Google Scholar] [CrossRef]
- Souza, D.S.M.; Ramos, A.P.D.; Nunes, F.F.; Moresco, V.; Taniguchi, S.; Guiguet Leal, D.A.; Sasaki, S.T.; Bícego, M.C.; Montone, R.C.; Durigan, M.; et al. Evaluation of tropical water sources and mollusks in southern Brazil using microbiological, biochemical, and chemical parameters. Ecotoxicol. Environ. Saf. 2012, 76, 153–161. [Google Scholar] [CrossRef]
- Schets, F.M.; Van Den Berg, H.H.J.L.; De Roda Husman, A.M. Determination of the recovery efficiency of cryptosporidium oocysts and giardia cysts from seeded bivalve mollusks. J. Food Prot. 2013, 76, 93–98. [Google Scholar] [CrossRef]
- Adell, A.D.; Smith, W.A.; Shapiro, K.; Melli, A.; Conrad, P.A. Molecular epidemiology of Cryptosporidium spp. and Giardia spp. in mussels (Mytilus californianus) and California sea lions (Zalophus californianus) from central California. Appl. Environ. Microbiol. 2014, 80, 7732–7740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coupe, A.; Howe, L.; Burrows, E.; Sine, A.; Pita, A.; Velathanthiri, N.; Vallée, E.; Hayman, D.; Shapiro, K.; Roe, W.D. First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol. Res. 2018, 117, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Lasek-Nesselquist, E.; Bogomolni, A.L.; Gast, R.J.; Welch, D.M.; Ellis, J.C.; Sogin, M.L.; Moore, M.J. Molecular characterization of Giardia intestinalis haplotypes in marine animals: Variation and zoonotic potential. Dis. Aquat. Organ. 2008, 81, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Reid, A.; Lymbery, A.; Ryan, U. Identification of zoonotic Giardia genotypes in fish. Int. J. Parasitol. 2010, 40, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, N.H.; Abdel-Moein, K.A.; Saeed, H. Fish as a possible reservoir for zoonotic Giardia duodenalis assemblages. Parasitol. Res. 2012, 110, 2193–2196. [Google Scholar] [CrossRef]
- Amar, C.F.L.; Dear, P.H.; Pedraza-Díaz, S.; Looker, N.; Linnane, E.; McLauchlin, J. Sensitive PCR-restriction fragment length polymorphism assay for detection and genotyping of Giardia duodenalis in human feces. J. Clin. Microbiol. 2002, 40, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, A.; Jaberi, S.; Helan, J.A.; Sheikhzadeh, N. Histopathological study on parasites in freshwater ornamental fishes in Iran. J. Parasit. Dis. 2016, 40, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Tysnes, K.R.; Jørgensen, A.; Poppe, T.; Midtlyng, P.J.; Robertson, L.J. Preliminary experiments on use of zebrafish as a laboratory model for Giardia duodenalis infection. Acta Parasitol. 2012, 57, 1–6. [Google Scholar] [CrossRef]
- Bénéré, E.; Geurden, T.; Robertson, L.; Van Assche, T.; Cos, P.; Maes, L. Infectivity of Giardia duodenalis Assemblages A and E for the gerbil and axenisation of duodenal trophozoites. Parasitol. Int. 2010, 59, 634–637. [Google Scholar] [CrossRef]
- Montoya, J.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. Ecohealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galal, L.; Hamidović, A.; Dardé, M.L.; Mercier, M. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol. 2019, 15, e0052:1–e0052:9. [Google Scholar] [CrossRef] [PubMed]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Dubey, J.P.; Hill, D.; Buchanan, R.L.; Ray Gamble, H.; Jones, J.L.; Pradhan, A.K. Prevalence and risk factors for toxoplasma gondii infection in meat animals and meat products destined for human consumption. J. Food Prot. 2015, 78, 457–476. [Google Scholar] [CrossRef]
- Marino, A.M.F.; Giunta, R.P.; Salvaggio, A.; Castello, A.; Alfonzetti, T.; Barbagallo, A.; Aparo, A.; Scalzo, F.; Reale, S.; Buffolano, W.; et al. Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses Public Health 2019, 66, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Ekman, C.C.J.; do Valle Chiossi, M.F.; Meireles, L.R.; de Andrade, H.F.; Figueiredo, W.M.; Marciano, M.A.M.; Luna, E.J. Case-control study of an outbreak of acute toxoplasmosis in an industrial plant in the state of São Paulo, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 239–244. [Google Scholar] [CrossRef]
- Morais, R.d.A.P.B.; Freire, A.B.C.; Barbosa, D.R.L.; da Silva, L.d.C.T.; Pinheiro, A.F.; da Costa, S.S.; de Paula Ramos, F.L.; Bichara, C.; Lima, L.J.B.; da Silva, A.V.; et al. Surto de toxoplasmose aguda no Município de Ponta de Pedras, Arquipélago do Marajó, Estado do Pará, Brasil: Características clínicas, laboratoriais e epidemiológicas. Rev. Pan-Ama. Saúde 2016, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, K.; Bahia-Oliveira, L.; Dixon, B.; Dumètre, A.; de Wit, L.A.; VanWormer, E.; Villena, I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 2019, 15, e00049:1–e00049:18. [Google Scholar] [CrossRef]
- Benenson, M.W.; Takafuji, E.T.; Lemon, S.M.; Greenup, R.L.; Sulzer, A.J. Oocyst-Transmitted Toxoplasmosis Associated with Ingestion of Contaminated Water. N. Engl. J. Med. 1982, 307, 666–669. [Google Scholar] [CrossRef]
- Bowie, W.R.; King, A.S.; Werker, D.H.; Isaac-Renton, J.L.; Bell, A.; Eng, S.B.; Marion, S.A. Outbrak of toxoplasmosis associated with municipal drinking water. Lancet 1997, 350, 173–177. [Google Scholar] [CrossRef]
- Garcia Bahia-Oliveira, L.M.; Jones, J.L.; Azevedo-Silva, J.; Alves, C.C.F.; Oréfice, F.; Addiss, D.G. Highly endemic, waterborne toxoplasmosis in North Rio de Janeiro State, Brazil. Emerg. Infect Dis. 2003, 9, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K. Waterborne. AMA J ethics 2017, 19, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Forooghian, F. Outbreak of acquired ocular toxoplasmosis involving 248 patients. Evid. Based Ophthalmol. 2010, 11, 206–207. [Google Scholar] [CrossRef]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Grigg, M.E. Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009-2020. Vet. Parasitol. 2020, 109296. [Google Scholar] [CrossRef]
- VanWormer, E.; Carpenter, T.E.; Singh, P.; Shapiro, K.; Wallender, W.W.; Conrad, P.A.; Largier, J.L.; Maneta, M.P.; Mazet, J.A. Coastal development and precipitation drive pathogen flow from land to sea: Evidence from a Toxoplasma gondii and felid host system. Sci. Rep. 2016, 6, 29252:1–29252:9. [Google Scholar] [CrossRef]
- Arkush, K.D.; Miller, M.A.; Leutenegger, C.M.; Gardner, I.A.; Packham, A.E.; Heckeroth, A.R.; Tenter, A.M.; Barr, B.C.; Conrad, P.A. Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). Int. J. Parasitol. 2003, 33, 1087–1097. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Phelps, K.K.; Smith, S.A.; Fuck, G.; Sumner, S.S.; Dubey, J.P. Removal of Toxoplasma gondii oocysts from sea water by eastern oysters (Crassostrea virginica). J. Eukaryot Microbiol. 2001, 48, 197–198. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Collins, M.V.; Mitchell, S.M.; Wetch, C.M.; Rosypal, A.C.; Flick, G.J.; Zajac, A.M.; Lindquist, A.; Dubey, J.P. Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica). J. Parasitol. 2004, 90, 1054–1057. [Google Scholar] [CrossRef]
- Miller, M.A.; Miller, W.A.; Conrad, P.A.; James, E.R.; Melli, A.C.; Leutenegger, C.M.; Dabritz, H.A.; Packham, A.E.; Paradies, D.; Harris, M.; et al. Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int. J. Parasitol. 2008, 38, 1319–1328. [Google Scholar] [CrossRef]
- Esmerini, P.O.; Gennari, S.M.; Pena, H.F.J. Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Vet. Parasitol. 2010, 170, 8–13. [Google Scholar] [CrossRef]
- Putignani, L.; Mancinelli, L.; Del Chierico, F.; Menichella, D.; Adlerstein, D.; Angelici, M.C.; Marangi, M.; Berrilli, F.; Caffara, M.; di Regalbono, D.A.; et al. Investigation of Toxoplasma gondii presence in farmed shellfish by nested-PCR and real-time PCR fluorescent amplicon generation assay (FLAG). Exp. Parasitol. 2011, 127, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, U.; Marangi, M.; Papini, R.; Ozkoc, S.; Bayram Delibas, S.; Giangaspero, A. Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by Real Time PCR/High-Resolution Melting analysis (HRM). Food Microbiol 2014, 44, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Z.; Wang, S.; Tao, L.F.; Xu, L.X.; Yan, R.F.; Song, X.; Li, X. Detection of Toxoplasma gondii in shellfish and fish in parts of China. Vet. Parasitol. 2014, 200, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, K.; Vanwormer, E.; Aguilar, B.; Conrad, P.A. Surveillance for Toxoplasma gondii in California mussels (Mytilus californianus) reveals transmission of atypical genotypes from land to sea. Environ Microbiol 2015, 17, 4177–4188. [Google Scholar] [CrossRef]
- Staggs, S.E.; Keely, S.P.; Ware, M.W.; Schable, N.; See, M.J.; Gregorio, D.; Zou, X.; Su, C.; Dubey, J.P.; Villegas, E.N. The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitol. Res. 2015, 114, 4655–4667. [Google Scholar] [CrossRef]
- Cong, W.; Zhang, N.Z.; Hou, J.L.; Wang, X.C.; Ma, J.G.; Zhu, X.Q.; Chen, G.J. First detection and genetic characterization of Toxoplasma gondii in market-sold oysters in China. Infect Genet. Evol. 2017, 54, 276–278. [Google Scholar] [CrossRef]
- Santoro, M.; Viscardi, M.; Boccia, F.; Borriello, G.; Lucibelli, M.G.; Auriemma, C.; Anastasio, A.; Veneziano, V.; Galiero, G.; Baldi, L.; et al. Parasite load and strs genotyping of toxoplasma gondii isolates from mediterranean mussels (Mytilus galloprovincialis) in southern italy. Front. Microbiol. 2020, 11, 355:1–355:8. [Google Scholar] [CrossRef]
- Silva, C.M.; Silva, A.L.P.; Watanabe, K.F.C.; Bezerra, N.P.C.; Bezerra, D.C.; Gomes, H.M.; Freire, T.B.; Santos, L.; Carvalho Neta, A.V.; Silva, E.; et al. First report of detection of Toxoplasma gondii DNA in oysters (Crassostrea sp.) in the state of maranhão. Rev. Bras. Parasitol. Vet 2020, 29, e003720:1–e003720:6. [Google Scholar] [CrossRef]
- Massie, G.N.; Ware, M.W.; Villegas, E.N.; Black, M.W. Uptake and transmission of Toxoplasma gondii oocysts by migratory, filter-feeding fish. Vet. Parasitol. 2010, 169, 296–303. [Google Scholar] [CrossRef]
- Omata, A.Y.; Umeshita, Y.; Murao, T.; Kano, R.; Kamiya, H.; Kudo, A.; Masukata, Y.; Kobayashi, Y.; Maeda, R.; Saito, A.; et al. Toxoplasma gondii Does Not Persist in Goldfish (Carassius auratus). J. Parasitol. 2016, 91, 1496–1499. [Google Scholar] [CrossRef]
- Burg, J.L.; Grover, C.M.; Pouletty, P.; Boothroyd, J.C. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J. Clin. Microbiol. 1989, 27, 1787–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghadosi, C.; Kojouri, G.A.; Taheri, M.A. Detection of toxoplasma antibodies in sera of Salmonidae by ELISA. Comp. Clin. Path. 2010, 19, 203–206. [Google Scholar] [CrossRef]
- Sanders, J.L.; Zhou, Y.; Moulton, H.M.; Moulton, Z.X.; Mcleod, R.; Dubey, J.P.; Weiss, L.M.; Kent, M.L. The zebrafish, Danio rerio, as a model for Toxoplasma gondii: An initial description of infection in fish. J. Fish. Dis. 2015, 38, 675–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yu, S.M.; Chen, K.; Hide, G.; Lun, Z.R.; Lai, D.H. Temperature is a key factor influencing the invasion and proliferation of Toxoplasma gondii in fish cells. Exp. Parasitol. 2020, 217, 107966:1–107966:7. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Domart, M.C.; Peddie, C.J.; Yakimovich, A.; Mazon-Moya, M.J.; Hawkins, T.A.; Collinson, L.; Mercer, J.; Frickel, E.M.; Mostowy, S. The zebrafish as a novel model for the in vivo study of Toxoplasma gondii replication and interaction with macrophages. Dis. Model Mech. 2020, 13, dmm043091:1–dmm043091:13. [Google Scholar] [CrossRef] [PubMed]
- Homan, W.L.; Limper, L.; Verlaan, M.; Borst, A.; Vercammen, M.; Van Knapen, F. Comparison of the internal transcribed spacer, ITS 1, from Toxoplasma gondii isolates and Neospora caninum. Parasitol. Res. 1997, 83, 285–289. [Google Scholar] [CrossRef]
- Aakool, A.A.K.; Abidali, S.J. Molecular Detection of Toxoplasma gondii in Native Freshwater Fish Cyprinus carpio in Wasit Province Iraq. IJSER 2016, 4, 7–10. [Google Scholar]
- Li, M.H.; Che, T.C.; Kuo, T.T.; Tseng, C.C.; Tseng, C.P. Real-time PCR for quantitative detection of Toxoplasma gondii. J. Clin. Microbiol. 2000, 38, 4121–4125. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.M.F.; Percipalle, M.; Giunta, R.P.; Salvaggio, A.; Caracappa, G.; Alfonzetti, T.; Aparo, A.; Reale, S. Development and validation of a real-time PCR assay for the detection of Toxoplasma gondii DNA in animal and meat samples. J. Vet. Diagnostic Investig. 2017, 29, 203–207. [Google Scholar] [CrossRef]
Target Gene | Gene Copies 1 | Level of Characterization | Species Range | Amplification Success 2 |
---|---|---|---|---|
SSU rRNA (18S rRNA) | Multiple | Species, genotypes | All | Great |
ITS | Multiple | Species, genotypes | C. parvum, C. hominis, and close-related | Good |
HSP70 | Single | Species, genotypes | C. parvum, C. hominis, and close-related | Good |
COWP | Single | Species, genotypes | C. parvum, C. hominis, and close-related | Variable |
gp60 | Single | Species, subgenotypes | C. parvum, C. hominis, and close-related | Variable |
Species | Host Fish Species | References |
---|---|---|
C. molnari | Sparus aurata Dicentrarchus labrax | [29,48] |
Maccullochella peelii | [49] | |
Esox lucius | [45] | |
C. scophthalmi | Scophthalmus maximus | [31] |
Psetta maxima | [50] | |
C. huwi | Poecilia reticulata | [32,40] |
Puntigrus tetrazona | [40] | |
Paracheirodon innesi | [37,40] | |
C. bollandi | Pterophyllum scalare Astronotus ocellatus | [33] |
Species | Host Fish Species | References |
---|---|---|
C. parvum | Sillago vittata | [36] |
Decapterus macarellus Puntius gonionotus Oreochromis niloticus | [39] | |
Salvelinus alpinus Esox lucius Coregonus lavaretus Perca fluviatilis Rutilus rutilus | [45] | |
Oncorhynchus mykiss | [43] | |
Salmo trutta | [47] | |
Molva dypterygia Gadus morhua Scomber scombrus Scomber japonicus Sardina pilchardus Engraulis encrasicolus Clupea hareguns | [44] | |
Carassius auratus | [46] | |
C. hominis | Decapterus macarellus | [39] |
C. scrofarum | Sillago vittata | [36] |
C. xiaoi | Sillago vittata | [36] |
Study | Sample | Molecular Technique | Target Genes |
---|---|---|---|
Reid et al., 2010 [36] | Gastrointestinal tissue scrapings | Nested PCR | 18S rRNA Actin locus gp60 |
Gibson-Kueh et al., 2011 [55] | Fixed intestinal tissue | Nested PCR | 18S rRNA Actin locus |
Koinari et al., 2013 [39] | Gastrointestinal tissue scrapings | Nested PCR-RFLP Nested PCR Seminested PCR | 18S rRNA gp60 Actin locus |
Certad et al., 2015 [45] | Gastrointestinal tissue scrapings | Nested PCR | 18S rRNA gp60 |
Couso-Pérez et al., 2018 [43] | Pyloric caeca Intestinal content | Nested PCR | 18S rRNA gp60 HSP70 Actin locus |
Couso-Pérez et al., 2019 [47] | Pyloric caeca Intestine | Nested PCR | 18S rRNA gp60 HSP70 Actin locus |
Certad et al., 2019 [44] | Gastrointestinal tissue scrapings | Nested PCR | 18S rRNA gp60 |
Shahbazi et al., 2020 [46] | Stomach and intestine tissues | Nested PCR | 18S rRNA |
Giardia Species | Giardia Species According to [12,63] | Hosts | Zoonotic (Z) or Reported in Humans (RH) |
---|---|---|---|
G. duodenalis assemblage A | G. duodenalis | Humans, other primates, and a wide range of domestic and wild mammals | Z |
G. duodenalis assemblage B | Giardia enterica | Humans, other primates, dogs, and some species of mammalian wildlife | Z |
G. duodenalis assemblage C | Giardia canis | Canids, including dogs | RH [64,65] |
G. duodenalis assemblage D | Giardia canis | Canids, including dogs | RH [66] |
G. duodenalis assemblage E | Giardia bovis | Cattle and other hoofed animals | RH [67,68,69,70,71,72] |
G. duodenalis assemblage F | Giardia cati | Cats | RH [73] |
G. duodenalis assemblage G | Giardia simondi | Rats | – |
G. duodenalis assemblage H | Marine mammals | – | |
Giardia agilis | G. agilis | Amphibians | – |
Giardia muris | G. muris | Rodents | – |
Giardia psittaci | G. psittaci | Birds | – |
Giardia ardeae | G. ardeae | Birds | – |
Giardia microti | G. microti | Microtine voles and muskrats | – |
Giardia cricetidarum | G. cricetidarum | Hamsters | – |
Giardia paramelis | G. paramelis | Southern brown bandicoots | – |
Target Gene | Gene Copies 1 | Level of Characterization | Amplification Success 2 |
---|---|---|---|
SSU rRNA (18S rRNA) | Multiple | Species | Great |
ITS | Multiple | Species, subgenotypes | Good |
β-giardin | Single | Species, subgenotypes | Variable |
TPI | Single | Species, subgenotypes | Variable |
GDH | Single | Species, subgenotypes | Variable |
ef1 | Single | Species, subgenotypes | Variable |
Study | Sample | Molecular Technique | Target Genes |
---|---|---|---|
Lasek-Nesselquist et al., 2008 [86] | Feces Gut content | Nested PCR | β-giardin GDH TPI mlh1 |
Yang et al., 2010 [87] | Gastrointestinal tissue scrapings | Nested PCR | 18S rRNA β-giardin GDH TPI |
Ghoneim et al., 2012 [88] | Feces | Duplex PCR | TPI |
Study | Sample | Molecular Technique | Target Genes |
---|---|---|---|
Omata et al., 2005 [123] | Muscle Brain Liver Kidney | PCR | T. gondii B1 gene |
Massie et al., 2010 [122] | Oocysts recovered from alimentary canals | rt-PCR PCR | T. gondii B1 gene 529-bp DNA repeat element |
Zhang et al., 2014 [116] | Digestive tract | PCR | ITS-1 |
Aakool and Abidali, 2015 [130] | Muscle Liver Intestine Gills | rt-PCR | T. gondii B1 gene |
Marino et al., 2019 [98] | Intestine Gills Skin-skeletal muscle | rt-PCR qPCR | 529-bp DNA repeat element |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moratal, S.; Dea-Ayuela, M.A.; Cardells, J.; Marco-Hirs, N.M.; Puigcercós, S.; Lizana, V.; López-Ramon, J. Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020, 9, 1913. https://doi.org/10.3390/foods9121913
Moratal S, Dea-Ayuela MA, Cardells J, Marco-Hirs NM, Puigcercós S, Lizana V, López-Ramon J. Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods. 2020; 9(12):1913. https://doi.org/10.3390/foods9121913
Chicago/Turabian StyleMoratal, Samantha, M. Auxiliadora Dea-Ayuela, Jesús Cardells, Naima M. Marco-Hirs, Silvia Puigcercós, Víctor Lizana, and Jordi López-Ramon. 2020. "Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption" Foods 9, no. 12: 1913. https://doi.org/10.3390/foods9121913
APA StyleMoratal, S., Dea-Ayuela, M. A., Cardells, J., Marco-Hirs, N. M., Puigcercós, S., Lizana, V., & López-Ramon, J. (2020). Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods, 9(12), 1913. https://doi.org/10.3390/foods9121913