Special Issue "Plant Extracts: Chemical Composition, Bioactivity and Potential Applications"

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals and Functional Foods".

Deadline for manuscript submissions: closed (28 February 2021) | Viewed by 24757

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Dr. Francisca Rodrigues
E-Mail Website
Guest Editor
LAQV/REQUIMTE - Instituto Superior de Engenharia do Porto - Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
Interests: plant extracts; green extraction techniques; bioactive compounds; antioxidants; functional food; cosmetics
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Cristina Delerue-Matos
E-Mail Website
Guest Editor
REQUIMTE/LAQV- Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
Interests: chromatographic determinations; electrochemistry; sensors/biosensors; sample preparation; environment and food control; environmental monitoring; contaminant detection; PAHs; pesticides; pharmaceuticals; heavy metals; allergens
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

At present, the current society has demonstrated a high awareness and responsibility concerning environmental issues. In addition, the interest in bioactive compounds extracted from natural sources has increased due to their potential application as active ingredients in several industries, particularly the cosmetic, food, and pharmaceutical industries. Plants are rich sources of phenolic compounds that have been widely studied due to their health-promoting properties, namely antioxidant, anti-carcinogenic, and anti-inflammatory activities. Nevertheless, extraction is usually the limiting analytical step in the yield of bioactive compounds. From a green point of view, many extraction techniques have been employed as potential candidates to replace conventional methods, such as ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), pulsed electric field extraction, and enzyme-assisted extraction.

This Special Issue will comprise research articles and reviews related to new trends in plant extraction and characterization. Manuscripts devoted to the extraction of plant by-products are also welcome. Particular attention will be given to manuscripts that not only chemically characterize but also evaluate using in vitro models the efficacy and safety of the extracts and suggest final applications.

Dr. Francisca Rodrigues
Prof. Cristin Delerue-Matos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plants
  • green extraction techniques
  • bioactive compounds
  • safety
  • cosmetics
  • nutraceutical industry

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Antioxidant, Antidiabetic, and Antiobesity Properties, TC7-Cell Cytotoxicity and Uptake of Achyrocline satureioides (Marcela) Conventional and High Pressure-Assisted Extracts
Foods 2021, 10(4), 893; https://doi.org/10.3390/foods10040893 - 19 Apr 2021
Cited by 1 | Viewed by 819
Abstract
The growing incidence of non-communicable diseases makes the search for natural sources of bioactive compounds a priority for such disease prevention/control. Achyrocline satureioides (‘marcela’), a plant rich in polyphenols and native to Brazil, Uruguay, Paraguay, and Argentina, could be used for this purpose. [...] Read more.
The growing incidence of non-communicable diseases makes the search for natural sources of bioactive compounds a priority for such disease prevention/control. Achyrocline satureioides (‘marcela’), a plant rich in polyphenols and native to Brazil, Uruguay, Paraguay, and Argentina, could be used for this purpose. Data on its antidiabetic/antiobesity properties and cellular uptake of bioactive compounds are lacking. The potentiality of non-thermal technologies such as high-hydrostatic pressure (HP) to enhance polyphenol extraction retains attention. Thus, in the present study aqueous and ethanolic marcela extracts with/without assisted-HP processing were chemically characterized and assessed for their in vitro antioxidant capacity, antidiabetic and antiobesity activities, as well as cellular cytotoxicity and uptake on intestinal cell monolayers (TC7-cells, a clone of Caco-2 cells). Aqueous and ethanolic conventional extracts presented different polyphenolic profiles characterized mainly by phenolic acids or flavonoids, respectively, as stated by reverse phase-high-performance liquid chromatography (RP-HPLC) analyses. In general, ethanolic extracts presented the strongest bioactive properties and HP had none or a negative effect on in vitro bioactivities comparing to conventional extracts. TC7-cell viability and cellular uptake demonstrated in conventional and HP-assisted extracts, highlighted the biological effects of marcela bioactive compounds on TC7-cell monolayers. TC7-cell studies showed no HP-induced cytotoxicity. In sum, marcela extracts have great potential as functional ingredients for the prevention/treatment of chronic diseases such as diabetes. Full article
Show Figures

Graphical abstract

Article
In Vitro Study of Two Edible Polygonoideae Plants: Phenolic Profile, Cytotoxicity, and Modulation of Keap1-Nrf2 Gene Expression
Foods 2021, 10(4), 811; https://doi.org/10.3390/foods10040811 - 09 Apr 2021
Cited by 1 | Viewed by 925
Abstract
Polygonum aviculare and Persicaria amphibia (subfam. Polygonoideae) are used in traditional cuisines and folk medicine in various cultures. Previous studies indicated that phytochemicals obtained from Polygonoideae plants could sensitize chemoresistant cancer cells and enhance the efficacy of some cytostatics. Here, the cytotoxic properties [...] Read more.
Polygonum aviculare and Persicaria amphibia (subfam. Polygonoideae) are used in traditional cuisines and folk medicine in various cultures. Previous studies indicated that phytochemicals obtained from Polygonoideae plants could sensitize chemoresistant cancer cells and enhance the efficacy of some cytostatics. Here, the cytotoxic properties of chemically characterized ethanol extracts obtained from P. aviculare and P. amphibia, individually and in combination with doxorubicin (D), were determined against hepatocarcinoma HepG2 cells. Phenolic composition, cell viability, cell cycle, apoptosis, and the expression of Keap1 and Nrf2 were examined by following methods: LC-MS/MS, LC-DAD-MS, MTT, flow cytometry, and qRT-PCR. Extracts were rich in dietary polyphenolics. Synergistic cytotoxicity was detected for extracts combined with D. The observed synergisms are linked to the interference with apoptosis, cell cycle, and expression of Keap1-Nrf2 genes involved in cytoprotection. The combined approach of extracts and D could emerge as a potential pathway of chemotherapy improvement. Full article
Show Figures

Graphical abstract

Article
Mayten Tree Seed Oil: Nutritional Value Evaluation According to Antioxidant Capacity and Bioactive Properties
Foods 2021, 10(4), 729; https://doi.org/10.3390/foods10040729 - 30 Mar 2021
Viewed by 1056
Abstract
The Mayten tree (Maytenus boaria Mol.), a native plant of Chile that grows under environmentally limiting conditions, was historically harvested to extract an edible oil, and may represent an opportunity to expand current vegetable oil production. Seeds were collected from Mayten trees [...] Read more.
The Mayten tree (Maytenus boaria Mol.), a native plant of Chile that grows under environmentally limiting conditions, was historically harvested to extract an edible oil, and may represent an opportunity to expand current vegetable oil production. Seeds were collected from Mayten trees in north-central Chile, and seed oil was extracted by solvent extraction. The seed oil showed a reddish coloration, with quality parameters similar to those of other vegetable oils. The fatty acid composition revealed high levels of monounsaturated and polyunsaturated fatty acids. Oleic and linoleic acids, which are relevant to the human diet, were well represented in the extracted Mayten tree seed oil. The oil displayed an antioxidant capacity due to the high contents of antioxidant compounds (polyphenols and carotenoids) and may have potential health benefits for diseases associated with oxidative stress. Full article
Show Figures

Figure 1

Article
Quality and Antioxidant Properties of Cold-Pressed Oil from Blanched and Microwave-Pretreated Pomegranate Seed
Foods 2021, 10(4), 712; https://doi.org/10.3390/foods10040712 - 26 Mar 2021
Cited by 3 | Viewed by 1183
Abstract
The present research studied the influence of blanching and microwave pretreatment of seeds on the quality of pomegranate seed oil (PSO) extracted by cold pressing. Pomegranate seeds (cv. Acco) were independently blanched (95 ± 2 °C/3 min) and microwave heated (261 W/102 s) [...] Read more.
The present research studied the influence of blanching and microwave pretreatment of seeds on the quality of pomegranate seed oil (PSO) extracted by cold pressing. Pomegranate seeds (cv. Acco) were independently blanched (95 ± 2 °C/3 min) and microwave heated (261 W/102 s) before cold pressing. The quality of the extracted oil was evaluated with respect to oxidation indices, refractive index, yellowness index, total carotenoids content, total phenolic content, flavor compounds, fatty acid composition, and 2.2-diphenyl-1-picryl hydrazyl (DPPH) and 2.2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity. Blanching and microwave pretreatments of seeds before pressing enhanced oil yield, total phenolic content, flavor compounds, and DPPH and ABTS radical scavenging capacity. Although the levels of oxidation indices, including the peroxide value, free fatty acids, acid value, ρ-anisidine value, and total oxidation value, also increased, and the oil quality conformed to the requirements of the Codex Alimentarius Commission (CODEX STAN 19-1981) standard for cold-pressed vegetable oils. On the other hand, blanching and microwave heating of seeds decreased the pomegranate seed oil’s yellowness index, whilst the refractive index was not significantly (p > 0.05) affected. Even though both blanching and microwave pretreatment of seeds added value to the cold-pressed PSO, the oil extracted from blanched seeds exhibited lower oxidation indices. Regarding fatty acids, microwave pretreatment of seeds before cold pressing significantly increased palmitic acid, oleic acid, and linoleic acid, whilst it decreased the level of punicic acid. On the contrary, blanching of seeds did not significantly affect the fatty acid composition of PSO, indicating that the nutritional quality of the oil was not significantly affected. Therefore, blanching of seeds is an appropriate and valuable step that could be incorporated into the mechanical processing of PSO. Full article
Show Figures

Figure 1

Article
Biological Effect of Different Spinach Extracts in Comparison with the Individual Components of the Phytocomplex
Foods 2021, 10(2), 382; https://doi.org/10.3390/foods10020382 - 09 Feb 2021
Cited by 2 | Viewed by 875
Abstract
The Mediterranean-style diet is rich in fruit and vegetables and has a great impact on the prevention of major chronic diseases, such as cardiovascular diseases and cancer. In this work we investigated the ability of spinach extracts obtained by different extraction methods and [...] Read more.
The Mediterranean-style diet is rich in fruit and vegetables and has a great impact on the prevention of major chronic diseases, such as cardiovascular diseases and cancer. In this work we investigated the ability of spinach extracts obtained by different extraction methods and of the single main components of the phytocomplex, alone or mixed, to modulate proliferation, antioxidant defense, and genotoxicity of HT29 human colorectal cells. Spinach extracts show dose-dependent activity, increasing the level of intracellular endogenous reactive oxygen species (ROS) when tested at higher doses. In the presence of oxidative stress, the activity is related to the oxidizing agent involved (H2O2 or menadione) and by the extraction method. The single components of the phytocomplex, alone or mixed, do not alter the intracellular endogenous level of ROS but again, in the presence of an oxidative insult, the modulation of antioxidant defense depends on the oxidizing agent used. The application of the phytocomplex extracts seem to be more effective than the application of the single phytocomplex components. Full article
Show Figures

Graphical abstract

Article
Bioactive Compounds in Wild Nettle (Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations
Foods 2021, 10(1), 190; https://doi.org/10.3390/foods10010190 - 18 Jan 2021
Cited by 17 | Viewed by 1808
Abstract
This study evaluated the presence of bioactives in wild nettle leaves and stalks during the phenological stage and in the context of natural habitat diversity. Thus, wild nettle samples collected before flowering, during flowering and after flowering from 14 habitats situated in three [...] Read more.
This study evaluated the presence of bioactives in wild nettle leaves and stalks during the phenological stage and in the context of natural habitat diversity. Thus, wild nettle samples collected before flowering, during flowering and after flowering from 14 habitats situated in three different regions (continental, mountain and seaside) were analyzed for low molecular weight polyphenols, carotenoids and chlorophylls using UPLC-MS/MS and HPLC analysis, while the ORAC method was performed for the antioxidant capacity measurement. Statistical analysis showed that, when compared to the stalks, nettle leaves contained significantly higher amounts of analyzed compounds which accumulated in the highest yields before flowering (polyphenols) and at the flowering stage (pigments). Moreover, nettle habitat variations greatly influenced the amounts of analyzed bioactives, where samples from the continental area contained higher levels of polyphenols, while seaside region samples were more abundant with pigments. The levels of ORAC followed the same pattern, being higher in leaves samples collected before and during flowering from the continental habitats. Hence, in order to provide the product’s maximum value for consumers’ benefit, a multidisciplinary approach is important for the selection of a plant part as well as its phenological stage with the highest accumulation of bioactive compounds. Full article
Show Figures

Figure 1

Article
Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves
Foods 2021, 10(1), 18; https://doi.org/10.3390/foods10010018 - 23 Dec 2020
Cited by 6 | Viewed by 1058
Abstract
Glioblastoma multiforme is an aggressive and invasive disease with no efficient therapy available, and there is a great need for finding alternative treatment strategies. This study aimed to investigate anticancer activity of the extracts of the Japanese quince (JQ) cultivars ‘Darius’, ‘Rondo’, and [...] Read more.
Glioblastoma multiforme is an aggressive and invasive disease with no efficient therapy available, and there is a great need for finding alternative treatment strategies. This study aimed to investigate anticancer activity of the extracts of the Japanese quince (JQ) cultivars ‘Darius’, ‘Rondo’, and ‘Rasa’ leaf extracts on glioblastoma C6 and HROG36 cells. As identified by ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry, the extracts contained three prevailing groups of phenols: hydroxycinnamic acid derivatives; flavan-3-ols; and flavonols. Sixteen phenols were detected; the predominant compound was chlorogenic acid. The sum of detected phenols varied significantly between the cultivars ranging from 9322 µg/g (‘Rondo’) to 17,048 µg/g DW (‘Darius’). Incubation with the extracts decreased the viability of glioblastoma HROG36 cells with an efficiency similar to temozolomide, a drug used for glioblastoma treatment. In the case of C6 glioblastoma cells, the extracts were even more efficient than temozolomide. Interestingly, primary cerebellar neuronal-glial cells were significantly less sensitive to the extracts compared to the cancer cell lines. The results showed that JQ leaf ethanol extracts are rich in phenolic compounds, can efficiently reduce glioblastoma cell viability while preserving non-cancerous cells, and are worth further investigations as potential anticancer drugs. Full article
Show Figures

Graphical abstract

Article
Biomanufacturing of Tomato-Derived Nanovesicles
Foods 2020, 9(12), 1852; https://doi.org/10.3390/foods9121852 - 11 Dec 2020
Cited by 12 | Viewed by 1667
Abstract
Micro- and nano-sized vesicles (MVs and NVs, respectively) from edible plant resources are gaining increasing interest as green, sustainable, and biocompatible materials for the development of next-generation delivery vectors. The isolation of vesicles from complex plant matrix is a significant challenge considering the [...] Read more.
Micro- and nano-sized vesicles (MVs and NVs, respectively) from edible plant resources are gaining increasing interest as green, sustainable, and biocompatible materials for the development of next-generation delivery vectors. The isolation of vesicles from complex plant matrix is a significant challenge considering the trade-off between yield and purity. Here, we used differential ultracentrifugation (dUC) for the bulk production of MVs and NVs from tomato (Solanum lycopersicum L.) fruit and analyzed their physical and morphological characteristics and biocargo profiles. The protein and phospholipid cargo shared considerable similarities between MVs and NVs. Phosphatidic acid was the most abundant phospholipid identified in NVs and MVs. The bulk vesicle isolates were further purified using sucrose density gradient ultracentrifugation (gUC) or size-exclusion chromatography (SEC). We showed that SEC using gravity column efficiently removed co-purifying matrix components including proteins and small molecular species. dUC/SEC yielded a high yield of purified vesicles in terms of number of particles (2.6 × 1015 particles) and protein quantities (6.9 ± 1.5 mg) per kilogram of tomato. dUC/gUC method separated two vesicle populations on the basis of buoyant density. Proteomics and in silico studies of the SEC-purified MVs and NVs support the presence of different intra- and extracellular vesicles with highly abundant lipoxygenase (LOX), ATPases, and heat shock proteins (HSPs), as well as a set of proteins that overlaps with that previously reported in tomato chromoplast. Full article
Show Figures

Graphical abstract

Article
Japanese Quince (Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities
Foods 2020, 9(8), 1132; https://doi.org/10.3390/foods9081132 - 17 Aug 2020
Cited by 14 | Viewed by 1924
Abstract
The value of fruits is determined by the quantity and variety of biologically active compounds they contain, and their benefits on human health. This work presents the first study of the biochemical composition and antibacterial activity of the new Japanese quince (JQ) cultivars [...] Read more.
The value of fruits is determined by the quantity and variety of biologically active compounds they contain, and their benefits on human health. This work presents the first study of the biochemical composition and antibacterial activity of the new Japanese quince (JQ) cultivars ‘Darius’, ‘Rondo’, and ‘Rasa’ fruits. The total phenolic content (TPC) was determined using the Folin–Ciocalteu method and each compound was identified by HPLC High Performance Liquid Chromatography. The antimicrobial activity against three Gram-positive and three Gram-negative bacteria, and one yeast strain, was evaluated by the agar well diffusion method using three different concentrations. The free radical scavenging activity was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) methods and ranged from 99.1 to 115.9 μmolTE/100 g, and from 372 to 682 μmolTE/100 g, respectively. TPC ranged from 3906 to 4550 mgGAE/100 g, and five compounds, isoquercitrin, rutin, (+)-catechin, (–)-epicatechin, and chlorogenic acid were identified. All JQ extracts possessed antimicrobial activity against Gram-positive and Gram-negative bacteria, and Enterococcus faecalis (ATCC 29212) was the most sensitive strain. These results indicate that JQ fruits are a significant source of bio-compounds, which can enrich the diet with strong antioxidants, and they are very promising as a substitute for chemical preservatives in the food and cosmetic industry. Full article
Show Figures

Graphical abstract

Article
Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts
Foods 2020, 9(7), 872; https://doi.org/10.3390/foods9070872 - 03 Jul 2020
Cited by 10 | Viewed by 1325
Abstract
This work focused on evaluating the possibility of using vineyard pruning wastes from two Portuguese Vitis vinifera varieties; Touriga Nacional (TN) and Tinta Roriz (TR), as new potential ingredients for the nutraceutical industry. An environmentally friendly extraction technique; namely subcritical-water extraction (SWE), was [...] Read more.
This work focused on evaluating the possibility of using vineyard pruning wastes from two Portuguese Vitis vinifera varieties; Touriga Nacional (TN) and Tinta Roriz (TR), as new potential ingredients for the nutraceutical industry. An environmentally friendly extraction technique; namely subcritical-water extraction (SWE), was employed. The overall results indicate that phenolic acids were the major class of compounds quantified; being gallic acid the principal one. The highest value for total phenolic content (TPC) was obtained for the TR extract at 250 °C (181 ± 12 mg GAE/g dw). In terms of antioxidant activity; the DPPH values for the extracts obtained at 250 °C were approximately 4-fold higher than the ones obtained at 125 °C; with TR extract presenting the highest value (203 ± 22 mg TE/g dw). Thus, the TR extract obtained through SWE at 250 °C was selected to evaluate the scavenging activity and the in vitro effects on cells due to the best results achieved in the previous assays. This extract presented the ability to scavenge reactive oxygen species (O2●-, HOCl and ROO). No adverse effects were observed in HFF-1 viability after exposure to extract concentrations below 100 μg/mL. This work demonstrated that vine-canes extracts could be a potential ingredient to nutraceutical industry Full article
Show Figures

Figure 1

Article
TOCOSH FLOUR (Solanum tuberosum L.): A Toxicological Assessment of Traditional Peruvian Fermented Potatoes
Foods 2020, 9(6), 719; https://doi.org/10.3390/foods9060719 - 02 Jun 2020
Cited by 5 | Viewed by 2671
Abstract
Potato tocosh is a naturally processed potato for nutritional and curative purposes from traditional Peruvian medicine. The aim of this study was to investigate the acute and sub-acute toxicity of tocosh flour (TF). For sub-acute toxicity, TF was administered orally to rats daily [...] Read more.
Potato tocosh is a naturally processed potato for nutritional and curative purposes from traditional Peruvian medicine. The aim of this study was to investigate the acute and sub-acute toxicity of tocosh flour (TF). For sub-acute toxicity, TF was administered orally to rats daily once a day for 28 days at doses of 1000 mg/kg body weight (BW). Animals were observed for general behaviors, mortality, body weight variations, and histological analysis. At the end of treatment, relative organ weights, histopathology, hematological and biochemical parameters were analyzed. For acute toxicity, TF was administered orally to mice at doses of 2000 and 5000 mg/kg BW at a single dose in both sexes. Body weight, mortality, and clinical signs were observed for 14 days after treatment. The results of acute toxicity showed that the median lethal dose (LD50) value of TF is higher than 2000 g/kg BW but less than 5000 mg/Kg BW in mice. Death and toxicological symptoms were not found during the treatment. For sub-acute toxicity, we found that no-observed-adverse-effect levels (NOAEL) of TF in rats up to 1000 g/kg BW. There were statistically significant differences in body weight, and relative organ weight in the stomach and brain. No differences in hematological and biochemical parameters were observed when compared with the control group. For sub-acute toxicity, histopathological studies revealed minor abnormalities in liver and kidney tissues at doses of 5000 mg/Kg. Based on these results, TF is a traditional Peruvian medicine with high safety at up to 1000 mg/kg BW for 28 days in rats. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin
Foods 2020, 9(3), 374; https://doi.org/10.3390/foods9030374 - 23 Mar 2020
Cited by 160 | Viewed by 8012
Abstract
Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential [...] Read more.
Flavonoids are a class of natural substances present in plants, fruits, vegetables, wine, bulbs, bark, stems, roots, and tea. Several attempts are being made to isolate such natural products, which are popular for their health benefits. Flavonoids are now seen as an essential component in a number of cosmetic, pharmaceutical, and medicinal formulations. Quercetin is the major polyphenolic flavonoid found in food products, including berries, apples, cauliflower, tea, cabbage, nuts, and onions that have traditionally been treated as anticancer and antiviral, and used for the treatment of allergic, metabolic, and inflammatory disorders, eye and cardiovascular diseases, and arthritis. Pharmacologically, quercetin has been examined against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium, Babesia, and Theileria parasites. Additionally, it has shown beneficial effects against Alzheimer’s disease (AD), and this activity is due to its inhibitory effect against acetylcholinesterase. It has also been documented to possess antioxidant, antifungal, anti-carcinogenic, hepatoprotective, and cytotoxic activity. Quercetin has been documented to accumulate in the lungs, liver, kidneys, and small intestines, with lower levels seen in the brain, heart, and spleen, and it is extracted through the renal, fecal, and respiratory systems. The current review examines the pharmacokinetics, as well as the toxic and biological activities of quercetin. Full article
Show Figures

Graphical abstract

Back to TopTop