Special Issue "New Insights into Cereals and Cereal-Based Foods"

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Grain".

Deadline for manuscript submissions: closed (31 October 2020).

Special Issue Editor

Prof. Dr. Maria Papageorgiou
Website
Guest Editor
Department of Food Science and Technology, International Hellenic University, Alexander campus, GR-57400, Thessaloniki, Greece
Interests: tailoring functional and chemical properties of cereal and alternative plant sources in view of developing specific healthy foods and ingredients; other topics of interest include dough rheology, structural and functional characterization of biopolymers, mycotoxin analysis and risk assessment
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Cereal grains such as wheat, rice, and corn are staple foods consumed worldwide and, therefore, play a decisive role both in agricultural production and in world population feeding. Cereal grains, intact or as debranned kernels or refined flours, are processed into a wide variety of foods, ranging from bread and confectionary goods to breakfast cereals and pasta. Furthermore, particular grain fractions or components can be incorporated into food recipes to improve their nutritional or functional properties. These include specific dietary fibers, vitamins and minerals, partly digested or resistant cereal starches, and secondary metabolites such as phenolic compounds with well-established roles in human health and wellbeing.

This Special Issue addresses functional and health aspects of cereal grains and flours and technological advances of the cereal industry as a sector that needs to operate under the principles of sustainability and circular economy.

Contributions pertaining to innovations in the cereal value chain, cereal safety and security, and health and wellness from the consumption of cereal-based foods and ingredients are particularly welcome.

Prof. Maria Papageorgiou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Milling
  • Bread making
  • Sourdough
  • Biscuit, cake, noodles, pasta products
  • Consumer perception of grain-based foods
  • Cereal safety and security
  • Wholegrains
  • Pseudocereals and ancient grains
  • Grain breeding
  • Cereal bioactive compounds
  • Gluten free
  • Valorization of cereal bio-products

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Locally Adapted and Organically Grown Landrace and Ancient Spring Cereals—A Unique Source of Minerals in the Human Diet
Foods 2021, 10(2), 393; https://doi.org/10.3390/foods10020393 - 11 Feb 2021
Abstract
Consumer interest in local and organic produce, sustainability along the production chain and food products contributing to health, are laying the foundation for local and organic-based diets using nutrient-dense food. Here, we evaluated 25 locally adapted landrace and ancient spring cereal genotypes per [...] Read more.
Consumer interest in local and organic produce, sustainability along the production chain and food products contributing to health, are laying the foundation for local and organic-based diets using nutrient-dense food. Here, we evaluated 25 locally adapted landrace and ancient spring cereal genotypes per location over four locations and three years, for mineral content, nutritional yield and nutrient density. The results showed a large variation in minerals content and composition in the genotypes, but also over cultivation locations, cultivation years and for genotype groups. Highest minerals content was found in oats, while highest content of Zn and Fe was found in ancient wheats. The wheat Diamant brun, the wheat landrace Öland and naked barley showed high mineral values and high content of Zn and Fe when grown in Alnarp. Nutritional yield, of the cereals evaluated here, was high related to values reported internationally but lower than those found in a comparable winter wheat material. The nutrient density was generally high; less than 350 g was needed if any of the evaluated genotype groups were to be used in the daily diet to reach the recommended value of Zn and Fe, while if the suggested Novel Nordic Diet mix was used, only 250 g were needed. A transfer from currently consumed cereals to those in the present study, along the New Nordic Diet path, showed their potential to contribute as sustainable and nutrient-rich sources in the human diet. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Influence of Flour and Fat Type on Dough Rheology and Technological Characteristics of 3D-Printed Cookies
Foods 2021, 10(1), 193; https://doi.org/10.3390/foods10010193 - 19 Jan 2021
Abstract
In this study, we designed high fiber cookie recipe without using additives by means of extrusion-based 3D printing. We aimed to relate printing quality and cookie physical properties with dough rheology and dietary fiber content depending on the flour (oat, rye, rice, and [...] Read more.
In this study, we designed high fiber cookie recipe without using additives by means of extrusion-based 3D printing. We aimed to relate printing quality and cookie physical properties with dough rheology and dietary fiber content depending on the flour (oat, rye, rice, and carob flour) and fat type (olive oil or butter). The flour choice influenced all cookie quality parameters: baking loss, color, line height and width, and dietary fiber content. Results indicated that lower baking loss and better printing quality were obtained for cookie dough containing olive oil, which had higher viscosity and consistency coefficient compared with dough containing butter. Cookies with olive oil in which part of the oat flour was replaced with rye and carob flour were printed with high accuracy (≥98%), close to the ideal 3D shape. Overall, this study demonstrates the importance of selecting fat and particularly flour, as well as the extrusion rate on the quality and repeatability of 3D-printed cookies. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Differences in Processing Quality Traits, Protein Content and Composition between Spelt and Bread Wheat Genotypes Grown under Conventional and Organic Production
Foods 2021, 10(1), 156; https://doi.org/10.3390/foods10010156 - 13 Jan 2021
Abstract
The unique rheological properties of bread wheat dough and the breadmaking quality of its flour are the main factors responsible for the global distribution and utilization of wheat. Recently, interest in the production and expansion of spelt wheat has been boosted due to [...] Read more.
The unique rheological properties of bread wheat dough and the breadmaking quality of its flour are the main factors responsible for the global distribution and utilization of wheat. Recently, interest in the production and expansion of spelt wheat has been boosted due to its significance in the production of healthy food, mostly originated from organic production. The aim of this study was to examine and compare quality parameters (gluten content, Zeleny sedimentation volume, farinograph dough properties), protein content and composition (by the Dumas method, Size Exclusion (SE) and Reversed Phase (RP) High Performance Liquid Chromatography (HPLC) analyses) of five bread and five spelt wheat varieties grown under conventional and organic production in Hungary and under conventional production in Serbia. Most of the analyzed traits showed significant differences between varieties, wheat species and growing sites. Total protein content was significantly higher in spelt than in bread wheat and under conventional than under organic production. In comparison to spelt, bread wheat showed better breadmaking quality, characterized by a higher amount of glutenins (in particular high molecular weight glutenin subunits) and unextractable polymeric proteins. The proportion of the gliadins was also found to be different under conventional and organic systems. Spelt Ostro and Oberkulmer-Rotkorn and bread wheat varieties Balkan, Estevan and Pobeda proved suitable for low input and organic systems. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread
Foods 2020, 9(12), 1837; https://doi.org/10.3390/foods9121837 - 10 Dec 2020
Abstract
Triticale has been suggested for human consumption due to its valuable nutritional composition. The aim of this study was to evaluate volatile compound dynamics in the technological processes of triticale bread and triticale bread with sourdough prepared using Lactobacillus sanfranciscensis based cultures. Two [...] Read more.
Triticale has been suggested for human consumption due to its valuable nutritional composition. The aim of this study was to evaluate volatile compound dynamics in the technological processes of triticale bread and triticale bread with sourdough prepared using Lactobacillus sanfranciscensis based cultures. Two types of sourdough ready-to-use sourdough and two-stage sourdough were used for bread making. Triticale bread without sourdough was used as a control. Volatile compounds from a headspace of flour blend, sourdough, as well as mixed dough, fermented dough, bread crumb and crust were extracted using solid-phase microextraction (SPME) in combination with gas chromatography/mass spectrometry. Alcohols, mainly 1-hexanol, were the main volatiles in the triticale flour blend, whereas in the headspace of sourdough samples ethyl-acetate, ethanol and acetic acid dominated. Two-stage sourdough after 30 min fermentation showed the highest sum of peak areas formed by 14 volatile compounds, resulting in substrates for further aroma development in bread. A total of 29 compounds were identified in the bread: in the crumb the dominant volatile compounds were alcohols, ketones, acids, but in the crust—alcohols, aldehydes, furans dominated. The use of two-stage sourdough provided a more diverse spectrum of volatile compounds. Such volatile compounds as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 2-hydroxy-2-butanone, 2-methylpropanoic acid, and acetic acid were identified in all the analysed samples in all stages of bread making. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
Influence of Waxy (High Amylopectin) and High Protein Digestibility Traits in Sorghum on Injera Sourdough-Type Flatbread Sensory Characteristics
Foods 2020, 9(12), 1749; https://doi.org/10.3390/foods9121749 - 26 Nov 2020
Abstract
Injera, an East African leavened sourdough fermented pancake has remarkable textural properties despite being made from non-wheat flours. However, teff flour, which produces the best quality injera, is expensive and limited in availability. The effects of waxy (high amylopectin) and high protein digestibility [...] Read more.
Injera, an East African leavened sourdough fermented pancake has remarkable textural properties despite being made from non-wheat flours. However, teff flour, which produces the best quality injera, is expensive and limited in availability. The effects of waxy (high amylopectin) and high protein digestibility (HD) traits in sorghum on injera quality were studied. Eight white tan-plant sorghum lines expressing these traits in various combinations and three normal sorghum types were studied, with teff flour as reference. Descriptive sensory profiling of fresh and stored injera revealed that injera from waxy sorghums were softer, spongier, more flexible and rollable compared to injera from normal sorghum and much closer in these important textural attributes to teff injera. Instrumental texture analysis of injera similarly showed that waxy sorghum injera had lower stress and higher strain than injera from normal sorghum. The improved injera textural quality was probably due to the slower retrogradation and better water-holding of amylopectin starch. The HD trait, however, did not clearly affect injera quality, probably because the lines had only moderately higher protein digestibility. In conclusion, waxy sorghum flour has considerable potential for the production of gluten-free sourdough fermented flatbread-type products with good textural functionality. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Breathing New Life to Ancient Crops: Promoting the Ancient Philippine Grain “Kabog Millet” as an Alternative to Rice
Foods 2020, 9(12), 1727; https://doi.org/10.3390/foods9121727 - 24 Nov 2020
Abstract
Consumption of underutilised ancient crops has huge benefits for our society. It improves food security by diversifying our staple foods and makes our agriculture more adaptable to climate change. The Philippines has a rich biodiversity and many plant species used as staple foods [...] Read more.
Consumption of underutilised ancient crops has huge benefits for our society. It improves food security by diversifying our staple foods and makes our agriculture more adaptable to climate change. The Philippines has a rich biodiversity and many plant species used as staple foods are native to the Philippines. An example of ancient Philippine crops is the kabog millet, an ecotype of Panicum miliaceum. There is a dearth of information about its uses and properties; hence, in this study, the nutritional quality of kabog millet was evaluated. The total starch, % amylose, ash, dietary fibre, proteins, essential amino acid profile, phenolic acids, carotenoids, tocopherols, and the antioxidant properties of its total phenolic acid extracts were compared to four types of rice (white, brown, red, and black) and a reference millet, purchased from local Swiss supermarkets. Our analyses showed that kabog millet has higher total dietary fibre, total protein, total phenolic acids, tocopherols, and carotenoids content than white rice. It also performed well in antioxidant assays. Our results indicate that kabog millet is a good alternative to rice. It is hoped that the results of this study will encourage consumers and farmers to diversify their food palette and address food insecurity. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Antifungal Activity of Aromatic Plants of the Lamiaceae Family in Bread
Foods 2020, 9(11), 1642; https://doi.org/10.3390/foods9111642 - 10 Nov 2020
Abstract
The antifungal effect of aromatic plants (oregano, thyme, and Satureja) in dry form and as essential oils was evaluated in vitro (in potato dextrose agar (PDA)) and in bread against two phytopathogenic fungi found in food (Aspergillusniger and Penicillium). Gas [...] Read more.
The antifungal effect of aromatic plants (oregano, thyme, and Satureja) in dry form and as essential oils was evaluated in vitro (in potato dextrose agar (PDA)) and in bread against two phytopathogenic fungi found in food (Aspergillusniger and Penicillium). Gas and liquid chromatography were used to analyze essential oils attained by hydrodistillation of the aerial parts of the aromatic plants and of the dried plant aqueous solutions that were autoclaved for 20 min at 121 °C before analysis. Carvacrol, α-pinene, p-cymene, and γ-terpinene were the main components of the essential oils, whereas carvacrol, rosmarinic and caffeic acids were the main components of the water extracts. In vitro antifungal test results showed that the addition of plants in dry form had great antifungal potential against both fungal strains studied. Penicillium was more sensitive to the presence of aromatic plants than Aspergillus. Among the three plant species tested, thyme was the most potent antifungal against both fungi. For the bread product, all three aromatic plants studied showed inhibitory effects against both fungi. Results presented here suggest that oregano, thyme and Satureja incorporated in a bread recipe possess antimicrobial properties and are a potential source of antimicrobial ingredients for the food industry. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Barley C-Hordein as the Calibrant for Wheat Gluten Quantification
Foods 2020, 9(11), 1637; https://doi.org/10.3390/foods9111637 - 10 Nov 2020
Abstract
The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten [...] Read more.
The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where ω1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. For its good solubility and good affinity to the R5 antibody, the application of C-hordein increases the probability of developing a series of reference materials for various food matrices. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Cake Perception, Texture and Aroma Profile as Affected by Wheat Flour and Cocoa Replacement with Carob Flour
Foods 2020, 9(11), 1586; https://doi.org/10.3390/foods9111586 - 02 Nov 2020
Cited by 1
Abstract
Carob flour has been used in the production of a wide range of functional food formulations such as bakery goods either as a natural sweetener or food ingredient that, when roasted, exerts a chocolate/cocoa-reminiscent flavor and color. The aim of the present study [...] Read more.
Carob flour has been used in the production of a wide range of functional food formulations such as bakery goods either as a natural sweetener or food ingredient that, when roasted, exerts a chocolate/cocoa-reminiscent flavor and color. The aim of the present study was twofold; firstly to study the effect of an increasing incorporation of roasted carob flour (0–70% flour basis) on the quality and sensory attributes of a conventional cocoa cake recipe and secondly to investigate the obtained volatile fraction responsible for the aroma by means of headspace solid phase microextraction (HS-SPME) technique coupled to gas chromatography/mass spectrometry (GC/MS) while comparing it with the control, cocoa-containing cake recipe. Thirty and fifty percent carob flour incorporation rendered cakes with acceptable texture and sensory attributes, comparable to the control cake recipe containing 20% cocoa. Similarity to cocoa aroma was attributed to a great number of odor active compounds mainly belonging to aldehydes, lactones, furan/pyran derivatives, and pyrrole derivatives. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
The Effect of Sea Salt, Dry Sourdough and Fermented Sugar as Sodium Chloride Replacers on Rheological Behavior of Wheat Flour Dough
Foods 2020, 9(10), 1465; https://doi.org/10.3390/foods9101465 - 14 Oct 2020
Cited by 1
Abstract
The aim of this study was to investigate the effects of formulation factors, sea salt (SS), dry sourdough (SD) and fermented sugar (FS) as sodium chloride replacers in wheat flour on dough mixing, extension, pasting and fermentation rheological properties, evaluated by Farinograph, Extensograph, [...] Read more.
The aim of this study was to investigate the effects of formulation factors, sea salt (SS), dry sourdough (SD) and fermented sugar (FS) as sodium chloride replacers in wheat flour on dough mixing, extension, pasting and fermentation rheological properties, evaluated by Farinograph, Extensograph, Amylograph and Rheofermentometer devices. With regard to mixing and extension properties, SS and FS presented a strengthening effect, whereas SD presented a weakening one. SS and FS presented a positive effect on dough stability, energy and resistance, whereas SD presented a negative one. On the Amylograph, peak viscosity increased by SS and FS addition and decreased when SD was incorporated in the dough recipe. During fermentation, dough development and gas production in the dough system increased after SS and SD addition, whereas they decreased after FS addition. Response surface methodology (RSM) was used to investigate the effect of independent variables on the rheological properties of the dough. Mathematical models between the independent variables, SS, SD and FS, and the dependent variables, represented by the rheological values of the dough, were obtained. The best formulation obtained was of 0.30 g/100 g SS, 0.50 g/100 g SD and 1.02 mL/100 g FS addition with a 0.618 desirability value, following Derringer’s desirability function approach. For this formulation, bread quality characteristics were better appreciated than for those obtained for the control sample, in which 1.5% NaCl was incorporated in wheat flour. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
Fusarium Mycotoxins in Two Hulless Oat and Barley Cultivars Used for Food Purposes
Foods 2020, 9(8), 1037; https://doi.org/10.3390/foods9081037 - 01 Aug 2020
Cited by 2
Abstract
Hulless oats and hulless barley are highly valued for their excellent nutritional attributes and are increasingly being promoted in human nutrition. However, special attention should be paid to the risk of their contamination by Fusarium mycotoxins, as the rate of mycotoxin reduction during [...] Read more.
Hulless oats and hulless barley are highly valued for their excellent nutritional attributes and are increasingly being promoted in human nutrition. However, special attention should be paid to the risk of their contamination by Fusarium mycotoxins, as the rate of mycotoxin reduction during processing could be much lower than that for hulled cereals. In the present study, mycotoxin contamination of two cultivars, each of hulless oats and barley suitable for food purposes were studied in a 3-year field trial established in two contrasting environments. The contents of the mycotoxins regulated by law (deoxynivalenol and zearalenone) were low, and the present legal limits for their maximum content in unprocessed cereals were far from being exceeded. The mycotoxins most frequently occurring in hulless barley were enniatins (enniatin B, enniatin B1 and enniatin A1), beauvericin and nivalenol; hulless oats most frequently contained the HT-2 and T-2 toxins, beauvericin and enniatin B. The contents of enniatins and nivalenol were higher in barley than in oats. Close, positive relationships between the contents of the individual enniatins and between enniatins, beauvericin and nivalenol were observed, which implies that co-exposure could enhance the toxic potential of these mycotoxins through synergistic effects. The results highlight the need to pay more attention to the occurrence of enniatins, beauvericine and nivalenol in hulless oats and barley used for food purposes. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
Impact of Dairy Ingredients on Wheat Flour Dough Rheology and Bread Properties
Foods 2020, 9(6), 828; https://doi.org/10.3390/foods9060828 - 24 Jun 2020
Cited by 1
Abstract
The incorporation of dairy ingredients, such as milk or acid whey in bread, is advantageous considering their functional properties and the positive effects on consumers’ health. The introduction of an ingredient in bread making process requires the evaluation of dough behavior and final [...] Read more.
The incorporation of dairy ingredients, such as milk or acid whey in bread, is advantageous considering their functional properties and the positive effects on consumers’ health. The introduction of an ingredient in bread making process requires the evaluation of dough behavior and final product quality. Thus, the influence of water replacement by milk or acid whey on the characteristics of wheat flour dough and bread was studied. Dynamic rheological measurements were performed in order to evaluate the viscoelastic properties of dough. Compared to the control, an increase of the elastic character of dough for samples with milk and a decrease for those with acid whey was observed. The resistance to deformation decreased when water was substituted with more than 25% milk and increased for samples with up to 25% acid whey. Higher maximum gelatinization temperatures were obtained when water was substituted by milk or acid whey. Bread crumb presented higher firmness, lower volume and porosity for samples with dairy ingredients compared to the control, therefore, replacement levels lower than 25% were recommended in order to minimize this negative effect. Bread elasticity, chewiness, resilience, pores density and size were improved at replacement levels lower than 25%, while for the sensory characteristics of the specialty bread, high scores were obtained. These results can be helpful for processors, in order to develop and optimize bread with dairy ingredients. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Rice Flour Fermentation with Lactobacillus spicheri DSM 15429 on the Nutritional Features of Gluten-Free Muffins
Foods 2020, 9(6), 822; https://doi.org/10.3390/foods9060822 - 22 Jun 2020
Cited by 2
Abstract
Lactobacillus Spicheri DSM 15429 strain was used to ferment rice flour, aiming at exploiting its influence on the amino-acids, minerals, lactic acid, total phenols, and antioxidant activity of the rice sourdough and gluten-free muffins. Gluten-free muffins were prepared by using 15% rice sourdough [...] Read more.
Lactobacillus Spicheri DSM 15429 strain was used to ferment rice flour, aiming at exploiting its influence on the amino-acids, minerals, lactic acid, total phenols, and antioxidant activity of the rice sourdough and gluten-free muffins. Gluten-free muffins were prepared by using 15% rice sourdough fermented with the above strain of lactic acid bacteria and compared with rice spontaneous fermentation. Methods like LC-MS (Liquid chromatography–mass spectrometry), AA (atomic absorption), HPLC (High-performance liquid chromatography), Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) were used to fulfill the aim of the study. The addition of rice sourdough fermented with LAB was reflected in the chemical composition of the final baked good, improving its amount on bioactive compounds such as amino acids, mineral bioavailability, total phenols, and antioxidant activity. Total phenols and antioxidant activity increased their amount by 70.53% and 73.70%, respectively, meanwhile, lactic acid, minerals, and amino-acids increased their values at least twice. Thus, rice fermented with Lactobacilus spicheri DSM 15429 strain could be a tool to further increase the nutritional value of gluten-free baked products. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessArticle
Bioactive Components and Antioxidant Activity Distribution in Pearling Fractions of Different Greek Barley Cultivars
Foods 2020, 9(6), 783; https://doi.org/10.3390/foods9060783 - 12 Jun 2020
Cited by 1
Abstract
In this study, three pearling fractions, namely bran, dehulled grains and pearled grains, derived from fourteen hulled and one hull-less Greek barley cultivars (Hordeum vulgare L.), were analyzed for the protein, ash, β-glucan, phenolic compounds and tocols contents. High variations appeared in [...] Read more.
In this study, three pearling fractions, namely bran, dehulled grains and pearled grains, derived from fourteen hulled and one hull-less Greek barley cultivars (Hordeum vulgare L.), were analyzed for the protein, ash, β-glucan, phenolic compounds and tocols contents. High variations appeared in the bioactive contents across the barley cultivars and fractions as well. The protein and ash contents decreased from the outer to the inner layers, whereas β-glucans presented an inverse trend. The highest protein and β-glucan contents were in the hull-less cultivar; however, one hulled cultivar (Sirios) exhibited similar β-glucan content, while another (Constantinos) had even higher protein content. The results also revealed that functional compounds were mainly located in bran fraction. Similar trends were also noted for the antioxidant activity. Ferulic acid was the primary phenolic acid in all fractions, followed by sinapic and p-coumaric acids that were dominant in bound form. However, oligomeric flavonoids, such as prodelphinidin B3, catechin, and procyanidin B2, were more abundant in free form. Overall, this study highlights that different barley cultivars can provide pearling flour fractions of varying composition (nutrients and bioactives), which have the potential to serve as nutritionally valuable ingredients in formulations of cereal-based functional food products. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches
Foods 2020, 9(6), 757; https://doi.org/10.3390/foods9060757 - 08 Jun 2020
Cited by 1
Abstract
The gelatinization temperature (Tgel) of starch increases in the presence of sweeteners due to sweetener-starch intermolecular interactions in the amorphous regions of starch. Different starch botanical sources contain different starch architectures, which may alter sweetener-starch interactions and the effects of sweeteners [...] Read more.
The gelatinization temperature (Tgel) of starch increases in the presence of sweeteners due to sweetener-starch intermolecular interactions in the amorphous regions of starch. Different starch botanical sources contain different starch architectures, which may alter sweetener-starch interactions and the effects of sweeteners on Tgels. To document these effects, the Tgels of wheat, potato, waxy corn, dent corn, and 50% and 70% high amylose corn starches were determined in the presence of eleven different sweeteners and varying sweetener concentrations. Tgels of 2:1 sweetener solution:starch slurries were measured using differential scanning calorimetry. The extent of Tgel elevation was affected by both starch and sweetener type. Tgels of wheat and dent corn starches increased the most, while Tgels of high amylose corn starches were the least affected. Fructose increased Tgels the least, and isomalt and isomaltulose increased Tgels the most. Overall, starch Tgels increased more with increasing sweetener concentration, molar volume, molecular weight, and number of equatorial and exocyclic hydroxyl groups. Starches containing more short amylopectin chains, fewer amylopectin chains that span through multiple clusters, higher number of building blocks per cluster, and shorter inter-block chain lengths exhibited the largest Tgel increases in sweetener solutions, attributed to less stable crystalline regions. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Rice Protein Hydrolysates as an Egg Replacement on the Physicochemical Properties of Flaky Egg Rolls
Foods 2020, 9(2), 245; https://doi.org/10.3390/foods9020245 - 24 Feb 2020
Cited by 2
Abstract
Eggs are linked to some health-related problems, for example, allergy, and religious restrictions, thus the food manufacturer is challenged to find egg replacements and include the physicochemical properties of egg in food. In this study, enzymatic hydrolysis of rice protein was used to [...] Read more.
Eggs are linked to some health-related problems, for example, allergy, and religious restrictions, thus the food manufacturer is challenged to find egg replacements and include the physicochemical properties of egg in food. In this study, enzymatic hydrolysis of rice protein was used to produce rice protein hydrolysates (RPHs) for use as an egg replacement in flaky egg rolls. Formulations were control (A), rice protein isolate (B), RPH15 (C), RPH30 (D), and RPH60 (E), respectively. The protein content of formula E increased from 19.69 to 22.18 g/100 g, while carbohydrate and sugar content decreased to 64.12 and 12.26 g/100 g, respectively. Overall amino acid contents significantly increased as compared with formula A. The overall acceptability for sensory evaluation was higher with formula C. The color of the sample was highly affected by the protein-rich ingredients accounting to a Maillard reaction progression and causing a decrease in brightness (L*) and increase in redness (a*). RPHs successfully maintained the functional and physiochemical properties, along with flavor and texture, of flaky egg rolls and could be an egg replacement. These high-value RPHs produced by enzymatic hydrolysis could be beneficial for various applications, particularly food and related industries. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Modelling Processes and Products in the Cereal Chain
Foods 2021, 10(1), 82; https://doi.org/10.3390/foods10010082 - 04 Jan 2021
Abstract
In recent years, modelling techniques have become more frequently adopted in the field of food processing, especially for cereal-based products, which are among the most consumed foods in the world. Predictive models and simulations make it possible to explore new approaches and optimize [...] Read more.
In recent years, modelling techniques have become more frequently adopted in the field of food processing, especially for cereal-based products, which are among the most consumed foods in the world. Predictive models and simulations make it possible to explore new approaches and optimize proceedings, potentially helping companies reduce costs and limit carbon emissions. Nevertheless, as the different phases of the food processing chain are highly specialized, advances in modelling are often unknown outside of a single domain, and models rarely take into account more than one step. This paper introduces the first high-level overview of modelling techniques employed in different parts of the cereal supply chain, from farming to storage, from drying to milling, from processing to consumption. This review, issued from a networking project including researchers from over 30 different countries, aims at presenting the current state of the art in each domain, showing common trends and synergies, to finally suggest promising future venues for research. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Open AccessReview
Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry
Foods 2020, 9(9), 1243; https://doi.org/10.3390/foods9091243 - 05 Sep 2020
Cited by 1
Abstract
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the [...] Read more.
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers’ spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods)
Show Figures

Figure 1

Back to TopTop