Table S1. Relative area of volatile compounds in flours and flour blend (%) | Volatile compound | Triticale* | Rye* | Hull-less barley* | Rice | Maize | Flour blend | |--------------------------|--------------------|--------------------|---------------------------|--------------------|--------------------|---------------------------| | Decanoic acid ethylester | 1.65 ± 0.07 c | 1.59 ± 0.07 c | 5.34 ± 0.04 a | 1.84 ± 0.06 c | 1.56 ± 0.06 c | 2.48 ± 0.18 b | | Hexanal | $5.43 \pm 0.04 d$ | 26.29 ± 0.72 a | $8.97 \pm 0.30 \text{ c}$ | 29.95 ± 0.63 a | 11.50 ± 0.32 b | 7.35 ± 0.22 c | | Hexanoic acid | 0.67 ± 0.02 e | 8.04 ± 0.27 a | $5.60 \pm 0.30 \text{ b}$ | 4.11 ± 0.32 c | $1.42 \pm 0.03 d$ | $1.29 \pm 0.06 d$ | | 1-Hexanol | 22.34 ± 0.76 a | 14.34 ± 0.32 b | 13.21 ± 0.50 bc | 12.17 ± 0.37 c | $5.27 \pm 0.29 d$ | 22.57 ± 0.37 a | | N-decanoic acid | 2.96 ± 0.16 c | 2.97 ± 0.20 c | 13.64 ± 0.89 a | 2.98 ± 0.17 c | $2.25 \pm 0.03 d$ | 4.27 ± 0.11 b | | Nonanoic acid | 0.84 ± 0.02 c | 0.98 ± 0.02 bc | 2.42 ± 0.08 a | 1.12 ± 0.05 b | 0.93 ± 0.02 bc | 0.87 ± 0.03 c | | Octanoic acid | $1.27 \pm 0.03 d$ | 1.57 ± 0.08 c | 3.95 ± 0.34 a | 2.41 ± 0.05 b | 1.50 ± 0.04 c | 1.83 ± 0.12 c | | 1-Octen-3-ol | 2.13 ± 0.26 de | $2.42 \pm 0.22 d$ | 3.39 ± 0.04 c | 5.48 ± 0.20 a | 1.61 ± 0.02 e | $4.36 \pm 0.10 \text{ b}$ | | 1-Pentanol | 2.44 ± 0.31 b | 2.40 ± 0.13 b | 2.23 ± 0.03 b | 3.64 ± 0.07 a | 1.03 ± 0.05 c | 3.00 ± 0.16 a | | Other | 60.27 ± 1.67 b | $39.39 \pm 1.82 d$ | $41.25 \pm 2.52 d$ | 36.30 ± 1.93 e | 72.93 ± 0.86 a | 51.97 ± 1.35 c | ^{*} whole grain flour. All data are means \pm standard deviation (n = 3). a, b, c ... : values with the different lowercase letters in the same row are significantly different, based on Tukey's test. Table S2. Relative area of volatile compounds in mixed dough | Volatile compounds | FB-MD | TKS-MD | SF-MD | |------------------------|--------------------|-----------------------------|----------------------------| | Acetic acid | 2.02 ± 0.14 k | $2.03 \pm 0.03 \mathrm{b}$ | 4.47 ± 0.15 a | | Carvone | 4.57 ± 0.21 | n.d. | n.d. | | Cyclobutanol | n.d | 0.68 ± 0.04 | n.d. | | D-limonene | 1.70 ± 0.08 | n.d. | n.d. | | Ethanol | 62.62 ± 0.48 a | $66.63 \pm 3.24 \text{ a}$ | $44.88 \pm 0.10 \text{ b}$ | | Ethylacetate | n.d | $24.36 \pm 1.50 \mathrm{b}$ | 42.73 ± 0.09 a | | Heptanol | 0.44 ± 0.10 | n.d. | n.d. | | Hexanal | 3.85 ± 0.01 a | $0.64 \pm 0.02 \mathrm{b}$ | 0.59 ± 0.01 b | | 1-Hexanol | 10.70 ± 0.15 | n.d. | 1.79 ± 0.03 | | 3-Methyl-1-butanol | 9.78 ± 0.16 a | $1.74 \pm 0.03 \text{ c}$ | 1.95 ± 0.01 b | | 4-Methyl-1-pentene | n.d | 2.62 ± 0.12 | n.d. | | 2-Methylpropanoic acid | 1.11 ± 0.05 | $0.65 \pm 0.1 \text{ b}$ | 0.89 ± 0.08 a | | 2-Methyl-1-propanol | 1.17 ± 0.25 a | $0.20 \pm 0.07 \mathrm{b}$ | n.d. | | (E)-3-Nonen-1-ol | 0.98 ± 0.06 | n.d. | n.d. | | 1-Octen-3-ol | 0.85 ± 0.14 | n.d. | n.d. | | Pentanoic acid | n.d | 0.17 ± 0.01 | n.d. | | 1-Pentanol | n.d | 0.28 ± 0.01 | n.d. | | 1-Penten-3-ol | 0.26 ± 0.05 | n.d. | n.d. | | N-Propylacetate | n.d | n.d. | 2.70 ± 0.12 | All data are means \pm standard deviation (n = 3). FB-MD: mixed triticale flour blend bread; TKS-MD: mixed flour blend dough with two-stage sourdough; SF-MD: mixed flour blend with ready-to-use sourdough. n.d.: not detected. a, b, c: values with the different letters in the same row are significantly different, based on Tukey's or t-test.