Sustainable 2-Phenylethanol Production: Co-Cultivation of Yarrowia lipolytica Strains in Mixed Agro-Industrial By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Pre-Treatments
2.2. Plasmid and Strain Construction
2.3. Synthetic Media and Culture Conditions
2.4. Fermentation Conditions and Growth Media Composition
2.5. Quantification of 2-PE
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sugar Beet Molasses and Brewer’s Spent Grains Pressing Extract Mixed Culture Medium
3.2. Brewer’s Spent Grains and Chicory Roots Pressing Extracts Mixed Culture Medium
3.3. Sugar Beet Molasses and Chicory Roots Pressing Extract Mixed Culture Medium
3.4. Mixed Culture Medium of Sugar Beet Molasses, Chicory Roots, and Brewer’s Spent Grains Pressing Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2-PE | 2-Phenylethanol | 
| SBM | Sugar beet molasses | 
| BSG | Brewer’s spent grains | 
| CR | Chicory roots | 
| CG | Crude glycerol | 
| YE | Yeast extract | 
| HPLC | High performance liquid chromatography | 
| AAA | Aromatic amino acid | 
| AMG | Amyloglucosidase | 
| 4HPPD | 4-Hydroxyphenylpyruvate dioxygenase | 
| LB | Luria Bertani | 
| YPD | Yeast Peptone Dextrose | 
| YNB | Yeast Nitrogen Base | 
| L-Phe | L-Phenylalanine | 
References
- Karataş, E. Overview of Yarrowia lipolytica: History, Taxonomy, Characteristics, and Reproduction. In Yarrowia lipolytica Yeast: From Metabolic Engineering to Biotechnological Applications; Koubaa, M., Mitri, S., Louka, N., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 1–32. [Google Scholar]
- Zieniuk, B.; Fabiszewska, A. Yarrowia lipolytica: A Beneficious Yeast in Biotechnology as a Rare Opportunistic Fungal Pathogen: A Minireview. World J. Microbiol. Biotechnol. 2019, 35, 10. [Google Scholar] [CrossRef]
- López-Trujillo, J.; Mellado-Bosque, M.; Ascacio-Valdés, J.A.; Prado-Barragán, L.A.; Hernández-Herrera, J.A.; Aguilera-Carbó, A.F. Temperature and PH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation 2023, 9, 819. [Google Scholar] [CrossRef]
- Park, Y.K.; Ledesma-Amaro, R. What Makes Yarrowia lipolytica Well Suited for Industry? Trends Biotechnol. 2023, 41, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Li, Z.; Wang, X.; Gao, R.; Zhou, X.; Cheng, S.; Men, Y.; Zheng, L. Approaches to Improve the Lipid Synthesis of Oleaginous Yeast Yarrowia lipolytica: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111386. [Google Scholar] [CrossRef]
- Vandermies, M.; Fickers, P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019, 7, 40. [Google Scholar] [CrossRef]
- Carsanba, E.; Agirman, B.; Papanikolaou, S.; Fickers, P.; Erten, H. Valorisation of Waste Bread for the Production of Yeast Biomass by Yarrowia lipolytica Bioreactor Fermentation. Fermentation 2023, 9, 687. [Google Scholar] [CrossRef]
- Deken, R.H. The Crabtree Effect: A Regulatory System in Yeast. J. Gen. Microbiol. 1966, 44, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.; Mesquita, D.P.; Cordeiro, A.; Belo, I.; Ferreira, E.C.; Amaral, A.L. Monitoring Biotechnological Processes through Quantitative Image Analysis: Application to 2-Phenylethanol Production by Yarrowia lipolytica. Process Biochem. 2023, 129, 221–229. [Google Scholar] [CrossRef]
- Dias, B.; Fernandes, H.; Belo, I.; Lopes, M. Exploring Lipids and Citric Acid Production by Yarrowia lipolytica in Lignocellulosic Biomass Hydrolysate-Mimicking Media: Effect of Cultivation Operation Modes. Process Biochem. 2025, 159, 25–32. [Google Scholar] [CrossRef]
- Naveira-Pazos, C.; Veiga, M.C.; Kennes, C. Synthetic Media, Agro-Industrial by-Products, and Culture Conditions Used in Biotechnological Applications of Yarrowia lipolytica. In Yarrowia lipolytica Yeast: From Metabolic Engineering to Biotechnological Applications; Koubaa, M., Mitri, S., Louka, N., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 165–210. [Google Scholar]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Theodosiou, E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023, 13, 657. [Google Scholar] [CrossRef]
- Darvishi, F.; Ariana, M.; Marella, E.R.; Borodina, I. Advances in Synthetic Biology of Oleaginous Yeast Yarrowia lipolytica for Producing Non-Native Chemicals. Appl. Microbiol. Biotechnol. 2018, 102, 5925–5938. [Google Scholar] [CrossRef]
- de Lima, L.A.; Ventorim, R.Z.; Bianchini, I.A.; de Queiroz, M.V.; Fietto, L.G.; da Silveira, W.B. Obtainment, Selection and Characterization of a Mutant Strain of Kluyveromyces marxianus That Displays Improved Production of 2-Phenylethanol and Enhanced DAHP Synthase Activity. J. Appl. Microbiol. 2021, 130, 878–890. [Google Scholar] [CrossRef]
- Yan, W.; Gao, H.; Jiang, W.; Jiang, Y.; Lin, C.S.K.; Zhang, W.; Xin, F.; Jiang, M. The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered Escherichia coli and Meyerozyma guilliermondii. ACS Synth. Biol. 2022, 11, 4018–4030. [Google Scholar] [CrossRef]
- Braga, A.; Freitas, B.; Cordeiro, A.; Belo, I. Valorization of Crude Glycerol as Carbon Source for the Bioconversion of L-Phenylamine to 2-Phenylethanol by Yarrowia Species. J. Chem. Technol. Biotechnol. 2021, 96, 2940–2949. [Google Scholar] [CrossRef]
- Kong, S.; Pan, H.; Liu, X.; Li, X.; Guo, D. De Novo Biosynthesis of 2-Phenylethanol in Engineered Pichia pastoris. Enzyme Microb. Technol. 2020, 133, 109459. [Google Scholar] [CrossRef]
- Souza, M.A.d.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.d.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- Barcelos, M.C.S.; Ramos, C.L.; Kuddus, M.; Rodriguez-Couto, S.; Srivastava, N.; Ramteke, P.W.; Mishra, P.K.; Molina, G. Enzymatic Potential for the Valorization of Agro-Industrial by-Products. Biotechnol. Lett. 2020, 42, 1799–1827. [Google Scholar] [CrossRef]
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.L.C.; Bezerra, F.W.F.; Pinto, R.H.H.; de Carvalho Junior, R.N. From Waste to Sustainable Industry: How Can Agro-Industrial Wastes Help in the Development of New Products? Resour. Conserv. Recycl. 2021, 169, 105466. [Google Scholar] [CrossRef]
- Makambai kyzy, A.; Mazhitova, A. Biotechnological Valorization of Sugar Beet Wastes into Value-Added Products. MANAS J. Eng. 2023, 11, 136–144. [Google Scholar] [CrossRef]
- Schmid, M.T.; Song, H.; Raschbauer, M.; Emerstorfer, F.; Omann, M.; Stelzer, F.; Neureiter, M. Utilization of Desugarized Sugar Beet Molasses for the Production of Poly(3-Hydroxybutyrate) by Halophilic Bacillus megaterium Uyuni S29. Process Biochem. 2019, 86, 9–15. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Jiang, H. Microbial Production of Value-Added Bioproducts and Enzymes from Molasses, a by-Product of Sugar Industry. Food Chem. 2021, 346, 128860. [Google Scholar] [CrossRef]
- El Kantar, S.; Koubaa, M. Valorization of Low-Cost Substrates for the Production of Odd Chain Fatty Acids by the Oleaginous Yeast Yarrowia lipolytica. Fermentation 2022, 8, 284. [Google Scholar] [CrossRef]
- Oliver, G.; Colicchio, T. The Oxford Companion to Beer; The Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Patel, A.; Mikes, F.; Bühler, S.; Matsakas, L. Valorization of Brewers’ Spent Grain for the Production of Lipids by Oleaginous Yeast. Molecules 2018, 23, 3052. [Google Scholar] [CrossRef]
- Parchami, M.; Ferreira, J.A.; Taherzadeh, M.J. Brewing Process Development by Integration of Edible Filamentous Fungi to Upgrade the Quality of Brewer’s Spent Grain (BSG). BioResources 2021, 16, 1686. [Google Scholar] [CrossRef]
- Tsouko, E.; Pilafidis, S.; Dimopoulou, M.; Kourmentza, K.; Sarris, D. Bioconversion of Underutilized Brewing By-Products into Bacterial Cellulose by a Newly Isolated Komagataeibacter rhaeticus Strain: A Preliminary Evaluation of the Bioprocess Environmental Impact. Bioresour. Technol. 2023, 387, 129667. [Google Scholar] [CrossRef] [PubMed]
- Pabbathi, N.P.P.; Velidandi, A.; Pogula, S.; Gandam, P.K.; Baadhe, R.R.; Sharma, M.; Sirohi, R.; Thakur, V.K.; Gupta, V.K. Brewer’s Spent Grains-Based Biorefineries: A Critical Review. Fuel 2022, 317, 123435. [Google Scholar] [CrossRef]
- Perović, J.; Tumbas Šaponjac, V.; Kojić, J.; Krulj, J.; Moreno, D.A.; García-Viguera, C.; Bodroža-Solarov, M.; Ilić, N. Chicory (Cichorium intybus L.) as a Food Ingredient—Nutritional Composition, Bioactivity, Safety, and Health Claims: A Review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef] [PubMed]
- Massoud, M.; Amin, W.; Elgindy, A.A. Chemical and Technological Studies on Chicory (Cichorium intybus L.) and Its Applications in Some Functional Food. J. Adv. Agric. Res. Fac. Ag. Saba Basha 2009, 14, 735–755. [Google Scholar]
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement. Sci. World J. 2017, 1, 7343928. [Google Scholar] [CrossRef]
- Zhu, Z.; Bals, O.; Grimi, N.; Vorobiev, E. Pilot Scale Inulin Extraction from Chicory Roots Assisted by Pulsed Electric Fields. Int. J. Food Sci. Technol. 2012, 47, 1361–1368. [Google Scholar] [CrossRef]
- Grigs, O.; Didrihsone, E.; Bolmanis, E. Investigation of a Broad-Bean Based Low-Cost Medium Formulation for Bacillus subtilis MSCL 897 Spore Production. Fermentation 2023, 9, 390. [Google Scholar] [CrossRef]
- Mitri, S.; Louka, N.; Rossignol, T.; Maroun, R.G.; Koubaa, M. Bioproduction of 2-Phenylethanol by Yarrowia lipolytica on Sugar Beet Molasses as a Low-Cost Substrate. Fermentation 2024, 10, 290. [Google Scholar] [CrossRef]
- Mitri, S.; Louka, N.; Rossignol, T.; Maroun, R.G.; Koubaa, M. Brewer’s Spent Grain and Crude Glycerol: Sustainable Substrates for 2-Phenylethanol Production by Yarrowia lipolytica. Futur. Foods 2025, 11, 100569. [Google Scholar] [CrossRef]
- Larroude, M.; Nicaud, J.M.; Rossignol, T. Yarrowia lipolytica Chassis Strains Engineered to Produce Aromatic Amino Acids via the Shikimate Pathway. Microb. Biotechnol. 2021, 14, 2420–2434. [Google Scholar] [CrossRef] [PubMed]
- Larroude, M.; Onésime, D.; Rué, O.; Nicaud, J.M.; Rossignol, T. A Yarrowia lipolytica Strain Engineered for Pyomelanin Production. Microorganisms 2021, 9, 838. [Google Scholar] [CrossRef] [PubMed]
- Hapeta, P.; Rakicka, M.; Dulermo, R.; Gamboa-Meléndez, H.; Cruz-Le Coq, A.M.; Nicaud, J.M.; Lazar, Z. Transforming Sugars into Fat—Lipid Biosynthesis Using Different Sugars in Yarrowia lipolytica. Yeast 2017, 34, 293–304. [Google Scholar] [CrossRef]
- Larroude, M.; Park, Y.K.; Soudier, P.; Kubiak, M.; Nicaud, J.M.; Rossignol, T. A Modular Golden Gate Toolkit for Yarrowia lipolytica Synthetic Biology. Microb. Biotechnol. 2019, 12, 1249–1259. [Google Scholar] [CrossRef]
- Park, Y.K.; Sellés Vidal, L.; Bell, D.; Zabret, J.; Soldat, M.; Kavšček, M.; Ledesma-Amaro, R. Efficient Synthesis of Limonene Production in Yarrowia lipolytica by Combinatorial Engineering Strategies. Biotechnol. Biofuels Bioprod. 2024, 17, 94. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, Y.; Trushenski, J.; Blackburn, J.W. Converting Crude Glycerol Derived from Yellow Grease to Lipids through Yeast Fermentation. Bioresour. Technol. 2010, 101, 7581–7586. [Google Scholar] [CrossRef] [PubMed]
- Bordet, F.; Joran, A.; Klein, G.; Roullier-Gall, C.; Alexandre, H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020, 8, 600. [Google Scholar] [CrossRef]
- Valdez Castillo, M.; Tahmasbi, H.; Pachapur, V.L.; Brar, S.K.; Vuckovic, D.; Sitnikov, D.; Arriaga, S.; Blais, J.F.; Avalos Ramirez, A. Production of Aroma and Flavor-Rich Fusel Alcohols by Cheese Whey Fermentation Using the Kluyveromyces marxianus and Debaryomyces hansenii Yeasts in Monoculture and Co-Culture Modes. J. Chem. Technol. Biotechnol. 2021, 96, 2354–2367. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Z.C.; Wang, X.; Li, L.L.; Yang, L.; Tang, W.Z.; Yu, Z.M.; Li, X. Invertase Suc2-Mediated Inulin Catabolism Is Regulated at the Transcript Level in Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 59. [Google Scholar] [CrossRef]
- Wang, S.A.; Li, F.L. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013, 79, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, W.J.; Liu, N.N.; Tan, M.J.; Liu, G.L.; Chi, Z.M. Role of SUC2 Gene and Invertase of Saccharomyces Sp. W0 in Inulin Hydrolysis. J. Mol. Catal. B Enzym. 2015, 111, 71–78. [Google Scholar] [CrossRef]
- Naumov, G.I.; Naumova, E.S. Invertase Overproduction May Provide for Inulin Fermentation by Selection Strains of Saccharomyces cerevisiae. Microbiology 2015, 84, 130–134. [Google Scholar] [CrossRef]
- Mitri, S.; Koubaa, M.; Maroun, R.G.; Rossignol, T.; Nicaud, J.M.; Louka, N. Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022, 11, 109. [Google Scholar] [CrossRef]
- Braga, A.; Oliveira, A.; Freitas, B.; Nagy, E.; Nguyen, D.Q.; Belo, I. Yarrowia lipolytica as a Potential Producer of 2-Phenylethanol from L-Phenylalanine Biotransformation. In Proceedings of the 13th International Chemical and Biological Engineering Conference—CHEMPOR, Aveiro, Portugal, 2–4 October 2018; Volume 2018, pp. 41–42. [Google Scholar]
- Valdez Castillo, M.; Brar, S.K.; Arriaga, S.; Blais, J.F.; Heitz, M.; Avalos Ramirez, A. Co-Fermentation of Agri-Food Residues Using a Co-Culture of Yeasts as a New Bioprocess to Produce 2-Phenylethanol. Molecules 2023, 28, 5536. [Google Scholar] [CrossRef]
- Alonso-Vargas, M.; Téllez-Jurado, A.; Gómez-Aldapa, C.A.; Ramírez-Vargas, M.D.R.; Conde-Báez, L.; Castro-Rosas, J.; Cadena-Ramírez, A. Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces marxianus. Fermentation 2022, 8, 39. [Google Scholar] [CrossRef]
- Drężek, K.; Kozłowska, J.; Detman, A.; Mierzejewska, J. Development of a Continuous System for 2-Phenylethanol Bioproduction by Yeast on Whey Permeate-Based Medium. Molecules 2021, 26, 7388. [Google Scholar] [CrossRef] [PubMed]
- Mierzejewska, J.; Dąbkowska, K.; Chreptowicz, K.; Sokołowska, A. Hydrolyzed Corn Stover as a Promising Feedstock for 2-Phenylethanol Production by Nonconventional Yeast. J. Chem. Technol. Biotechnol. 2019, 94, 777–784. [Google Scholar] [CrossRef]
- Tong, Q.; Yang, L.; Zhang, J.; Zhang, Y.; Jiang, Y.; Liu, X.; Deng, Y. Comprehensive Investigations of 2-Phenylethanol Production by the Filamentous Fungus Annulohypoxylon stygium. Appl. Microbiol. Biotechnol. 2024, 108, 374. [Google Scholar] [CrossRef] [PubMed]





| Strain Number | Description/Genome | Reference | 
|---|---|---|
| JMY8032 | Po1d + URA3ex-YlARO1-YlARO2 + LEU2ex(recovered)ScARO4K229L-ScARO7T226I + LEU2ex-YlTKL + NATex-YlARO8-YlARO10 | [39] | 
| JMY9398 | JMY9392 + ZetaUP-URA3-8UASpTEF–AMG-8UASpTEF-ScAro3-8UASpTEF-α amylase-tLip2-Zeta Down | [37] | 
| JMY9385 | JMY8032 + GSY-hgh-pTEF-AMG-T1-GSY | [38] | 
| JMY8131 | JMY8032, Δ4HPPD | This study | 
| Yl117 | JMY8131 + JMP62-KmINU1 | This study | 
| Yl119 | Yl117 + 4UASpTEF-YlPha2-Leu2ex | This study | 
| Co-Culture 1: SBM and BSG | Co-Culture 2: BSG and CR | Co-Culture 3: SBM and CR | Co-Culture 4: SBM, CR, and BSG | |||||
|---|---|---|---|---|---|---|---|---|
| Preculture 44.14 g/L SBM diluted in BSG—JMY9398 | Preculture 44.14 g/L SBM diluted in BSG—JMY9385 | Preculture BSG pressing extract—JMY9385 | Preculture CR pressing extract—Yl119 | Preculture 44.14 g/L SBM diluted in CR pressing extract—JMY9398 | Preculture CR pressing extract—Yl119 | Preculture 44.14 g/L SBM diluted in CR/BSG pressing extract—JMY9398 | Preculture CR pressing extract—Yl119 | Preculture BSG pressing extract—JMY9385 | 
| Yeast Species | Main Components of Culture Media | L-Phenylalanine Supplementation | 2-Phenylethanol Production | Reference | 
|---|---|---|---|---|
| Y. lipolytica (Yl119 and JMY9398) | Co-culture: SBM + CR pressing extract | 0 g/L | 2.47 g/L | This study | 
| Y. lipolytica (Yl119) | CR pressing extract | 0 g/L | 2.32 g/L | This study | 
| Y. lipolytica (JMY9385) | 45.90 g/L CG in BSG + 2.87 g/L YE | 0 g/L | 1.52 g/L | [38] | 
| Y. lipolytica (JMY9398) | 44.14 g/L SBM + 3.2 g/L YE | 0 g/L | 0.71 g/L | [37] | 
| Y. lipolytica (CH 1/5) | 40 g/L CG | 8 g/L at 0 h; +4 g/L at 80 h | 3.2 g/L | [17] | 
| K. marxianus | Sweet whey | 4.5 g/L | 1.25 g/L | [54] | 
| K. marxianus (WUT240) | 25 g/L Whey permeate (≈20 g/L lactose) | 5 g/L | 2.14 g/L | [55] | 
| P. fermentans (WUT36) | H01 medium: lignocellulosic hydrolysates pretreated with alkaline hydrogen peroxide for 0.5 h + 0.4% (w/v) YE | 0.5% (w/v) | 3.67 g/L | [56] | 
| Annulohypoxylon stygium (S20) | 600 g/L Potato Infusion + 40 g/L Maltose | 6 g/L | 2.33 g/L | [57] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitri, S.; Louka, N.; Rossignol, T.; Maroun, R.G.; Koubaa, M. Sustainable 2-Phenylethanol Production: Co-Cultivation of Yarrowia lipolytica Strains in Mixed Agro-Industrial By-Products. Fermentation 2025, 11, 611. https://doi.org/10.3390/fermentation11110611
Mitri S, Louka N, Rossignol T, Maroun RG, Koubaa M. Sustainable 2-Phenylethanol Production: Co-Cultivation of Yarrowia lipolytica Strains in Mixed Agro-Industrial By-Products. Fermentation. 2025; 11(11):611. https://doi.org/10.3390/fermentation11110611
Chicago/Turabian StyleMitri, Sara, Nicolas Louka, Tristan Rossignol, Richard G. Maroun, and Mohamed Koubaa. 2025. "Sustainable 2-Phenylethanol Production: Co-Cultivation of Yarrowia lipolytica Strains in Mixed Agro-Industrial By-Products" Fermentation 11, no. 11: 611. https://doi.org/10.3390/fermentation11110611
APA StyleMitri, S., Louka, N., Rossignol, T., Maroun, R. G., & Koubaa, M. (2025). Sustainable 2-Phenylethanol Production: Co-Cultivation of Yarrowia lipolytica Strains in Mixed Agro-Industrial By-Products. Fermentation, 11(11), 611. https://doi.org/10.3390/fermentation11110611
 
        






 
       