Application of Fermentation Technology in Biomass Utilization and Biofuels Production, 2nd Edition

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1675

Special Issue Editor

Special Issue Information

Dear Colleagues,

Bioenergy—encompassing solid, liquid, or gaseous biofuels fermented from sugars embedded in biomass—is a sustainable alternative to fossil fuels as it can be produced from renewable sources that can be continuously replenished. Increasing its application could help to alleviate greenhouse gas emissions.

Despite the potential benefits of bioenergy, various challenges remain in the application of fermentation technology in biomass utilization and biofuel production. We thus invite researchers to contribute original research articles and review articles that will stimulate more studies in bioenergy production from biomass via fermentation, with a focus on fundamental science and technological innovations. We are particularly interested in articles describing the use of fermentative technologies for energy recovery from biomass, different fermentation methods and their biotechnological application, and so forth. Potential topics include, but are not limited to, the following:

  • Photo fermentation;
  • Electrofermentation;
  • Dark fermentation;
  • Integrated fermentation;
  • Liquid biofuels production;
  • Biogas/biohydrogen production and purification;
  • The lifecycle analysis of bioenergy production;
  • Metabolic engineering;
  • The economical evaluation of bioenergy production.

Dr. Lei Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photo fermentation
  • electro fermentation
  • dark fermentation
  • integrated fermentation
  • liquid biofuels production
  • biogas/biohydrogen production and purification
  • lifecycle analysis of bioenergy production
  • metabolic engineering
  • economical evaluation of bioenergy production

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

35 pages, 2131 KB  
Review
Harnessing Bioelectrochemical and Anaerobic Systems for the Degradation of Bioplastics: Application Potential and Future Directions
by Shuyao Wang, Abid Hussain, Xunchang Fei, Kaushik Venkiteshwaran and Vijaya Raghavan
Fermentation 2025, 11(11), 610; https://doi.org/10.3390/fermentation11110610 - 27 Oct 2025
Viewed by 1475
Abstract
As the environmental burden of traditional plastics continues to grow, bioplastics (BPs) have emerged as a promising alternative due to their renewable origins and potential for biodegradability. However, the most popular anaerobic systems (ASs)—anaerobic digestion (AD), acidogenic fermentation (AF), and enzyme hydrolysis (EH)—for [...] Read more.
As the environmental burden of traditional plastics continues to grow, bioplastics (BPs) have emerged as a promising alternative due to their renewable origins and potential for biodegradability. However, the most popular anaerobic systems (ASs)—anaerobic digestion (AD), acidogenic fermentation (AF), and enzyme hydrolysis (EH)—for BPs degradation still face many challenges, e.g., low degradation efficiency, process instability, etc. As a sustainable clean energy technology, bioelectrochemical systems (BESs) have demonstrated strong potential in the treatment of complex organic waste when integrated with ASs. Nevertheless, research on the synergistic degradation of BPs using BES-ASs remains relatively limited. This review systematically summarizes commonly used anaerobic degradation methods for BPs, along with their advantages and limitations, and highlights the BES-AS as an innovative strategy to enhance BPs degradation efficiency. BESs can accelerate the decomposition of complex polymer structures through the activity of electroactive microorganisms, while also offering benefits such as energy recovery and real-time process monitoring. When coupled with anaerobic digestion, the BES-AS demonstrates significant synergistic effects, improving degradation efficiency and promoting the production of high-value-added products such as volatile fatty acids (VFAs) and biogas, thereby showing great application potential. This review outlines current research progress, identifies key knowledge gaps in mechanism elucidation, system design, source recovery, etc., and proposes future research directions. These include system optimization, microbial community engineering, development of advanced electrode materials, and omics-based mechanistic studies. Advancing multidisciplinary integration is expected to accelerate the practical application of BES-ASs in BP waste management and contribute to achieving the goals of sustainability, efficiency, and circular utilization. Full article
Show Figures

Figure 1

Back to TopTop