Special Issue "Early Career Stars in Civil Engineering"

A special issue of CivilEng (ISSN 2673-4109).

Deadline for manuscript submissions: 15 December 2021.

Special Issue Editors

Prof. Dr. João Castro-Gomes
E-Mail Website
Guest Editor
Department of Civil Engineering and Architecture, University of Beira Interior, 6201‐001 Covilhã, Portugal
Interests: environmentally sustainable binders and composites; technologies for sustainable construction; microstructure of materials; materials durability testing and performance; building materials
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Cristina Fael
E-Mail Website
Guest Editor
C-MADE Centre of Materials and Building Technologies, Department of Civil Engineering and Architecture, University of Beira Interior, 6201-001 Covilhã, Portugal
Interests: river hydraulics; scour and countermeasures
Dr. Miguel Nepomuceno
E-Mail Website
Guest Editor
C-MADE Centre of Materials and Building Technologies, Department of Civil Engineering and Architecture, University of Beira Interior, 6201-001 Covilhã, Portugal
Interests: special concretes and mortars; energy efficiency in buildings
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

“Early Career Stars in Civil Engineering” is a CivilEng Special Issue aimed at early career researchers in civil engineering (students and scholars who are at the undergraduate, graduate, or post-graduate level—up to 5 years post-doctoral degree).

This Special Issue aims to publish original research solutions for tackling the Sustainable Development Goals set by the United Nations within the areas of civil engineering, including materials, buildings, and structures; coastal and offshore engineering; development, planning, and urban engineering; energy; geology, geotechnical, and ground engineering; transportation and water. This Special Issue will bring a better understanding of how the emergent research in civil engineering can answer to the multiple and complex questions regarding the major global threats for planet Earth, such as climate change, pollution, and overpopulation.  Thus, early career researchers are invited to contribute submissions focused on, but not limited to, the following necessary and emergent research topics in civil engineering and related areas:

  • The replacement of carbon-intensive materials with low-carbon and carbon-adsorbent materials;
  • Digital transformation in the civil engineering industry;
  • Protection of the infrastructures from coastal erosion, flooding, river- and sea-level rise;
  • Enhancing the durability and behavior of structural components and systems;
  • Making urban communities human friendly, more sustainable, and resilient to disasters;
  • Improving nature's connection to construction through biotechnology and nature-based solutions;
  • Designing next-generation energy infrastructure, such us geothermal energy extraction;
  • Advances in geological modeling and the study of engineering behavior of earth materials;
  • Planning future roads and transportation for high levels of adaptation, automation, and resilience;
  • Improving the efficiency of the existing infrastructure, both in terms of flood responses and to boost the supply of potable water.

Prof. João Castro Gomes
Prof. Cristina Fael 
Prof. Miguel Nepomuceno 
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. CivilEng is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC
CivilEng 2021, 2(4), 986-1008; https://doi.org/10.3390/civileng2040053 - 10 Nov 2021
Viewed by 256
Abstract
The automated fault detection and diagnostics (AFDD) of heating, ventilation, and air conditioning (HVAC) using data mining and machine learning models have recently received substantial attention from researchers and practitioners. Various models have been developed over the years for AFDD of complete HVAC [...] Read more.
The automated fault detection and diagnostics (AFDD) of heating, ventilation, and air conditioning (HVAC) using data mining and machine learning models have recently received substantial attention from researchers and practitioners. Various models have been developed over the years for AFDD of complete HVAC or its sub-systems. However, HVAC complexities, which partly have roots in its close coupling nature and interrelated dependencies, mean that understanding the relationship between faults and the suitability of the techniques remains an unanswered question. The literature analysis and interactive visualization of the data collected from the past implementation of AFDD models can provide useful insight to further explore this question by applying artificial intelligence (AI). Association rule mining (ARM) is deployed by this paper, using the frequent pattern (FP) growth algorithm to generate frequent fault sets for most common HVAC faults from the body of AFDD models developed in the literature to represent the status quo. A new model is developed for common HVAC faults and the techniques most frequently used to detect and diagnose them. A recommender system is developed using the ARM model to extract knowledge from the body of knowledge of HVAC data-driven AFDD in the form of rule-sets that reflect the associations. Findings of this review paper can significantly help civil and building engineers, as well as facility managers, in better management of building HVAC systems. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
A Neural Network Inverse Optimization Procedure for Constitutive Parameter Identification and Failure Mode Estimation of Laterally Loaded Unreinforced Masonry Walls
CivilEng 2021, 2(4), 943-968; https://doi.org/10.3390/civileng2040051 - 03 Nov 2021
Viewed by 311
Abstract
A new Neural Network Optimization (NNO) algorithm for constitutive material parameter identification based on inverse analysis of experimental tests of small-scale masonry prisms under compressive loads is presented. The Concrete Damaged Plasticity (CDP) constitutive model is used for the brick and mortar of [...] Read more.
A new Neural Network Optimization (NNO) algorithm for constitutive material parameter identification based on inverse analysis of experimental tests of small-scale masonry prisms under compressive loads is presented. The Concrete Damaged Plasticity (CDP) constitutive model is used for the brick and mortar of the Unreinforced Masonry (URM) walls. By comparisons with experimental data taken from laboratory tests, it is demonstrated that the constitutive parameters calibrated by application of the proposed inverse optimization procedure on the small-scale (prism) experimental results are sufficiently accurate to allow for the prediction of the mechanical response of large-scale URM walls subject to compressive and lateral loads. This eliminates the need for large-scale URM wall experimental tests for the identification of their material properties, making the calibration process more economic. After verifying the accuracy of the calibrated constitutive parameters based on the above comparisons, a numerical parametric study is performed for the investigation of the effect of material behavior and geometrical aspect ratios on the failure mechanisms of large-scale URM walls. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Laboratory Study on Non-Destructive Evaluation of Polyethylene Liquid Storage Tanks by Thermographic and Ultrasonic Methods
CivilEng 2021, 2(4), 823-851; https://doi.org/10.3390/civileng2040045 - 28 Sep 2021
Viewed by 371
Abstract
High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to [...] Read more.
High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to identify signs of aging and damage, current methods may not adequately capture all defects, particularly if they are subsurface or too small to be seen during visual inspection. Therefore, to improve the ability to identify potential durability issues with HDPE ASTs, additional non-destructive evaluation (NDE) techniques need to be considered and assessed for applicability. Specifically, this study investigates the efficiency of using infrared thermography (IRT) as a rapid method to simultaneously examine large areas of the tank exterior, which will be followed by closer inspections with conventional and phased array ultrasonic testing (UT) methods. Results show that IRT can help to detect defects that are shallow, specifically located within half of the tank’s wall thickness from the surface. UT has the ability to detect all defects at any depth. Moreover, phased array UT helps to identify stacked defects and characterize each defect more precisely than IRT. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag
CivilEng 2021, 2(3), 794-810; https://doi.org/10.3390/civileng2030043 - 04 Sep 2021
Viewed by 547
Abstract
Reclaimed asphalt pavement (RAP) is a recyclable aggregate produced during the demolition of old flexible pavements and consists of natural aggregates (NA) coated with aged bitumen. The detrimental effect caused by the bitumen coating on strength and porosity has limited the use of [...] Read more.
Reclaimed asphalt pavement (RAP) is a recyclable aggregate produced during the demolition of old flexible pavements and consists of natural aggregates (NA) coated with aged bitumen. The detrimental effect caused by the bitumen coating on strength and porosity has limited the use of RAP on traditional cementitious systems. This study investigates the potential use of fine RAP to substitute NA in the production of alkali-activated slag mortars (AAM). The effect of different activator dosages was assessed, i.e., either 4% or 6% Na2O (wt. slag) combined with a modulus of silica equal to 0, 0.5 and 1.0. The characterisation of 100% RAP-AAM consisted of hydration kinetics (Isothermal Calorimetry), pore size distribution (Mercury Intrusion Porosimetry), mechanical performance (Compressive and Flexural strength), and microstructure analysis (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy). The results show that RAP aggregates do not compromise the reaction of the matrices; however, it causes a significant strength loss (compressive strength of RAP-mortars 54% lower than reference NA-mortar at 28 days). The higher porosity at the interface transition zone of RAP-AAM is the main responsible for the lower strength performance. Increasing silicate dosages improves alkaline activation, but it has little impact on the adhesion between aggregate and bitumen. Despite the poorer mechanical performance, 100% RAP-AAM still yields enough strength to promote this recycled material in engineering applications. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
An Adaptive Hybrid Model for Determining Subjective Causal Relationships in Fuzzy System Dynamics Models for Analyzing Construction Risks
CivilEng 2021, 2(3), 747-764; https://doi.org/10.3390/civileng2030041 - 03 Sep 2021
Viewed by 411
Abstract
Modeling risk management systems in construction projects is a complex process because of various internal and external factors and their interrelationships. Fuzzy system dynamics (FSD) have been commonly employed to model and analyze construction risk management systems. To run FSD simulation models, all [...] Read more.
Modeling risk management systems in construction projects is a complex process because of various internal and external factors and their interrelationships. Fuzzy system dynamics (FSD) have been commonly employed to model and analyze construction risk management systems. To run FSD simulation models, all hard (objective) and soft (subjective) causal relationships between variables must be quantified. However, a research gap exists regarding structured methods for constructing soft causal relationships in FSD models. This paper proposes an adaptive hybrid model consisting of fuzzy analytical hierarchy process, weighted principle of justifiable granularity, and fuzzy aggregation operators to determine crisp values of causality degree for soft (subjective) causal relationships in FSD modeling of construction risk analysis. The proposed model is implemented in analyzing construction risks of a windfarm project to illustrate its applicability. The proposed model generates two results: (1) optimized membership functions for linguistic terms representing the causality degree of soft relationships and (2) the crisp value for the causality degree of soft relationships. The contribution of study is to propose a structured model to improve efficiency and effectiveness of developing FSD quantitative modeling by addressing soft causal relationships between different variables in FSD models and considering multiple risk expertise of heterogeneous experts in construction risk assessment. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Fiber Reinforced Polymer as Wood Roof-to-Wall Connections to Withstand Hurricane Wind Loads
CivilEng 2021, 2(3), 652-669; https://doi.org/10.3390/civileng2030036 - 08 Aug 2021
Viewed by 623
Abstract
Light wood roof-to-wall connections are vulnerable when subjected to high-speed winds. In lieu of traditional metal connections, the present finite element analysis (FEA) study focuses on the use of epoxy and easy-to-apply, noncorrosive FRP ties to connect the roof and the walls in [...] Read more.
Light wood roof-to-wall connections are vulnerable when subjected to high-speed winds. In lieu of traditional metal connections, the present finite element analysis (FEA) study focuses on the use of epoxy and easy-to-apply, noncorrosive FRP ties to connect the roof and the walls in wood frames. The FEA models of the wood roof-to-wall GFRP connection were validated with an experimental study in the literature. Subsequently parametric study was performed on the validated FEA models. Parameters considered were the addition of anchorages to secure the GFRP ties for FEA models of shear and uplift tests, and various FRP types. Wood roof-to-wall connection uplift model was subjected to monotonic cyclic loading to simulate the effect of wind load. In addition, carbon and basalt FRP ties were also examined under monotonic cyclic loading. To evaluate the efficiency of GFRP ties with and without anchorages, the shear and uplift design loads specified in ASCE 7-16 were calculated. Finally, a formula was proposed to approximate the shear strength of GFRP connection in comparison with double shear bolted metal plate connections. The FEA models and experimental results were in good agreement. The finite element results revealed that anchorage increased the uplift load capacity by 15% but the increase in shear capacity was insignificant. Comparing glass, carbon, and basalt FRP ties, BFRP was superior in deformation capacity and CFRP provided more stiffness on uplift test simulation. GFRP ties were found to be approximately nine times stronger in shear and two times stronger in uplift resistance than hurricane clips. Finally, the proposed formula could predict the shear strength of GFRP tie connection which in turns contributes to the design and future research. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Numerical Modelling and Design of Aluminium Alloy Angles under Uniform Compression
CivilEng 2021, 2(3), 632-651; https://doi.org/10.3390/civileng2030035 - 06 Aug 2021
Viewed by 655
Abstract
Research studies have been reported on aluminium alloy tubular and doubly symmetric open cross-sections, whilst studies on angle cross-sections remain limited. This paper presents a comprehensive numerical study on the response of aluminium alloy angle stub columns. Finite element models are developed following [...] Read more.
Research studies have been reported on aluminium alloy tubular and doubly symmetric open cross-sections, whilst studies on angle cross-sections remain limited. This paper presents a comprehensive numerical study on the response of aluminium alloy angle stub columns. Finite element models are developed following a series of modelling assumptions. Geometrically and materially nonlinear analyses with imperfections included are executed, and the obtained results are validated against experimental data available in the literature. Subsequently, a parametric study is carried out to investigate the local buckling behaviour of aluminium alloy angles. For this purpose, a broad range of cross-sectional aspect ratios, slenderness and two types of structural aluminium alloys are considered. Their effect on the cross-sectional behaviour and strength is discussed. Moreover, the numerically obtained ultimate strengths together with literature test data are utilised to assess the applicability of the European design standards, the American Aluminium Design Manual and the Continuous Strength Method to aluminium alloy angles. The suitability of the Direct Strength Method is also evaluated and a modified method is proposed to improve the accuracy of the strength predictions. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Enhancing Density-Based Mining Waste Alkali-Activated Foamed Materials Incorporating Expanded Cork
CivilEng 2021, 2(2), 523-540; https://doi.org/10.3390/civileng2020029 - 21 Jun 2021
Viewed by 558
Abstract
This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 [...] Read more.
This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Precast Concrete Building Construction and Envelope Thermal Behavior: A Case Study on Portuguese Public Social Housing
CivilEng 2021, 2(2), 271-289; https://doi.org/10.3390/civileng2020015 - 09 Apr 2021
Cited by 1 | Viewed by 723
Abstract
A considerable part of Southern European countries building stock was constructed before the implementation of national thermal regulations, and as such, it is currently exposed to challenges such as energy poverty and climate change. Portuguese public social housing presents a significant variety of [...] Read more.
A considerable part of Southern European countries building stock was constructed before the implementation of national thermal regulations, and as such, it is currently exposed to challenges such as energy poverty and climate change. Portuguese public social housing presents a significant variety of construction systems and applied typologies. Among them, the “Novobra NK1”, a precast concrete construction system that exploits some innovative features in envelope components, has been used in several projects. Considering the importance of retrofitting to improve and adapt the thermal behaviors of buildings to face the aforementioned challenges, this article aims to provide an understanding of the behavior of a NK1 thermal envelope of a dwelling located in Covilhã, Portugal, and the impact of some constructive envelope retrofit measures applied. Results show that existing opaque envelope elements and glazed areas present characteristics that are no longer able to provide proper responses to contemporary building constructive requirements. External insulation was identified as a key retrofit measure, window replacement also being an advised solution for rigorous heating seasons. Improvements from the internal side of windows, such as roller shades, may provide few benefits during cooling seasons, and applying solar films is not advised without a proper thermal repercussion analysis. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Rheology, Mechanical Properties and Porosity of Ternary Alkali-Activated Binders Based on Mining Mud Waste with Waste Glass and Metakaolin
CivilEng 2021, 2(1), 236-253; https://doi.org/10.3390/civileng2010013 - 08 Mar 2021
Viewed by 830
Abstract
Alkali-activated materials have the potential to replace Portland cement in certain applications. To better understand these binders’ properties, it is relevant to study their rheological behaviour at early ages, like in the case of Portland cement paste. There are already many studies on [...] Read more.
Alkali-activated materials have the potential to replace Portland cement in certain applications. To better understand these binders’ properties, it is relevant to study their rheological behaviour at early ages, like in the case of Portland cement paste. There are already many studies on the rheological behaviour of these materials in the available literature, using fly ash, metakaolin, and ground granulated blast furnace slag as precursors. However, this study discusses the rheological behaviour, mechanical properties, and porosity of ternary alkali-activated binders based on mining mud waste, waste glass, and metakaolin. The precursor consisted of a volume mix of 70% of tungsten mining waste mud, 15% glass waste, and 15% of metakaolin. The activator was a combination of sodium hydroxide and sodium silicate solution. Five activator/precursor (A/P) ratios (0.37, 0.38, 0.39, 0.40, and 0.4) were studied. The result showed that the activator/precursor ratio affects the rheology of paste and their rheological behaviour fit the Bingham model. The relative yield stress (g) and plastic viscosity (h) increased inversely with the A/P ratio, while the workability increased proportionally. Furthermore, some empirical models are proposed to describe the characteristic of yield stress: plastic viscosity and spread diameter versus the A/P ratio and time with a correlation between the rheological parameters and the spread diameter. The increase in A/P ratio has also followed a decrease in compressive strength in all tested samples for all the ages. As expected, an increase of the porosity accompanied the increase of the A/P ratio. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Proposal of Methodology for Evaluation of a Vertical Shanty Building in Beira, Mozambique
CivilEng 2021, 2(1), 35-47; https://doi.org/10.3390/civileng2010003 - 05 Jan 2021
Cited by 1 | Viewed by 1165
Abstract
Emerging economies are in an almost winless situation: they would benefit from improving the extremely poor economic situation, making them self-reliant and economically productive. However, the poor fight for daily survival and, therefore, cannot afford to improve themselves. This article describes the state [...] Read more.
Emerging economies are in an almost winless situation: they would benefit from improving the extremely poor economic situation, making them self-reliant and economically productive. However, the poor fight for daily survival and, therefore, cannot afford to improve themselves. This article describes the state of the “Grande Hotel” in the city of Beira, Mozambique, built-in Portuguese colonial times, a real vertical shanty building that is occupied by approximately 1000 inhabitants trapped in poverty. To carry out any constructive intervention in a building or an urban complex, it is necessary to carry out a rehabilitation project that is developed based on a diagnosis of the building understudy, its main deteriorations, the causes, mechanisms of action, evolution, and possible treatments to be used for its repair. Analysis methods are necessary for the conservation of buildings since trying to stop, or correct buildings’ deterioration without a diagnosis of their problems or a prognosis on their evolution is a risky procedure with a high percentage of failure chances. The use of an appropriate methodology for diagnosing the damage present in the “Grande Hotel” and its prediction of evolution and development should directly impact a better quality of rehabilitation projects in the neighborhood where the building is located. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Article
Alkali-Activated Binders Based on Tungsten Mining Waste and Electric-Arc-Furnace Slag: Compressive Strength and Microstructure Properties
CivilEng 2020, 1(2), 154-180; https://doi.org/10.3390/civileng1020010 - 04 Sep 2020
Cited by 2 | Viewed by 1266
Abstract
The valorization and reusing of mining waste has been widely studied in recent years. Research has demonstrated that there is great potential for reusing mining waste for construction applications. This work experimentally investigated the strength development, pore structure, and microstructure of a binary [...] Read more.
The valorization and reusing of mining waste has been widely studied in recent years. Research has demonstrated that there is great potential for reusing mining waste for construction applications. This work experimentally investigated the strength development, pore structure, and microstructure of a binary alkali-activated binder. This is based on tungsten mining waste mud (TMWM) and electric-arc-furnace slag (EAF-Slag) using different proportions of TMWM (10, 20, 30, 40, and 50 vt.%). The precursors were activated using sodium silicate (Na2SiO3) and potassium hydroxide (KOH 8M) as alkaline activator solution with solid:liquid weight ratio = 3. Pastes were used to assess the compressive strength of the blended binder and their microstructure. The reaction products were characterized by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and Fourier transform infra-red (FT-IR) spectroscopy, while the porosity and the pores size properties were examined by mercury intrusion porosimetry (MIP). The results show that the partial replacement of TMWM with EAF-Slag exhibited better mechanical properties than the 100TM-AAB. A maximum strength value of 20.1 MPa was obtained in the binary-AAB sample prepared with 50 vt.% TMWM and EAF-Slag. The pastes that contained a higher dosage of EAF-Slag became more compact with lower porosity and finer pore-size distribution. In addition, the results obtained by SEM-EDS confirmed the formation of different types of reaction products in the 100TM-AAB, 100FS-AAB, and the binary-AABs mixtures such as N-A-S-H, C-A-S-H and (N, C)-A-S-H gels frameworks in the system as the major elements detected are Si, Al, Ca, and Na. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Review

Jump to: Research

Review
Literature Review on the Response of Concrete Structures Subjected to Underwater Explosions
CivilEng 2021, 2(4), 895-908; https://doi.org/10.3390/civileng2040048 - 11 Oct 2021
Viewed by 351
Abstract
This paper presents a review of research on underwater explosions (UNDEX) with a focus on the structural response of concrete or reinforced concrete (RC) structures. First, the physical phenomena of UNDEX and its effects are discussed describing both the theory and considerations of [...] Read more.
This paper presents a review of research on underwater explosions (UNDEX) with a focus on the structural response of concrete or reinforced concrete (RC) structures. First, the physical phenomena of UNDEX and its effects are discussed describing both the theory and considerations of the event. Then a brief description of the standard UNDEX experiment is followed by computational methods that employ governing equations that are used for verification of those methods. Lastly, a discussion on structural response for UNDEX is presented with a particular focus on concrete structures. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Review
Review of Energy Harvesting for Buildings Based on Solar Energy and Thermal Materials
CivilEng 2021, 2(4), 852-873; https://doi.org/10.3390/civileng2040046 - 30 Sep 2021
Viewed by 410
Abstract
Reducing the use of fossil fuels and the generation of renewable energy have become extremely important in today. A climatic emergency is being experienced and society is suffering due to a high incidence of pollutants. For these reasons, energy harvesting emerges as an [...] Read more.
Reducing the use of fossil fuels and the generation of renewable energy have become extremely important in today. A climatic emergency is being experienced and society is suffering due to a high incidence of pollutants. For these reasons, energy harvesting emerges as an essential source of renewable energy, and it benefits from the advancement in the scope of solar and thermal energy which are widely abundant and usually wasted. It is an option to obtain energy without damaging the environment. Recently, energy harvesting devices, which produce electricity, have been attracting more and more attention due to the availability of new sources of energy, such as solar, thermal, wind and mechanical. This article looks at recent developments in capturing energy from the sun. This literature review was performed on research platforms and analyzes studies on solar and thermal energy capture carried out in the last four years. The methods of capturing solar energy were divided according to how they were applied in civil engineering works. The types of experiments carried out were the most diverse, and several options for capturing solar energy were obtained. The advantages and disadvantages of each method were demonstrated, as well as the need for further studies. The results showed that the materials added to the components obtained have a lot of advantages and could be used in different energy capture types, such as photovoltaic, thermoelectric generators, pyroelectricity and thermometrical. This demonstrates that the capture of solar energy is quite viable, and greater importance should be given to it, as the number of research is still small when compared to other renewable energies. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Review
Bituminous Pavement Reinforcement with Fiber: A Review
CivilEng 2021, 2(3), 599-611; https://doi.org/10.3390/civileng2030033 - 23 Jul 2021
Viewed by 728
Abstract
This paper attempts to display, analyze and discuss the literature affiliated to the previous research data on road surfacing in pavement engineering reinforcement. In this paper, a review of the background and present status of road surfacing is also provided for supportive explanation [...] Read more.
This paper attempts to display, analyze and discuss the literature affiliated to the previous research data on road surfacing in pavement engineering reinforcement. In this paper, a review of the background and present status of road surfacing is also provided for supportive explanation of the significance of fiber-reinforced asphalt pavement HMA and its role in providing effective and durable surfacing for heavy-trafficked roads. The paper attempts to clarify some of the terms and notions related to the discussions to give the readers the needed background, to be able to actively understand the experiments and discussions. Results from many studies confirm that fiber specifically enhances the optimum bitumen content in the design of the mixture and halts the bitumen leakage due to its asphalt absorbing susceptibility. Fiber modifies the visco-elastic response, susceptibility against moisture, increase resistance to rutting, as well as lowers the pavement fatigue cracking. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

Back to TopTop