The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Specimen Preparation
3. Testing Procedures
4. Results and Discussion
4.1. Isothermal Calorimetry
4.2. Compressive and Flexural Strength
4.3. Mercury Intrusion Porosimetry (MIP)
4.4. Microstructure Observation of the Mortars (SEM and CLSM)
5. Conclusions
- The calorimetry studies showed that 4% to 6% Na2O (wt. slag) content in the activator increased the heat output of all studied AAM. The presence of RAP aggregates and the bitumen coating of the RAP particles did not compromise the reaction of the matrices.
- The substitution of NA by RAP caused a significant reduction in both the compressive and flexural strength of the mortars—on average, 44% and 31% at 28 days, respectively. The RAP aggregates compromised samples’ ability to develop strength over time.
- The addition of sodium silicate promotes a rise in compressive strength, but this is less significant for RAP-AAM. While the compressive strength of NA mortars increased up to 234% with sodium silicate, the strength of RAP mortars increased a maximum of 88%.
- MIP results showed that samples prepared with RAP aggregates contained up to 9.3% more pores than samples prepared with NA. The pore content increase was concentrated in the macropores (>10 μm). As pores’ presence is directly related to strength, these findings explain the loss in strength caused by recycled aggregates (RAP). A better mix design with more fines or a pre-treatment of RAP particles should be investigated to overcome this.
- Confocal Laser Scanning Microscopy (CLSM) is a helpful tool to identify the bitumen layers and their irregular distribution among the RAP aggregates. Some RAP particles have extremely little to no bitumen, whereas others (particularly the clusters) had an extremely high bitumen concentration. CLSM is also important to visualise the RAP distribution in the AAM mortars (sawed samples). This technique also presents evidence that the broken samples fractured at the bitumen layer, suggesting poor adhesion between aggregates and bitumen. This is linked to the reduced mechanical performance. SEM is preferable to see the interface between aggregates and matrices and confirmed that RAP-AAM contains a larger and porous ITZ than NA-AAM.
- Overall, it is possible to conclude that, although silicates increase the alkaline activation, it has little or no impact on the adhesion between aggregate and bitumen. Therefore, soluble silicates should be limited to low quantities in RAP-AAM. Any improvements in the matrix are unlikely to avoid adhesion issues that compromise the mechanical performance. Despite the reduction in strength caused by the increased porosity and poor binding to the matrix, it is still possible to achieve sufficient strength with RAP-AAS for many engineering applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EAPA Asphalt in Figures 2007. Available online: https://eapa.org/asphalt-in-figures/ (accessed on 30 January 2020).
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Arshad, M.; Ahmed, M.F. Potential use of reclaimed asphalt pavement and recycled concrete aggregate in base/subbase layers of flexible pavements. Constr. Build. Mater. 2017, 151, 83–97. [Google Scholar] [CrossRef]
- Ullah, S.; Tanyu, B.F. Methodology to develop design guidelines to construct unbound base course with reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2019, 223, 463–476. [Google Scholar] [CrossRef]
- Avirneni, D.; Saride, S. Durability Studies on Fly Ash Stabilized Reclaimed Asphalt Pavement Materials. In Proceedings of the Geo-Chicago 2016, Chicago, IL, USA, 14–18 August 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 546–555. [Google Scholar] [CrossRef]
- Arulrajah, A.; Piratheepan, J.; Disfani, M.M. Reclaimed asphalt pavement and recycled concrete aggregate blends in pavement subbases: Laboratory and field evaluation. J. Mater. Civ. Eng. 2014, 26, 349–357. [Google Scholar] [CrossRef]
- Adhikari, S.; Khattak, M.J.; Adhikari, B. Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. Int. J. Pavement Eng. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Consoli, N.C.; Pasche, E.; Specht, L.P.; Tanski, M. Key parameters controlling dynamic modulus of crushed reclaimed asphalt paving–powdered rock–Portland cement blends. Road Mater. Pavement Des. 2018, 19, 1716–1733. [Google Scholar] [CrossRef]
- Poltue, T.; Suddeepong, A.; Horpibulsuk, S.; Samingthong, W.; Arulrajah, A.; Rashid, A.S.A. Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material. Road Mater. Pavement Des. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- Avirneni, D.; Peddinti, P.R.T.T.; Saride, S. Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Constr. Build. Mater. 2016, 121, 198–209. [Google Scholar] [CrossRef]
- Singh, S.; Ransinchung, G.D.; Debbarma, S.; Kumar, P. Utilization of reclaimed asphalt pavement aggregates containing waste from Sugarcane Mill for production of concrete mixes. J. Clean. Prod. 2018, 174, 42–52. [Google Scholar] [CrossRef]
- Hoy, M.; Horpibulsuk, S.; Arulrajah, A.; Mohajerani, A. Strength and microstructural study of recycled asphalt pavement: Slag geopolymer as a pavement base material. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014, 44, 299–330. [Google Scholar] [CrossRef]
- Shi, C.; Ana, F.-J.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Liew, Y.M.; Heah, C.Y.; Mohd Mustafa, A.B.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr. Build. Mater. 2013, 47, 29–55. [Google Scholar] [CrossRef]
- Costa, J.O.; Borges, P.H.R.; dos Santos, F.A.; Bezerra, A.C.S.; Van den bergh, W.; Blom, J. Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers: Potential, challenges and research needs. Constr. Build. Mater. 2020, 265, 120325. [Google Scholar] [CrossRef]
- Hoy, M.; Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Arulrajah, A. Recycled asphalt pavement—Fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Sci. Total Environ. 2016, 573, 19–26. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Hoy, M.; Witchayaphong, P.; Rachan, R.; Arulrajah, A. Recycled asphalt pavement—Fly ash geopolymer as a sustainable stabilized pavement material. IOP Conf. Ser. Mater. Sci. Eng. 2017, 273, 012005. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.; Rachan, R.; Horpibulsuk, S.; Arulrajah, A.; Mirzababaei, M. Effect of wetting—Drying cycles on compressive strength and microstructure of recycled asphalt pavement—Fly ash geopolymer. Constr. Build. Mater. 2017, 144, 624–634. [Google Scholar] [CrossRef]
- Saride, S.; Avirneni, D.; Challapalli, S. Micro-mechanical interaction of activated fly ash mortar and reclaimed asphalt pavement materials. Constr. Build. Mater. 2016, 123, 424–435. [Google Scholar] [CrossRef]
- Mohammadinia, A.; Arulrajah, A.; Sanjayan, J.G.; Disfani, M.M.; Bo, M.W.; Darmawan, S. Strength Development and Microfabric Structure of Construction and Demolition Aggregates Stabilized with Fly Ash–Based Geopolymers. J. Mater. Civ. Eng. 2016, 28, 04016141. [Google Scholar] [CrossRef]
- Jallu, M.; Arulrajah, A.; Saride, S.; Evans, R. Flexural fatigue behavior of fly ash geopolymer stabilized-geogrid reinforced RAP bases. Constr. Build. Mater. 2020, 254, 119263. [Google Scholar] [CrossRef]
- Hossiney, N.; Sepuri, H.K.; Mohan, M.K.; Arjun, H.R.; Govindaraju, S.; Chyne, J. Alkali-activated concrete paver blocks made with recycled asphalt pavement (RAP) aggregates. Case Stud. Constr. Mater. 2020, 12, e00322. [Google Scholar] [CrossRef]
- Rahman, S.S.; Khattak, M.J. Mechanistic and microstructural characteristics of roller compacted geopolymer concrete using reclaimed asphalt pavement. Int. J. Pavement Eng. 2021, 1–19. [Google Scholar] [CrossRef]
- Miranda, T.; Leitão, D.; Oliveira, J.; Corrêa-Silva, M.; Araújo, N.; Coelho, J.; Fernández-Jiménez, A.; Cristelo, N. Application of alkali-activated industrial wastes for the stabilisation of a full-scale (sub)base layer. J. Clean. Prod. 2020, 242, 118427. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L.; Pratt, P.L. Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Pavel, K.; Oleg, P.; Hryhorii, V.; Serhii, L. The Development of Alkali-activated Cement Mixtures for Fast Rehabilitation and Strengthening of Concrete Structures. Procedia Eng. 2017, 195, 142–146. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995, 25, 561–571. [Google Scholar] [CrossRef]
- NBN EN 12697: 2020. European Committee for Standardization, Bituminous Mixtures—Test Methods—Part 1: Soluble Binder Content; European Committee for Standardization: Brussels, Belgium, 2020. [Google Scholar]
- Shi, C. Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 1996, 26, 1789–1799. [Google Scholar] [CrossRef]
- Duran Atiş, C.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem. Concr. Res. 2005, 35, 1358–1367. [Google Scholar] [CrossRef]
- NBN EN 196-1: 2016. European Committee for Standardization, Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Fernandez-Jimenez, A.; Puertas, F.; Arteaga, A. Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J. Therm. Anal. Calorim. 1998, 52, 945–955. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Han, W. Effect of various alkalis on hydration properties of alkali-activated slag cements. J. Therm. Anal. Calorim. 2018, 131, 3093–3104. [Google Scholar] [CrossRef]
- Huanhai, Z.; Xuequan, W.; Zhongzi, X.; Mingshu, T. Kinetic study on hydration of alkali-activated slag. Cem. Concr. Res. 1993, 23, 1253–1258. [Google Scholar] [CrossRef]
- Kashani, A.; Provis, J.L.; Qiao, G.G.; Van Deventer, J.S.J. The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 2014, 65, 583–591. [Google Scholar] [CrossRef]
- Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 2016, 113, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Grasley, Z.; Hogancamp, J.; Brescia-Norambuena, L.; Mukhopadhyay, A.; Zollinger, D. Microstructural, Mechanical, and Shrinkage Characteristics of Cement Mortar Containing Fine Reclaimed Asphalt Pavement. J. Mater. Civ. Eng. 2020, 32, 1–11. [Google Scholar] [CrossRef]
- El Euch Ben Said, S.; El Euch Khay, S.; Loulizi, A. Experimental Investigation of PCC Incorporating RAP. Int. J. Concr. Struct. Mater. 2018, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A review and prospects for the minerals industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F. Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 1999, 29, 1313–1321. [Google Scholar] [CrossRef]
- Diamond, S. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Borges, P.H.R.; Banthia, N.; Alcamand, H.A.; Vasconcelos, W.L.; Nunes, E.H.M. Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cem. Concr. Compos. 2016, 71, 42–52. [Google Scholar] [CrossRef]
- Abraham, S.M.; Ransinchung, G.D.R.N. Pore Structure Characteristics of RAP-Inclusive Cement Mortar and Cement Concrete Using Mercury Intrusion Porosimetry Technique. Adv. Civ. Eng. Mater. 2019, 8, 431–453. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, K.; Yuan, Q. Limited fractal behavior in cement paste upon mercury intrusion porosimetry test: Analysis and models. Constr. Build. Mater. 2021, 276, 122231. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, C.; Wan, S.; Zhang, Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem. Concr. Res. 2018, 111, 104–115. [Google Scholar] [CrossRef]
- Brand, A.S.; Roesler, J.R. Bonding in cementitious materials with asphalt-coated particles: Part I—The interfacial transition zone. Constr. Build. Mater. 2017, 130, 171–181. [Google Scholar] [CrossRef] [Green Version]
- El Euch Ben Said, S.; Euch Khay, S.E.; Achour, T.; Loulizi, A. Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste. Constr. Build. Mater. 2017, 152, 839–846. [Google Scholar] [CrossRef]
- Sachet, T.; Balbo, J.T.; Bonsembiante, F.T. Rendering the loss of strength in dry concretes with addition of milled asphalt through microscopic analysis. Rev. IBRACON Estruturas e Mater. 2013, 6, 933–954. [Google Scholar] [CrossRef] [Green Version]
- Collins, F.; Sanjayan, J.G. Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 2000, 30, 791–798. [Google Scholar] [CrossRef]
Authors | System | Main Findings |
---|---|---|
Hoy et al. [12,19,21] | Stabilised RAP using Fly ash or slag | Better durability with higher NaOH content; excess Na2SiO3 can cause strength loss, low leachates. |
Avirneni et al. [5] | Stabilised RAP/NA/fly ash | Minimum strength loss due to wet/dry cycles. |
Saride et al. [22] | RAP/NA/Fly ash | RAP exposed surface is 15–70%. |
Mohammadinia et al. [23] | Stabilised RAP—Fly ash/slag | Viable and sustainable material for pavements. |
Horpibulsuk et al. [20] | Stabilised RAP/Fly ash | Reduced leachability of heavy metals. |
Jallu et al. [24] | Stabilised RAP/NA using FA | Flexural fatigue behavior improved with geogrid. |
Hossiney et al. [25] | RAP/slag paver blocks | Lower strength and abrasion resistance compared with NA. |
Rahman et al. [26] | Roller compacted RAP- fly ash | Adequate strength for pavement material. |
Main Oxides (%) | |||||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | MgO | SO3 | TiO2 | Fe2O3 | Mn2O3 |
42.68 | 37.31 | 10.38 | 6.55 | 1.49 | 0.7 | 0.36 | 0.33 |
Notation | Na2O (%) | Ms | Water/GGBFS | Agg./GGBFS |
---|---|---|---|---|
N4M0, R4M0 | 4 | 0 | 0.5 | 1.5 |
N4M0.5, R4M0.5 | 4 | 0.5 | 0.5 | 1.5 |
N4M1, R4M1 | 4 | 1 | 0.5 | 1.5 |
N6M0, R6M0 | 6 | 0 | 0.5 | 1.5 |
N6M0.5, R6M0.5 | 6 | 0.5 | 0.5 | 1.5 |
N6M1, R6M1 | 6 | 1 | 0.5 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, J.O.; Borges, P.H.R.; dos Santos, F.A.; Bezerra, A.C.S.; Blom, J.; Van den bergh, W. The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag. CivilEng 2021, 2, 794-810. https://doi.org/10.3390/civileng2030043
Costa JO, Borges PHR, dos Santos FA, Bezerra ACS, Blom J, Van den bergh W. The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag. CivilEng. 2021; 2(3):794-810. https://doi.org/10.3390/civileng2030043
Chicago/Turabian StyleCosta, Juliana O., Paulo H. R. Borges, Flávio A. dos Santos, Augusto Cesar S. Bezerra, Johan Blom, and Wim Van den bergh. 2021. "The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag" CivilEng 2, no. 3: 794-810. https://doi.org/10.3390/civileng2030043
APA StyleCosta, J. O., Borges, P. H. R., dos Santos, F. A., Bezerra, A. C. S., Blom, J., & Van den bergh, W. (2021). The Effect of Reclaimed Asphalt Pavement (RAP) Aggregates on the Reaction, Mechanical Properties and Microstructure of Alkali-Activated Slag. CivilEng, 2(3), 794-810. https://doi.org/10.3390/civileng2030043