Recycling of Excavated Soils from Mini-Trenches Made on Road or Sidewalks to Install Public Utilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Approach
2.2. Methodology
- -
- Use of low carbon ecobinder to minimize the use of cement, which is one of the biggest producers of carbon dioxide;
- -
- Minimize large greenhouse gas (GHG) emissions in the transportation sector that are linked to the transportation of heavy vehicles along the highways as they consume a large quantity of fuel;
- -
- Find the most sustainable solution for excavated material by reusing them on the spot;
- -
- Minimize the waste and maximize the circular economy;
- -
- Compare the unconfined compressive strength (UCS) measured using non-destructive and destructive methods;
- -
- Make a qualitative evaluation of self-compacting mortar (SCM).
2.3. Origin and Characteristics of Tested Soils
2.4. Mix Design for SCM
3. Results
3.1. Testing Results for Yzernay TC
3.2. Testing Results for Villeray TC
3.3. Testing Results for Angers TC
3.4. UCS Measurements with Non-Destructive Testing (NDT)
4. Conclusions
- -
- Considering SCM at 10% A2, strengths increase with time for YZE-N as well as YZE-M mixtures. Both TCs treated with the A2 ecobinder produced a UCS above 2 MPa at 28 days. The IPI index and concrete class for YZE-N and YZE-M confirm the suitability of these TCs to be reused as base layers as well as sub-base layer in road construction.
- -
- At 28 days, resistance to VIL-N was marginally reduced, which might be explained by the fact that the mortars had not yet hardened completely and still included some water. From a young age to the 28th day, these SCM do not reach the necessary resistance of 2 MPa. At 10% of ecobinder A2, the UCS value for ANG-N (NA) reached 1.99 MPa after 28 days.
- -
- Both VIL-N and ANG-N have greater UCS growth when SCM is at 14 percent of ecobinder A2. It is true that VIL-N UCS does not reach 2 MPa after 28 days, but it is close enough to what was confirmed after 60 days. ANG-N (NC), on the other hand, produces a UCS more than 2 MPa at 28 and 60 days.
- -
- Finally, when comparing SCM samples at 16 percent A2, the UCS values remain very low compared to SCM samples at other proportions. This is due to an excess of un-reacted binder.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deselnicu, D.C.; Militāru, G.; Deselnicu, V.; Zăinescu, G.; Albu, L. Towards a circular economy–a zero waste programme for Europe. In Proceedings of the 7th International Conference on Advanced Materials and Systems (ICAMS), Bucharest, Romania, 18–20 October 2018; The National Research & Development Institute for Textiles and Leather-INCDTP: Bucharest, Romania; pp. 563–568. [Google Scholar]
- Dhervilly, P.; Levacher, D. Reuse of Excavated Soils from Mini-Trenches “The RecysoilsR national Project”; Geo-Environmental Engineering, Concordia University: Montreal, QC, Canada, 2019. [Google Scholar]
- Yang, R.; Kang, S.; Ozer, H.; Al-Qadi, I.L. Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance. Resour. Conserv. Recycl. 2015, 104, 141–151. [Google Scholar] [CrossRef]
- USEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2011; U.S. Environmental Protection Agency (USEPA): Washington, DC, USA, 2013. [Google Scholar]
- Blengini, G.A.; Garbarino, E. Resources and waste management in Turin (Italy): The role of recycled aggregates in the sustainable supply mix. J. Clean. Prod. 2010, 18, 1021–1030. [Google Scholar] [CrossRef]
- Dettenborn, T.; Forsman, J.; Rämö, P.; Pieksemä, J.; Suominen, M.; Korkiala-Tanttu, L. Utilization of crushed concrete aggregate in urban earth construction: Streets and pipe trenches. In Geotechnical Engineering for Infrastructure and Development; ICE publishing: London, UK, 2015. [Google Scholar] [CrossRef]
- Okamura, H.; Ouchi, M. Self-Compacting Concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- Bonen, D.; Shah, S.P. Fresh and hardened properties of self-consolidating concrete. Prog. Struct. Eng. Mater. 2004, 7, 14–26. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Huang, S.-L.; Yeh, C.-T.; Chang, L.-F. The transition to an urbanizing world and the demand for natural resources. Curr. Opin. Environ. Sustain. 2010, 2, 136–143. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Zhou, J.; Xu, K. A 3R Implementation Framework to Enable Circular Consumption in Community. Int. J. Environ. Sci. Dev. 2014, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, J.H. An Overview of Cement production: How “green” and sustainable is the industry? Environ. Manag. Sustain. Dev. 2012, 1, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Wilk, C.M. Solidification/stabilization treatment and examples of use at port facilities. In Port Development in the Changing World; Curtis, S.A., Ed.; ASCE Conference Proceedings: Houston Ports, TX, USA, 2004; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Said, I.; Missaoui, A.; Lafhaj, Z. Reuse of Tunisian marine sediments in paving blocks: Factory scale experiment. J. Clean. Prod. 2015, 102, 66–77. [Google Scholar] [CrossRef]
- Wang, S.L.; Baaj, H. Treatment of weak subgrade materials with cement and hydraulic road binder (HRB). Road Mater. Pavement Des. 2021, 22, 1756–1779. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Kong, D.L.; Sanjayan, J.G. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 2010, 40, 334–339. [Google Scholar] [CrossRef]
- Bian, H. Etude Expérimentale de L’endommagement de BFUHP Sous Sollicitations Physique, Chimique et Mécanique. Ph.D. Thesis, L’insa Rennes, Rennes, France, 2009; 184p. [Google Scholar]
- Garnier, V.; Abraham, O.; Dondonne, E.; Marlot, D. Méthodes D’évaluation Non Destructive par Propagation D’ondes Mécaniques. In Guide Méthodologique de L’évaluation Non Destructive des Ouvrages en Béton Armé; Association Française de Génie Civil: Paris, France, 2005; pp. 201–223. [Google Scholar]
- Garnier, V. Ultrasounds through Transmission. In Non-Destructive Assessment of Concrete Structures; Springer: Berlin, Germany, 2012; pp. 17–27. [Google Scholar]
- SETRA-LCPC. Assises de Chaussées: Guide D’application des Normes Pour le Réseau Routier National; SETRA-LCPC: Nantes, France, 1998; 90p. [Google Scholar]
- Dubois, V.; Abriak, N.E.; Zentar, R.; Ballivy, G. The use of marine sediments as a pavement base material. Waste Manag. 2009, 29, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Binici, H.; Aksogan, O.; Cagatay, I.H.; Tokyay, M.; Emsen, E. The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol. 2007, 177, 140–147. [Google Scholar] [CrossRef]
- Pebbles, V.; Thorp, S. Waste to Resource: Beneficial Use of Great Lakes Dredged Material; Great Lakes Commission: Ann Arbor, MI, USA, 2001; 16p. [Google Scholar]
- Kribi, S. Décomposition des Matières Organiques et Stabilisation des Métaux Lourds Dans les Sédiments de Dragage. Ph.D. Thesis, INSA Lyon, Lyon, France, 2005; 220p. Available online: http://theses.insa-lyon.fr/publication/2005ISAL0064/these.pdf (accessed on 10 March 2022).
- Kujala, K.; Makikyro, M.; Lehto, O. Effect of humus on the binding reaction in stabilized soils, Grouting and Deep Mixing. In Proceedings of the IS-TOKYO 96. The Second International Conference on Ground Improvement Geosystems, Tokyo, Japan, 14–17 May 1996; Balkema: Rotterdam, The Netherlands, 1996; pp. 14–17. [Google Scholar]
- GTR. Réalisation des Remblais et des Couches de Forme-Fascicule 1–Principes Généraux; SETRA-LCPC: Nantes, France, 2000; 102p, ISBN 2.11.085.707-2. [Google Scholar]
- Hugues, L. Remblayage de Tranchées en Matériau Autocompactant Recyclé (MAC R), CoTITA Méditerranée Nouvelles Solutions Economiques et Performantes; Centre d’Études Techniques de l’Équipement Méditerranée: Bron, France, 2013; 18p. [Google Scholar]
Commercial Name | Composition |
---|---|
Binder A1 | 95% FA 5% additives |
Binder A2 | 75% GGBS 20% clinker 5% additives |
Binder A3 | 50% lime 45% GGBS 5% additives |
Material | SiO2 | Al2O3 | Fe2O3 | K2O | CaO | MgO | |
---|---|---|---|---|---|---|---|
Chemical characteristics (part per million) | GGBS | 37.00 | 10.80 | - | - | 43.00 | 7.10 |
FA | 46.81 | 20.45 | 7.09 | 4.35 | 12.52 | 3.12 | |
pH | * SSA (cm2/g) | ** AI (%) | d10 (µm) | d50 (µm) | d90 (µm) | ||
Physical characteristics | GGBS | 9.8 | 4005.80 | 98 | 0.54 | 11.58 | 35.39 |
FA | 10 | 1811.50 | 70–80 | 1.95 | 24.66 | 229.00 |
Sample Location | Coordinates | Sample Reference | Number of Samples |
---|---|---|---|
Yzernay | 47°01′46.0″ N 0°41′23.0″ W | YZE-N | 2 |
Yzernay | 47°02′02.0″ N 0°41′01.0″ W | YZE-M | 2 |
Villeray | 48°10′39.4″ N 1°24′59.6″ W | VIL-N | 2 |
Angers | 47°29′11.8″ N 0°33′48.7″ W | ANG-N | 1 |
Type of Test | Methods and Tests | Test Standards | Findings |
---|---|---|---|
Water content | By heating in oven | NF P94-050 | W (%) |
Density | Helium gas pycnometer method | DIN 51913 | γs (g/cm3) |
Sieve analysis | Laser diffraction method | ISO 13320-1 | Cu, Cc |
Clay contents | Methylene blue adsorption ability | NF P94-068 | MBV (g/100 g) |
Atterberg Limits | Liquidity at the cup/plasticity with a roll | NF P94-051 | LL, PL, PI, CI (%) |
Compaction | Material compaction references: miniature Proctor test | NF P94-093 | dOPM, wOPM |
Organic matter | Calcination method | NF XP P94-047 | OM (%) |
Carbonates | Calcimeter method | NF P94-048 | CaCO3 (%) |
Parameters | YZE-N-01 | YZE-N-02 | YZE-M-01 | YZE-M-02 | VIL-N-01 | VIL-N-02 |
---|---|---|---|---|---|---|
Water content, wn (%) | 16.18 | 14.60 | 6.16 | 3.73 | 14.99 | 10.73 |
Dry density (g/cm3) | 2.55 | 2.61 | 2.59 | 2.61 | 2.49 | 2.50 |
Dmax | <20 mm | <20 mm | 12 mm | 12 mm | <20 mm | <20 mm |
Size under 80 μm | >35% | >35% | >35% | >35% | >35% | >35% |
Size under 2 mm | >70% | >70% | >70% | >70% | >70% | >70% |
Curvature coefficient Cc | 1.25 | 1.29 | 0.82 | 0.83 | 1.46 | 1.47 |
Coefficient of uniformity Cu | 24.96 | 22.08 | 24.64 | 28.46 | 20.97 | 24.51 |
MBV (g/100 g) | 1.24 | 1.41 | 1.42 | 1.31 | 1.57 | 1.28 |
PI (%) | 11.16 | 11.50 | 10.34 | 7.78 | 16.22 | 15.85 |
Optimal dry density, (g/cm3) | 1.83 | 1.95 | 1.90 | 1.99 | 1.83 | 1.86 |
Optimal water cont., wopt (%) | 16.38 | 17.00 | 18.22 | 17.96 | 14.97 | 15.00 |
Avg. Organic Matter (%) | 3.25 | 3.23 | 1.57 | 1.61 | 5.54 | 5.65 |
Avg. Carbonates (%) | 0.76 | 0.73 | 2.17 | 2.16 | 0.60 | 0.61 |
Consistency Class | Sagging (mm) | |
---|---|---|
Cone of Abrams: Height (h1) 30 cm, Base Diameter (D1) 20 cm, Top Diameter (d1) 10 cm | Small Cone: Height (h2) 12 cm, Base Diameter (D2) 8 cm, Top Diameter (d2) 4 cm | |
S1: Firm | 10–40 | 4–16 |
S2: Plastic | 50–90 | 20–36 |
S3: Very Plastic | 100–150 | 40–60 |
S4: Fluid | 160–210 | 64–84 |
S5: Self Compacting | ≥220 | ≥88 |
TC | Ecobinder | Binder Amount (%) | Water Content to Make SCM (%) |
---|---|---|---|
YZE-N-01 | A1 | 10 | 41.31 |
A2 | 10 | 43.00 | |
A3 | 10 | 40.21 | |
YZE-N-02 | A1 | 10 | 40.98 |
A2 | 10 | 44.60 | |
A3 | 10 | 42.00 | |
YZE-M-01 | A1 | 10 | 35.99 |
A2 | 10 | 40.66 | |
A3 | 10 | 36.68 | |
YZE-M-02 | A1 | 10 | 36.05 |
A2 | 10 | 40.12 | |
A3 | 10 | 35.33 | |
VIL-N-01 | A1 | 10 | 42.20 |
A2 | 10 | 48.20 | |
A3 | 10 | 41.98 | |
VIL-N-02 | A1 | 10 | 42.00 |
A2 | 10 | 47.62 | |
A3 | 10 | 42.00 | |
ANG-N-1 | A1 | 10 | 40.00 |
A2 | 10 | 39.10 | |
A3 | 10 | 38.90 |
Minerals | YZE-N | YZE-M | VIL-N |
---|---|---|---|
Clays (%) | 5.5 | 6 | 7.5 |
Silt Fine (%) | 33 | 22 | 25.5 |
Silt Coarse (%) | 19 | 20.5 | 22.5 |
Sand Fine (%) | 20 | 19 | 30 |
Sand Coarse (%) | 22.5 | 32.5 | 14.5 |
Carbonate content (%) | 0.76 | 2.16 | 0.59 |
Organic matter (%) | 3.24 | 1.62 | 5.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussan, A.; Levacher, D.; Mezazigh, S.; Nzabika, I.; Dhervilly, P. Recycling of Excavated Soils from Mini-Trenches Made on Road or Sidewalks to Install Public Utilities. CivilEng 2022, 3, 224-241. https://doi.org/10.3390/civileng3020014
Hussan A, Levacher D, Mezazigh S, Nzabika I, Dhervilly P. Recycling of Excavated Soils from Mini-Trenches Made on Road or Sidewalks to Install Public Utilities. CivilEng. 2022; 3(2):224-241. https://doi.org/10.3390/civileng3020014
Chicago/Turabian StyleHussan, Ali, Daniel Levacher, Salim Mezazigh, Ilona Nzabika, and Philippe Dhervilly. 2022. "Recycling of Excavated Soils from Mini-Trenches Made on Road or Sidewalks to Install Public Utilities" CivilEng 3, no. 2: 224-241. https://doi.org/10.3390/civileng3020014
APA StyleHussan, A., Levacher, D., Mezazigh, S., Nzabika, I., & Dhervilly, P. (2022). Recycling of Excavated Soils from Mini-Trenches Made on Road or Sidewalks to Install Public Utilities. CivilEng, 3(2), 224-241. https://doi.org/10.3390/civileng3020014