Review and Assessment of Crop-Related Digital Tools for Agroecology
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Query Design
2.2. Results Filtering
2.3. Classification
2.4. Impact Categorisation
2.5. Analysis
3. Results
3.1. Annual Publications
3.2. Crop-Related Characteristics and Applications of Digital Tools
3.3. Characteristics and Use of Digital Tools on Crops
3.4. Crop-Related Digital Tools and Contribution to Transition to Agroecology
3.5. Impact Assessment of Application of Digital Tools on Crops
4. Discussion
4.1. Number of Publications
4.2. Crop Characteristics
4.3. Digital Tools
4.4. Transition to Agroecology
4.5. Impact Assessment
4.6. Future Directions
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- My Thi Thi, D.; Tran Phu Do, T. The Interrelationships between Economic Growth and Innovation: International Evidence. J. Appl. Econ. 2024, 27, 2332975. [Google Scholar] [CrossRef]
- Lawrence, J.; Mekoth, N. Demarketing for Sustainability: A Review and Future Research Agenda. Int. J. Consum. Stud. 2023, 47, 2157–2180. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, M.; Chen, H.; Li, Y.; Chen, S. Globalization, Green Economy and Environmental Challenges: State of the Art Review for Practical Implications. Front. Environ. Sci. 2022, 10, 870271. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Gupta, Y. A Systematic Review of Environmental Sustainability and Economic Growth. World Rev. Entrep. Manag. Sustain. Dev. 2024, 20, 683–715. [Google Scholar] [CrossRef]
- Hensher, M.; McCartney, G.; Ochodo, E. Health Economics in a World of Uneconomic Growth. Appl. Health Econ. Health Policy 2024, 22, 427–433. [Google Scholar] [CrossRef]
- Dasgupta, P.; Levin, S. Economic Factors Underlying Biodiversity Loss. Philos. Trans. R. Soc. B Biol. Sci. 2023, 378, 20220197. [Google Scholar] [CrossRef]
- Albert, M.J. Beyond Continuationism: Climate Change, Economic Growth, and the Future of World (Dis)Order. Camb. Rev. Int. Aff. 2022, 35, 868–887. [Google Scholar] [CrossRef]
- Mason, A.; Lee, R.; Members of the NTA Network. Six Ways Population Change Will Affect the Global Economy. Popul. Dev. Rev. 2022, 48, 51–73. [Google Scholar] [CrossRef]
- Jote, C.A. The Impacts of Using Inorganic Chemical Fertilizers on the Environment and Human Health. Org. Med. Chem. Int. J. 2023, 13, 555864. [Google Scholar]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Ruas, R.d.B.; Costa, L.M.S.; Bered, F. Urbanization Driving Changes in Plant Species and Communities—A Global View. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar] [CrossRef]
- Borda, Á.J.; Sárvári, B.; Balogh, J.M. Generation Change in Agriculture: A Systematic Review of the Literature. Economies 2023, 11, 129. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; de Vente, J. Challenges and Potential Pathways towards Sustainable Agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a Sustainable Future: The Climate Change Threat to Agriculture, Food Security, and Sustainable Development Goals. J. Umm Al-Qura Univ. Appl. Sci. 2024, 11, 1–17. [Google Scholar] [CrossRef]
- Amahnui, G.A.; Vanegas, M.; Verchot, L.; Castro-Nunez, A. Achieving the Paris Agreement Goals by Transitioning to Low-Emissions Food Systems: A Comprehensive Review of Countries’ Actions. Environ. Sci. Policy 2025, 163, 103968. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Gliessman, S. Transforming Food Systems with Agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Moorhouse, B.L.; Yan, L. Use of Digital Tools by English Language Schoolteachers. Educ. Sci. 2023, 13, 226. [Google Scholar] [CrossRef]
- Anastasiou, E.; Balafoutis, A.T.; Fountas, S. Trends in Remote Sensing Technologies in Olive Cultivation. Smart Agric. Technol. 2023, 3, 100103. [Google Scholar] [CrossRef]
- Balafoutis, A.T.; Beck, B.; Fountas, S.; Tsiropoulos, Z.; Vangeyte, J.; van der Wal, T.; Soto-Embodas, I.; Gómez-Barbero, M.; Pedersen, S.M. Smart Farming Technologies—Description, Taxonomy and Economic Impact. In Precision Agriculture: Technology and Economic Perspectives; Pedersen, S.M., Lind, K.M., Eds.; Progress in Precision Agriculture; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–77. ISBN 978-3-319-68715-5. [Google Scholar]
- Anastasiou, E.; Fountas, S.; Voulgaraki, M.; Psiroukis, V.; Koutsiaras, M.; Kriezi, O.; Lazarou, E.; Vatsanidou, A.; Fu, L.; Bartolo, F.D.; et al. Precision Farming Technologies for Crop Protection: A Meta-Analysis. Smart Agric. Technol. 2023, 5, 100323. [Google Scholar] [CrossRef]
- Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing Precision Agriculture: A Comprehensive Review of Machine Learning and AI Vision Applications in All-Terrain Vehicle for Farm Automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital Revolution for the Agroecological Transition of Food Systems: A Responsible Research and Innovation Perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
- Maurel, V.B.; Huyghe, C. Putting Agricultural Equipment and Digital Technologies at the Cutting Edge of Agroecology. OCL 2017, 24, D307. [Google Scholar] [CrossRef]
- Shilomboleni, H.; Schnurr, M.A. Are Disruptive Agricultural Technologies Compatible with Agroecology? Npj Sustain. Agric. 2025, 3, 21. [Google Scholar] [CrossRef]
- Web of Science. 2025. Available online: https://clarivate.com/academia-government/scientific-and-academic-research/research-discovery-and-referencing/web-of-science/ (accessed on 23 October 2025).
- Anastasiou, E.; Kasimati, A.; Papadopoulos, G.; Vatsanidou, A.; Gemtou, M.; Schwierz, F.; Meyer-Aurich, A.; Fountas, S. Assessing the Agroecological Impact of Digital Tools in Livestock Production: A Systematic Review. Smart Agric. Technol. 2025, 12, 101480. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Albiero, D.; Pontin Garcia, A.; Kiyoshi Umezu, C.; Leme de Paulo, R. Swarm Robots in Mechanized Agricultural Operations: A Review about Challenges for Research. Comput. Electron. Agric. 2022, 193, 106608. [Google Scholar] [CrossRef]
- Aqeel-ur-Rehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A Review of Wireless Sensors and Networks’ Applications in Agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Nordblom, T.L.; Hutchings, T.R.; Godfrey, S.S.; Schefe, C.R. Precision Variable Rate Nitrogen for Dryland Farming on Waterlogging Riverine Plains of Southeast Australia? Agric. Syst. 2021, 186, 102962. [Google Scholar] [CrossRef]
- Potamitis, I.; Rigakis, I.; Fysarakis, K. The Electronic McPhail Trap. Sensors 2014, 14, 22285–22299. [Google Scholar] [CrossRef]
- Marti-Jerez, K.; Català-Forner, M.; Tomàs, N.; Murillo, G.; Ortiz, C.; Sánchez-Torres, M.J.; Vitali, A.; Lopes, M.S. Agronomic Performance and Remote Sensing Assessment of Organic and Mineral Fertilization in Rice Fields. Front. Plant Sci. 2023, 14, 1230012. [Google Scholar] [CrossRef]
- Logeshwaran, J.; Srivastava, D.; Kumar, K.S.; Rex, M.J.; Al-Rasheed, A.; Getahun, M.; Soufiene, B.O. Improving Crop Production Using an Agro-Deep Learning Framework in Precision Agriculture. BMC Bioinform. 2024, 25, 341. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, M.; Delali, A. Support System Based on GIS and Weighted Sum Method for Drawing up of Land Suitability Map for Agriculture. Application to Durum Wheat Cultivation in the Area of Mleta (Algeria). Span. J. Agric. Res. 2012, 10, 34–43. [Google Scholar] [CrossRef]
- Pan, S.; Wang, K.; Wang, L.; Wang, Z.; Han, Y. Risk Assessment System Based on WebGIS for Heavy Metal Pollution in Farmland Soils in China. Sustainability 2017, 9, 1846. [Google Scholar] [CrossRef]
- Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of Vegetation Indices for High-Throughput Phenotyping of Wheat Using Aerial Imaging. Plant Methods 2018, 14, 20. [Google Scholar] [CrossRef]
- Sun, C.; Feng, L.; Zhang, Z.; Ma, Y.; Crosby, T.; Naber, M.; Wang, Y. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning. Sensors 2020, 20, 5293. [Google Scholar] [CrossRef]
- Nguyen, D.-H.; Huynh-Tuong, N.; Pham, H.-A. A Blockchain-Based Framework for Developing Traceability Applications towards Sustainable Agriculture in Vietnam. Secur. Commun. Netw. 2022, 2022, 1834873. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, G.; Zhou, H.; Jin, X.; Luo, Z. Coupling Agricultural System Models with Machine Learning to Facilitate Regional Predictions of Management Practices and Crop Production. Environ. Res. Lett. 2022, 17, 114027. [Google Scholar] [CrossRef]
- Safarov, F.; Temurbek, K.; Jamoljon, D.; Temur, O.; Chedjou, J.C.; Abdusalomov, A.B.; Cho, Y.-I. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture. Sensors 2022, 22, 9784. [Google Scholar] [CrossRef] [PubMed]
- Wolters, S.L.; Balafoutis, T.; Fountas, S.; Evert, F.K. van Industry Solutions on Smart Farming Technology. Zenodo 2017. [Google Scholar] [CrossRef]
- Ezell, B.; Lynch, C.J.; Hester, P.T. Methods for Weighting Decisions to Assist Modelers and Decision Analysts: A Review of Ratio Assignment and Approximate Techniques. Appl. Sci. 2021, 11, 10397. [Google Scholar] [CrossRef]
- Fathi, M.; Shah-Hosseini, R.; Moghimi, A. 3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data. Remote Sens. 2023, 15, 5551. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, N.; Chen, Z. A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring. ISPRS Int. J. Geo-Inf. 2016, 5, 81. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Valente, J. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Front. Plant Sci. 2020, 11, 1086. [Google Scholar] [CrossRef]
- Mylonas, P.; Voutos, Y.; Sofou, A. A Collaborative Pilot Platform for Data Annotation and Enrichment in Viticulture. Information 2019, 10, 149. [Google Scholar] [CrossRef]
- M’hamdi, O.; Takács, S.; Palotás, G.; Ilahy, R.; Helyes, L.; Pék, Z. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants 2024, 13, 746. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.P.; Mabhaudhi, T. A Comparative Estimation of Maize Leaf Water Content Using Machine Learning Techniques and Unmanned Aerial Vehicle (UAV)-Based Proximal and Remotely Sensed Data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
- Filintas, A.; Nteskou, A.; Kourgialas, N.; Gougoulias, N.; Hatzichristou, E. A Comparison between Variable Deficit Irrigation and Farmers’ Irrigation Practices under Three Fertilization Levels in Cotton Yield (Gossypium hirsutum L.) Using Precision Agriculture, Remote Sensing, Soil Analyses, and Crop Growth Modeling. Water 2022, 14, 2654. [Google Scholar] [CrossRef]
- Ghazvini, A.; Sharef, N.M.; Balasundram, S.K.; Lee, L.S. A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms. Appl. Sci. 2024, 14, 3383. [Google Scholar] [CrossRef]
- Du, C.; Zhang, L.; Ma, X.; Lou, X.; Shan, Y.; Li, H.; Zhou, R. A Cotton High-Efficiency Water-Fertilizer Control System Using Wireless Sensor Network for Precision Agriculture. Processes 2021, 9, 1693. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Y.; Qi, X.; Zhao, J.; Jiang, L.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, X. A Deep Learning Approach for Deriving Wheat Phenology from Near-Surface RGB Image Series Using Spatiotemporal Fusion. Plant Methods 2024, 20, 153. [Google Scholar] [CrossRef]
- Cerrato, S.; Mazzia, V.; Salvetti, F.; Martini, M.; Angarano, S.; Navone, A.; Chiaberge, M. A Deep Learning Driven Algorithmic Pipeline for Autonomous Navigation in Row-Based Crops. IEEE Access 2024, 12, 138306–138318. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.; Ku, N.-W.; Rooney, W.; Zhou, T.; Moore, S. A Deep Learning Semantic Segmentation-Based Approach for Field-Level Sorghum Panicle Counting. Remote Sens. 2019, 11, 2939. [Google Scholar] [CrossRef]
- Panjaitan, S.D.; Dewi, Y.S.K.; Hendri, M.I.; Wicaksono, R.A.; Priyatman, H. A Drone Technology Implementation Approach to Conventional Paddy Fields Application. IEEE Access 2022, 10, 120650–120658. [Google Scholar] [CrossRef]
- Valente, A.; Costa, C.; Pereira, L.; Soares, B.; Lima, J.; Soares, S. A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination. Agriculture 2022, 12, 1695. [Google Scholar] [CrossRef]
- Song, X.; Bramley, R.G.V.; Evans, K.J. A Method to Position a Simple Strip Trial to Improve Trial Efficiency and Maximise the Value of Vineyard Variability for Decision-Making. OENO One 2023, 57, 97–107. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Erten, E.; Hajnsek, I. A Multi-Year Study on Rice Morphological Parameter Estimation with X-Band Polsar Data. Appl. Sci. 2017, 7, 602. [Google Scholar] [CrossRef]
- Babaeian, E.; Sidike, P.; Newcomb, M.S.; Maimaitijiang, M.; White, S.A.; Demieville, J.; Ward, R.W.; Sadeghi, M.; LeBauer, D.S.; Jones, S.B.; et al. A New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture. Front. Big Data 2019, 2, 37. [Google Scholar] [CrossRef]
- Bazinas, C.; Vrochidou, E.; Kalampokas, T.; Karampatea, A.; Kaburlasos, V.G. A Non-Destructive Method for Grape Ripeness Estimation Using Intervals’ Numbers (INs) Techniques. Agronomy 2022, 12, 1564. [Google Scholar] [CrossRef]
- Herrera, P.; Dorado, J.; Ribeiro, Á. A Novel Approach for Weed Type Classification Based on Shape Descriptors and a Fuzzy Decision-Making Method. Sensors 2014, 14, 15304–15324. [Google Scholar] [CrossRef] [PubMed]
- Nan, F.; Song, Y.; Yu, X.; Nie, C.; Liu, Y.; Bai, Y.; Zou, D.; Wang, C.; Yin, D.; Yang, W.; et al. A Novel Method for Maize Leaf Disease Classification Using the RGB-D Post-Segmentation Image Data. Front. Plant Sci. 2023, 14, 1268015. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A Novel Semi-Supervised Framework for UAV Based Crop/Weed Classification. PLoS ONE 2021, 16, e0251008. [Google Scholar] [CrossRef]
- Khan, A.M. A novel study of the interrelationship of seasonality, satellite data and weed compositional changes of the agro-ecological system of gujrat, pakistan. Appl. Ecol. Environ. Res. 2018, 16, 2995–3018. [Google Scholar] [CrossRef]
- Wehrhan, M.; Sommer, M. A Parsimonious Approach to Estimate Soil Organic Carbon Applying Unmanned Aerial System (UAS) Multispectral Imagery and the Topographic Position Index in a Heterogeneous Soil Landscape. Remote Sens. 2021, 13, 3557. [Google Scholar] [CrossRef]
- Bregaglio, S.; Savian, F.; Raparelli, E.; Morelli, D.; Epifani, R.; Pietrangeli, F.; Nigro, C.; Bugiani, R.; Pini, S.; Culatti, P.; et al. A Public Decision Support System for the Assessment of Plant Disease Infection Risk Shared by Italian Regions. J. Environ. Manag. 2022, 317, 115365. [Google Scholar] [CrossRef]
- Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture. AgriEngineering 2019, 1, 391–402. [Google Scholar] [CrossRef]
- Cambra Baseca, C.; Sendra, S.; Lloret, J.; Tomas, J. A Smart Decision System for Digital Farming. Agronomy 2019, 9, 216. [Google Scholar] [CrossRef]
- Li, Y.; Yan, W.; An, S.; Gao, W.; Jia, J.; Tao, S.; Wang, W. A Spatio-Temporal Fusion Framework of UAV and Satellite Imagery for Winter Wheat Growth Monitoring. Drones 2022, 7, 23. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, J.-L.; Su, W.-H.; Hu, R. A SPH-YOLOv5x-Based Automatic System for Intra-Row Weed Control in Lettuce. Agronomy 2023, 13, 2915. [Google Scholar] [CrossRef]
- Jia, W.; Wei, J.; Zhang, Q.; Pan, N.; Niu, Y.; Yin, X.; Ding, Y.; Ge, X. Accurate Segmentation of Green Fruit Based on Optimized Mask RCNN Application in Complex Orchard. Front. Plant Sci. 2022, 13, 955256. [Google Scholar] [CrossRef]
- Shekhawat, K.; Singh, V.K.; Rathore, S.S.; Raj, R.; Das, T.K. Achieving Sustainability in Food Systems: Addressing Changing Climate through Real Time Nitrogen and Weed Management in a Conservation Agriculture-Based Maize–Wheat System. Sustainability 2021, 13, 5010. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active Canopy Sensor-Based Precision N Management Strategy for Rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef]
- Argolo Dos Santos, R.; Chartuni Mantovani, E.; Filgueiras, R.; Inácio Fernandes-Filho, E.; Cristielle Barbosa Da Silva, A.; Peroni Venancio, L. Actual Evapotranspiration and Biomass of Maize from a Red–Green-Near-Infrared (RGNIR) Sensor on Board an Unmanned Aerial Vehicle (UAV). Water 2020, 12, 2359. [Google Scholar] [CrossRef]
- Myint, S.W.; Aggarwal, R.; Zheng, B.; Wentz, E.A.; Holway, J.; Fan, C.; Selover, N.J.; Wang, C.; Fischer, H.A. Adaptive Crop Management under Climate Uncertainty: Changing the Game for Sustainable Water Use. Atmosphere 2021, 12, 1080. [Google Scholar] [CrossRef]
- Kiani, F.; Seyyedabbasi, A.; Nematzadeh, S.; Candan, F.; Çevik, T.; Anka, F.A.; Randazzo, G.; Lanza, S.; Muzirafuti, A. Adaptive Metaheuristic-Based Methods for Autonomous Robot Path Planning: Sustainable Agricultural Applications. Appl. Sci. 2022, 12, 943. [Google Scholar] [CrossRef]
- Rehman, M.U.; Eesaar, H.; Abbas, Z.; Seneviratne, L.; Hussain, I.; Chong, K.T. Advanced Drone-Based Weed Detection Using Feature-Enriched Deep Learning Approach. Knowl.-Based Syst. 2024, 305, 112655. [Google Scholar] [CrossRef]
- Iagăru, P.; Pavel, P.; Iagăru, R.; Șipoș, A. Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability. Sustainability 2022, 14, 6011. [Google Scholar] [CrossRef]
- Lopez-Jimenez, J.; Quijano, N.; Vande Wouwer, A. Agent-Based Sensor Location Strategy for Smart Irrigation of Large Crop Fields. Comput. Electron. Agric. 2023, 214, 108282. [Google Scholar] [CrossRef]
- Luciani, R.; Laneve, G.; JahJah, M. Agricultural Monitoring, an Automatic Procedure for Crop Mapping and Yield Estimation: The Great Rift Valley of Kenya Case. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2196–2208. [Google Scholar] [CrossRef]
- Catala-Roman, P.; Segura-Garcia, J.; Dura, E.; Navarro-Camba, E.A.; Alcaraz-Calero, J.M.; Garcia-Pineda, M. AI-Based Autonomous UAV Swarm System for Weed Detection and Treatment: Enhancing Organic Orange Orchard Efficiency with Agriculture 5.0. Internet Things 2024, 28, 101418. [Google Scholar] [CrossRef]
- De Lima Silva, Y.K.; Furlani, C.E.A.; Canata, T.F. AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering 2024, 6, 361–374. [Google Scholar] [CrossRef]
- Ye, Z.; Yin, S.; Cao, Y.; Wang, Y. AI-Driven Optimization of Agricultural Water Management for Enhanced Sustainability. Sci. Rep. 2024, 14, 25721. [Google Scholar] [CrossRef]
- Khan, A.; Malebary, S.J.; Dang, L.M.; Binzagr, F.; Song, H.-K.; Moon, H. AI-Enabled Crop Management Framework for Pest Detection Using Visual Sensor Data. Plants 2024, 13, 653. [Google Scholar] [CrossRef]
- Kim, T.H.; AlZubi, A.A. AI-Enhanced Precision Irrigation in Legume Farming: Optimizing Water Use Efficiency. LEGUME Res.—Int. J. 2024, 47, 1382–1389. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Wang, Z.; Ainsworth, E.A.; Zheng, T.; Townsend, P.A.; Liu, N.; Nafziger, E.; Masters, M.D.; Li, K.; et al. Airborne Hyperspectral Imaging of Nitrogen Deficiency on Crop Traits and Yield of Maize by Machine Learning and Radiative Transfer Modeling. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102617. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Yu, W.; Ding, P.; Wang, J.; Zhang, X. Algorithm for UAV Path Planning in High Obstacle Density Environments: RFA-Star. Front. Plant Sci. 2024, 15, 1391628. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Sousa, J.J.; Bento, A.; Couto, P. Almond Cultivar Identification Using Machine Learning Classifiers Applied to UAV-Based Multispectral Data. Int. J. Remote Sens. 2023, 44, 1533–1555. [Google Scholar] [CrossRef]
- Ariza-Sentís, M.; Vélez, S.; Baja, H.; Valenti, R.G.; Valente, J. An Aerial Framework for Multi-View Grape Bunch Detection and Route Optimization Using ACO. Comput. Electron. Agric. 2024, 221, 108972. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Guo, B.; Wei, Q.; Zhu, Z. An Apple Detection Method Based on Des-YOLO v4 Algorithm for Harvesting Robots in Complex Environment. Math. Probl. Eng. 2021, 2021, 7351470. [Google Scholar] [CrossRef]
- Diacono, M.; Castrignanò, A.; Vitti, C.; Stellacci, A.M.; Marino, L.; Cocozza, C.; De Benedetto, D.; Troccoli, A.; Rubino, P.; Ventrella, D. An Approach for Assessing the Effects of Site-Specific Fertilization on Crop Growth and Yield of Durum Wheat in Organic Agriculture. Precis. Agric. 2014, 15, 479–498. [Google Scholar] [CrossRef]
- Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors 2015, 15, 5504–5517. [Google Scholar] [CrossRef]
- Hosseiny, B.; Rastiveis, H.; Homayouni, S. An Automated Framework for Plant Detection Based on Deep Simulated Learning from Drone Imagery. Remote Sens. 2020, 12, 3521. [Google Scholar] [CrossRef]
- Li, K.-Y.; Burnside, N.G.; De Lima, R.S.; Peciña, M.V.; Sepp, K.; Cabral Pinheiro, V.H.; De Lima, B.R.C.A.; Yang, M.-D.; Vain, A.; Sepp, K. An Automated Machine Learning Framework in Unmanned Aircraft Systems: New Insights into Agricultural Management Practices Recognition Approaches. Remote Sens. 2021, 13, 3190. [Google Scholar] [CrossRef]
- De Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, F.; Wang, Y. An Improved Apple Object Detection Method Based on Lightweight YOLOv4 in Complex Backgrounds. Remote Sens. 2022, 14, 4150. [Google Scholar] [CrossRef]
- Urvina, R.P.; Guevara, C.L.; Vásconez, J.P.; Prado, A.J. An Integrated Route and Path Planning Strategy for Skid–Steer Mobile Robots in Assisted Harvesting Tasks with Terrain Traversability Constraints. Agriculture 2024, 14, 1206. [Google Scholar] [CrossRef]
- Yi, W.; Wang, P.; Xu, Z.; Dong, S.; Liu, G. An Integrated System of Bulk Tea Harvesting Robot With Profiling Logic. IEEE Access 2024, 12, 137568–137584. [Google Scholar] [CrossRef]
- Math, R.M.; Dharwadkar, N.V. An Intelligent Irrigation Scheduling and Monitoring System for Precision Agriculture Application. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 1–24. [Google Scholar] [CrossRef]
- Jamroen, C.; Komkum, P.; Fongkerd, C.; Krongpha, W. An Intelligent Irrigation Scheduling System Using Low-Cost Wireless Sensor Network Toward Sustainable and Precision Agriculture. IEEE Access 2020, 8, 172756–172769. [Google Scholar] [CrossRef]
- Morellos, A.; Dolaptsis, K.; Tziotzios, G.; Pantazi, X.E.; Kateris, D.; Berruto, R.; Bochtis, D. An IoT Transfer Learning-Based Service for the Health Status Monitoring of Grapevines. Appl. Sci. 2024, 14, 1049. [Google Scholar] [CrossRef]
- Nutini, F.; Confalonieri, R.; Crema, A.; Movedi, E.; Paleari, L.; Stavrakoudis, D.; Boschetti, M. An Operational Workflow to Assess Rice Nutritional Status Based on Satellite Imagery and Smartphone Apps. Comput. Electron. Agric. 2018, 154, 80–92. [Google Scholar] [CrossRef]
- Casella, A.; Orden, L.; Pezzola, N.A.; Bellaccomo, C.; Winschel, C.I.; Caballero, G.R.; Delegido, J.; Gracia, L.M.N.; Verrelst, J. Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations. Agronomy 2022, 12, 1884. [Google Scholar] [CrossRef]
- Blekos, K.; Tsakas, A.; Xouris, C.; Evdokidis, I.; Alexandropoulos, D.; Alexakos, C.; Katakis, S.; Makedonas, A.; Theoharatos, C.; Lalos, A. Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. J. Sens. Actuator Netw. 2021, 10, 15. [Google Scholar] [CrossRef]
- Puig-Sirera, À.; Antichi, D.; Warren Raffa, D.; Rallo, G. Application of Remote Sensing Techniques to Discriminate the Effect of Different Soil Management Treatments over Rainfed Vineyards in Chianti Terroir. Remote Sens. 2021, 13, 716. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Kalyani, Y.; Vorster, L.; Whetton, R.; Collier, R. Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure. Future Internet 2024, 16, 100. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Alam, F.M.; Burgos, E.N.; Muthukumar, S.; Prasad, S. ASSERT: A Platform Technology for Rapid Electrochemical Sensing of Soil Ammonium. ACS Omega 2024, 9, 33928–33934. [Google Scholar] [CrossRef]
- González-Gómez, L.; Intrigliolo, D.S.; Rubio-Asensio, J.S.; Buesa, I.; Ramírez-Cuesta, J.M. Assessing Almond Response to Irrigation and Soil Management Practices Using Vegetation Indexes Time-Series and Plant Water Status Measurements. Agric. Ecosyst. Environ. 2022, 339, 108124. [Google Scholar] [CrossRef]
- Chu, T.; Starek, M.; Brewer, M.; Murray, S.; Pruter, L. Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sens. 2017, 9, 923. [Google Scholar] [CrossRef]
- Siqueira, R.; Mandal, D.; Longchamps, L.; Khosla, R. Assessing Nitrogen Variability at Early Stages of Maize Using Mobile Fluorescence Sensing. Remote Sens. 2022, 14, 5077. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Martínez-Casasnovas, J.A.; Tisseyre, B.; Guillaume, S.; Escolà, A.; Rosell-Polo, J.R.; Arnó, J. Assessing Ranked Set Sampling and Ancillary Data to Improve Fruit Load Estimates in Peach Orchards. Comput. Electron. Agric. 2019, 164, 104931. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sens. 2020, 12, 1207. [Google Scholar] [CrossRef]
- Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, D.; Bianchi, A.; Brancadoro, L. Assessing the Effectiveness of Variable-Rate Drip Irrigation on Water Use Efficiency in a Vineyard in Northern Italy. Water 2019, 11, 1964. [Google Scholar] [CrossRef]
- Zhou, K.; Cheng, T.; Zhu, Y.; Cao, W.; Ustin, S.L.; Zheng, H.; Yao, X.; Tian, Y. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Front. Plant Sci. 2018, 9, 964. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Cianciola, V.; Singh, K.; Vivaldi, G.A.; Brillante, L. Assessing the Spatial-Temporal Performance of Machine Learning in Predicting Grapevine Water Status from Landsat 8 Imagery via Block-out and Date-out Cross-Validation. Agric. Water Manag. 2024, 306, 109163. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes. Remote Sens. 2023, 15, 4777. [Google Scholar] [CrossRef]
- Psiroukis, V.; Espejo-Garcia, B.; Chitos, A.; Dedousis, A.; Karantzalos, K.; Fountas, S. Assessment of Different Object Detectors for the Maturity Level Classification of Broccoli Crops Using UAV Imagery. Remote Sens. 2022, 14, 731. [Google Scholar] [CrossRef]
- Choudhary, V.; Machavaram, R.; Singh, N.; Nagar, H. Assessment of Sensor-Based Automatic Smart Watering Unit for Paddy Nurseries under Indian Perspective. Smart Agric. Technol. 2024, 8, 100518. [Google Scholar] [CrossRef]
- Greene, A.D.; Reay-Jones, F.P.F.; Kirk, K.R.; Peoples, B.K.; Greene, J.K. Associating Site Characteristics With Distributions of Pestiferous and Predaceous Arthropods in Soybean. Environ. Entomol. 2021, 50, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Biffi, L.J.; Mitishita, E.; Liesenberg, V.; Santos, A.A.D.; Gonçalves, D.N.; Estrabis, N.V.; Silva, J.D.A.; Osco, L.P.; Ramos, A.P.M.; Centeno, J.A.S.; et al. ATSS Deep Learning-Based Approach to Detect Apple Fruits. Remote Sens. 2020, 13, 54. [Google Scholar] [CrossRef]
- Ribeiro, J.B.; Da Silva, R.R.; Dias, J.D.; Escarpinati, M.C.; Backes, A.R. Automated Detection of Sugarcane Crop Lines from UAV Images Using Deep Learning. Inf. Process. Agric. 2024, 11, 385–396. [Google Scholar] [CrossRef]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
- Boulent, J.; St-Charles, P.-L.; Foucher, S.; Théau, J. Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Front. Artif. Intell. 2020, 3, 564878. [Google Scholar] [CrossRef]
- Zhao, B.; Li, J.; Baenziger, P.S.; Belamkar, V.; Ge, Y.; Zhang, J.; Shi, Y. Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy 2020, 10, 1762. [Google Scholar] [CrossRef]
- Ditzler, L.; Driessen, C. Automating Agroecology: How to Design a Farming Robot Without a Monocultural Mindset? J. Agric. Environ. Ethics 2022, 35, 2. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Carrasco Silva, G.; Pérez Guzmán, R.; Burgos, I.; Ewertz, F. Automating Seedling Counts in Horticulture Using Computer Vision and AI. Horticulturae 2023, 9, 1134. [Google Scholar] [CrossRef]
- Feng, J.; Sun, Y.; Zhang, K.; Zhao, Y.; Ren, Y.; Chen, Y.; Zhuang, H.; Chen, S. Autonomous Detection of Spodoptera Frugiperda by Feeding Symptoms Directly from UAV RGB Imagery. Appl. Sci. 2022, 12, 2592. [Google Scholar] [CrossRef]
- Ariza-Sentís, M.; Vélez, S.; Valente, J. BBR: An Open-Source Standard Workflow Based on Biophysical Crop Parameters for Automatic Botrytis Cinerea Assessment in Vineyards. SoftwareX 2023, 24, 101542. [Google Scholar] [CrossRef]
- Wang, K.; Kooistra, L.; Wang, Y.; Vélez, S.; Wang, W.; Valente, J. Benchmarking of Monocular Camera UAV-Based Localization and Mapping Methods in Vineyards. Comput. Electron. Agric. 2024, 227, 109661. [Google Scholar] [CrossRef]
- Han, Y.; Tarakey, B.A.; Hong, S.-J.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Kim, G. Calibration and Image Processing of Aerial Thermal Image for UAV Application in Crop Water Stress Estimation. J. Sens. 2021, 2021, 5537795. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Lüscher, J.; Yu, R.; Kurtural, S.K. Carbon Isotope Discrimination (Δ13 C) of Grape Musts Is a Reliable Tool for Zoning and the Physiological Ground-Truthing of Sensor Maps in Precision Viticulture. Front. Environ. Sci. 2020, 8, 561477. [Google Scholar] [CrossRef]
- Bakhshipour, A. Cascading Feature Filtering and Boosting Algorithm for Plant Type Classification Based on Image Features. IEEE Access 2021, 9, 82021–82030. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Spangenberg, G.; Kant, S. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements. Biosensors 2021, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Fujii, Y.; Takata, D.; Zheng, B.; Noshita, K.; Honda, K.; Ninomiya, S.; Guo, W. Characterization of Peach Tree Crown by Using High-Resolution Images from an Unmanned Aerial Vehicle. Hortic. Res. 2018, 5, 74. [Google Scholar] [CrossRef]
- Cheng, Z.; Qi, L.; Cheng, Y. Cherry Tree Crown Extraction from Natural Orchard Images with Complex Backgrounds. Agriculture 2021, 11, 431. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V.; Meyering, B.; Albrecht, U. Citrus Rootstock Evaluation Utilizing UAV-Based Remote Sensing and Artificial Intelligence. Comput. Electron. Agric. 2019, 164, 104900. [Google Scholar] [CrossRef]
- Santana, D.C.; De Oliveira, I.C.; Cavalheiro, S.B.; Das Chagas, P.H.M.; Teixeira Filho, M.C.M.; Della-Silva, J.L.; Teodoro, L.P.R.; Campos, C.N.S.; Baio, F.H.R.; Da Silva Junior, C.A.; et al. Classification of Soybean Genotypes as to Calcium, Magnesium, and Sulfur Content Using Machine Learning Models and UAV–Multispectral Sensor. AgriEngineering 2024, 6, 1581–1593. [Google Scholar] [CrossRef]
- López-Morales, J.A.; Martínez, J.A.; Caro, M.; Erena, M.; Skarmeta, A.F. Climate-Aware and IoT-Enabled Selection of the Most Suitable Stone Fruit Tree Variety. Sensors 2021, 21, 3867. [Google Scholar] [CrossRef] [PubMed]
- Bindu, L.R.; Titus, P.; Dhanya, D. Clustered Wireless Sensor Network in Precision Agriculture via Graph Theory. Intell. Autom. Soft Comput. 2023, 36, 1435–1449. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [Google Scholar] [CrossRef]
- Raptis, E.K.; Englezos, K.; Kypris, O.; Krestenitis, M.; Kapoutsis, A.C.; Ioannidis, K.; Vrochidis, S.; Kosmatopoulos, E.B. CoFly: An Automated, AI-Based Open-Source Platform for UAV Precision Agriculture Applications. SoftwareX 2023, 23, 101414. [Google Scholar] [CrossRef]
- Mesías-Ruiz, G.A.; Peña, J.M.; De Castro, A.I.; Borra-Serrano, I.; Dorado, J. Cognitive Computing Advancements: Improving Precision Crop Protection through UAV Imagery for Targeted Weed Monitoring. Remote Sens. 2024, 16, 3026. [Google Scholar] [CrossRef]
- Nocco, M.A.; Zipper, S.C.; Booth, E.G.; Cummings, C.R.; Loheide, S.P.; Kucharik, C.J. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sens. 2019, 11, 2460. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sens. 2019, 12, 21. [Google Scholar] [CrossRef]
- Yang, W.; Wu, J.; Xu, W.; Li, H.; Li, X.; Lan, Y.; Li, Y.; Zhang, L. Comparative Evaluation of the Performance of the PTD and CSF Algorithms on UAV LiDAR Data for Dynamic Canopy Height Modeling in Densely Planted Cotton. Agronomy 2024, 14, 856. [Google Scholar] [CrossRef]
- Buunk, T.; Vélez, S.; Ariza-Sentís, M.; Valente, J. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation. Sensors 2023, 23, 8625. [Google Scholar] [CrossRef] [PubMed]
- Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. [Google Scholar] [CrossRef]
- Bosilj, P.; Duckett, T.; Cielniak, G. Connected Attribute Morphology for Unified Vegetation Segmentation and Classification in Precision Agriculture. Comput. Ind. 2018, 98, 226–240. [Google Scholar] [CrossRef]
- Arakawa, T.; Kamio, S. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Plants 2023, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Wang, D. Convolution Network Enlightened Transformer for Regional Crop Disease Classification. Electronics 2022, 11, 3174. [Google Scholar] [CrossRef]
- Carneiro, F.M.; Furlani, C.E.A.; Zerbato, C.; Menezes, P.C.D.; Gírio, L.A.D.S. Correlations Among Vegetation Indices and Peanut Traits During Different Crop Development Stages. Eng. Agríc. 2019, 39, 33–40. [Google Scholar] [CrossRef]
- De Bortoli, L.; Marsi, S.; Marinello, F.; Gallina, P. Cost-Efficient Algorithm for Autonomous Cultivators: Implementing Template Matching with Field Digital Twins for Precision Agriculture. Comput. Electron. Agric. 2024, 227, 109509. [Google Scholar] [CrossRef]
- Vavlas, N.-C.; Porre, R.; Meng, L.; Elhakeem, A.; Van Egmond, F.; Kooistra, L.; De Deyn, G.B. Cover Crop Impacts on Soil Organic Matter Dynamics and Its Quantification Using UAV and Proximal Sensing. Smart Agric. Technol. 2024, 9, 100621. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. Crop Diagnostic System: A Robust Disease Detection and Management System for Leafy Green Crops Grown in an Aquaponics Facility. Artif. Intell. Agric. 2023, 10, 1–12. [Google Scholar] [CrossRef]
- Garcia Millan, V.E.; Rankine, C.; Sanchez-Azofeifa, G.A. Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data. Remote Sens. 2020, 12, 981. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, B.; Zhang, M.; Zeng, H. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products. Sensors 2016, 16, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, G.; Mayer, A.; Facchi, A.; Ortuani, B.; Sona, G. Crop Row Detection through UAV Surveys to Optimize On-Farm Irrigation Management. Remote Sens. 2020, 12, 1967. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop Sensor Based Non-Destructive Estimation of Nitrogen Nutritional Status, Yield, and Grain Protein Content in Wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop Water Stress Detection Based on UAV Remote Sensing Systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar] [CrossRef]
- Talaat, F.M. Crop Yield Prediction Algorithm (CYPA) in Precision Agriculture Based on IoT Techniques and Climate Changes. Neural Comput. Appl. 2023, 35, 17281–17292. [Google Scholar] [CrossRef]
- Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets. Agriculture 2021, 11, 530. [Google Scholar] [CrossRef]
- Aragon, B.; Ziliani, M.G.; Houborg, R.; Franz, T.E.; McCabe, M.F. CubeSats Deliver New Insights into Agricultural Water Use at Daily and 3 m Resolutions. Sci. Rep. 2021, 11, 12131. [Google Scholar] [CrossRef]
- Goldenits, G.; Mallinger, K.; Raubitzek, S.; Neubauer, T. Current Applications and Potential Future Directions of Reinforcement Learning-Based Digital Twins in Agriculture. Smart Agric. Technol. 2024, 8, 100512. [Google Scholar] [CrossRef]
- Weraikat, D.; Šorič, K.; Žagar, M.; Sokač, M. Data Analytics in Agriculture: Enhancing Decision-Making for Crop Yield Optimization and Sustainable Practices. Sustainability 2024, 16, 7331. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Data-Driven Modelling of Soil Moisture Dynamics for Smart Irrigation Scheduling. Smart Agric. Technol. 2023, 5, 100251. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep Convolutional Neural Networks for Mobile Capture Device-Based Crop Disease Classification in the Wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Math, R.M.; Dharwadkar, N.V. Deep Learning and Computer Vision for Leaf Miner Infestation Severity Detection on Muskmelon (Cucumis melo) Leaves. Comput. Electr. Eng. 2023, 110, 108843. [Google Scholar] [CrossRef]
- Silva, J.A.O.S.; Siqueira, V.S.D.; Mesquita, M.; Vale, L.S.R.; Marques, T.D.N.B.; Silva, J.L.B.D.; Silva, M.V.D.; Lacerda, L.N.; Oliveira-Júnior, J.F.D.; Lima, J.L.M.P.D.; et al. Deep Learning for Weed Detection and Segmentation in Agricultural Crops Using Images Captured by an Unmanned Aerial Vehicle. Remote Sens. 2024, 16, 4394. [Google Scholar] [CrossRef]
- Genze, N.; Ajekwe, R.; Güreli, Z.; Haselbeck, F.; Grieb, M.; Grimm, D.G. Deep Learning-Based Early Weed Segmentation Using Motion Blurred UAV Images of Sorghum Fields. Comput. Electron. Agric. 2022, 202, 107388. [Google Scholar] [CrossRef]
- Khan, T.; Sherazi, H.H.R.; Ali, M.; Letchmunan, S.; Butt, U.M. Deep Learning-Based Growth Prediction System: A Use Case of China Agriculture. Agronomy 2021, 11, 1551. [Google Scholar] [CrossRef]
- De Albuquerque, A.O.; De Carvalho Júnior, O.A.; Carvalho, O.L.F.D.; De Bem, P.P.; Ferreira, P.H.G.; De Moura, R.D.S.; Silva, C.R.; Trancoso Gomes, R.A.; Fontes Guimarães, R. Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data. Remote Sens. 2020, 12, 2159. [Google Scholar] [CrossRef]
- Perron, I.; Cambouris, A.N.; Chokmani, K.; Vargas Gutierrez, M.F.; Zebarth, B.J.; Moreau, G.; Biswas, A.; Adamchuk, V. Delineating Soil Management Zones Using a Proximal Soil Sensing System in Two Commercial Potato Fields in New Brunswick, Canada. Can. J. Soil Sci. 2018, 98, 724–737. [Google Scholar] [CrossRef]
- Martinez, F.; Romaine, J.B.; Manzano, J.M.; Ierardi, C.; Millán Gata, P. Deployment and Verification of Custom Autonomous Low-Budget IoT Devices for Image Feature Extraction in Wheat. IEEE Access 2024, 12, 124636–124657. [Google Scholar] [CrossRef]
- Khan, H.A.; Farooq, U.; Saleem, S.R.; Rehman, U.; Tahir, M.N.; Iqbal, T.; Cheema, M.J.M.; Aslam, M.A.; Hussain, S. Design and Development of Machine Vision Robotic Arm for Vegetable Crops in Hydroponics. Smart Agric. Technol. 2024, 9, 100628. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Song, J.; Liu, Y.; Zeng, A.; Yang, L.; Liu, C.; Liu, Z. Design and Experiment of Variable Rate Orchard Sprayer Based on Laser Scanning Sensor. Int. J. Agric. Biol. Eng. 2018, 11, 101–108. [Google Scholar] [CrossRef]
- Roshanianfard, A.; Noguchi, N.; Kamata, T. Design and Performance of a Robotic Arm for Farm Use. Int. J. Agric. Biol. Eng. 2019, 12, 146–158. [Google Scholar] [CrossRef]
- Ramli, M.I.; Mohd Ariffin, M.A.; Zainol, Z.; Mohd Amin, M.N.; Hirawan, D.; Sumitra, I.D.; Jamil, N. Design of a Smart Portable Farming Kit for Indoor Cultivation Using the Raspberry Pi Platform. Pertanika J. Sci. Technol. 2023, 31, 1731–1754. [Google Scholar] [CrossRef]
- Agüera, J.; Carballido, J.; Gil, J.; Gliever, C.; Perez-Ruiz, M. Design of a Soil Cutting Resistance Sensor for Application in Site-Specific Tillage. Sensors 2013, 13, 5945–5957. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Mohammad Abuzanouneh, K.; Al-Wesabi, F.N.; Abdulrahman Albraikan, A.; Al Duhayyim, M.; Al-Shabi, M.; Mustafa Hilal, A.; Ahmed Hamza, M.; Sarwar Zamani, A.; Muthulakshmi, K. Design of Machine Learning Based Smart Irrigation System for Precision Agriculture. Comput. Mater. Contin. 2022, 72, 109–124. [Google Scholar] [CrossRef]
- Tang, R.; Sun, W.; Aridas, N.K.; Talip, M.S.A.; You, X. Design of Precise Fertilization Method for Greenhouse Vegetables Based on Improved Backpropagation Neural Network. Front. Sustain. Food Syst. 2024, 8, 1405051. [Google Scholar] [CrossRef]
- Moriya, É.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Rosalen, D.L. Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy 2023, 13, 1542. [Google Scholar] [CrossRef]
- Martins, G.D.; Galo, M.D.L.B.T.; Vieira, B.S. Detecting and Mapping Root-Knot Nematode Infection in Coffee Crop Using Remote Sensing Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5395–5403. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Nafziger, E.; Chowdhary, G.; Peng, B.; Jin, Z.; Wang, S.; Wang, S. Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5153–5166. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; Najem, S.; Jaafar, H.; Le Page, M.; Zribi, M.; Faraslis, I.; Spiliotopoulos, M. Detecting Irrigation Events over Semi-Arid and Temperate Climatic Areas Using Sentinel-1 Data: Case of Several Summer Crops. Agronomy 2022, 12, 2725. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Chen, W.; Liu, B.; Chen, M.; Lu, S. Detection of Dense Citrus Fruits by Combining Coordinated Attention and Cross-Scale Connection with Weighted Feature Fusion. Appl. Sci. 2022, 12, 6600. [Google Scholar] [CrossRef]
- Dorbu, F.; Hashemi-Beni, L. Detection of Individual Corn Crop and Canopy Delineation from Unmanned Aerial Vehicle Imagery. Remote Sens. 2024, 16, 2679. [Google Scholar] [CrossRef]
- Abrahão, S.A.; Pinto, F.D.A.D.C.; Queiroz, D.M.D.; Santos, N.T.; Carneiro, J.E.D.S. Determination of Nitrogen and Chlorophyll Levels in Bean-Plant Leaves by Using Spectral Vegetation Bands and Indices. Rev. Ciênc. Agron. 2013, 44, 464–473. [Google Scholar] [CrossRef]
- Wang, D.; Struik, P.C.; Liang, L.; Yin, X. Developing Remote Sensing- and Crop Model-Based Methods to Optimize Nitrogen Management in Rice Fields. Comput. Electron. Agric. 2024, 220, 108899. [Google Scholar] [CrossRef]
- Issac, A.; Ebrahimi, A.; Mohammadpour Velni, J.; Rains, G. Development and Deployment of a Big Data Pipeline for Field-Based High-Throughput Cotton Phenotyping Data. Smart Agric. Technol. 2023, 5, 100265. [Google Scholar] [CrossRef]
- Ale, S.; Su, Q.; Singh, J.; Himanshu, S.; Fan, Y.; Stoker, B.; Gonzalez, E.; Sapkota, B.R.; Adams, C.; Biggers, K.; et al. Development and Evaluation of a Decision Support Mobile Application for Cotton Irrigation Management. Smart Agric. Technol. 2023, 5, 100270. [Google Scholar] [CrossRef]
- Micheletto, M.; Zubiaga, L.; Santos, R.; Galantini, J.; Cantamutto, M.; Orozco, J. Development and Validation of a LiDAR Scanner for 3D Evaluation of Soil Vegetal Coverage. Electronics 2020, 9, 109. [Google Scholar] [CrossRef]
- Zhang, Z.; He, W.; Wu, F.; Quesada, L.; Xiang, L. Development of a Bionic Hexapod Robot with Adaptive Gait and Clearance for Enhanced Agricultural Field Scouting. Front. Robot. AI 2024, 11, 1426269. [Google Scholar] [CrossRef]
- Bristow, N.; Rengaraj, S.; Chadwick, D.R.; Kettle, J.; Jones, D.L. Development of a LoRaWAN IoT Node with Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture. Sensors 2022, 22, 9100. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Cini, D.; Berton, A.; Matese, A. Development of a Low-Cost Smart Irrigation System for Sustainable Water Management in the Mediterranean Region. Smart Agric. Technol. 2024, 9, 100629. [Google Scholar] [CrossRef]
- Preza-Fontes, G.; Wang, J.; Umar, M.; Qi, M.; Banger, K.; Pittelkow, C.; Nafziger, E. Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production. Sustainability 2021, 13, 5649. [Google Scholar] [CrossRef]
- Jayakumar, V.; Mohideen, A.B.K.; Saeed, M.H.; Alsulami, H.; Hussain, A.; Saeed, M. Development of Complex Linear Diophantine Fuzzy Soft Set in Determining a Suitable Agri-Drone for Spraying Fertilizers and Pesticides. IEEE Access 2023, 11, 9031–9041. [Google Scholar] [CrossRef]
- Hussain, A.; Fatima, H.S.; Zia, S.M.; Hasan, S.; Khurram, M.; Stricker, D.; Afzal, M.Z. Development of Cost-Effective and Easily Replicable Robust Weeding Machine—Premiering Precision Agriculture in Pakistan. Machines 2023, 11, 287. [Google Scholar] [CrossRef]
- Sánchez Millán, F.; Ortiz, F.J.; Mestre Ortuño, T.C.; Frutos, A.; Martínez, V. Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors 2023, 23, 3177. [Google Scholar] [CrossRef]
- Colaço, A.F.; Whelan, B.M.; Bramley, R.G.V.; Richetti, J.; Fajardo, M.; McCarthy, A.C.; Perry, E.M.; Bender, A.; Leo, S.; Fitzgerald, G.J.; et al. Digital Strategies for Nitrogen Management in Grain Production Systems: Lessons from Multi-Method Assessment Using on-Farm Experimentation. Precis. Agric. 2024, 25, 983–1013. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Wen, L.; Chen, Z.; Wu, S.; Zhou, K.; Sun, M.; Xu, L.; Hu, B.; Wu, C.; et al. Digital Twins in Smart Farming: An Autoware-Based Simulator for Autonomous Agricultural Vehicles. Int. J. Agric. Biol. Eng. 2023, 16, 184–189. [Google Scholar] [CrossRef]
- Li, N.; Cui, J.; Zhao, J.; An, C.; Wei, Z.; Shen, Y.; Sun, C.; Wang, C.; Zhan, S.; Li, X.; et al. Dual-Loaded Nano Pesticide System Based on Industrial Grade Scaleable Carrier Materials with Combinatory Efficacy and Improved Safety. J. Nanobiotechnology 2024, 22, 349. [Google Scholar] [CrossRef]
- Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernàndez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic Management Zones for Irrigation Scheduling. Agric. Water Manag. 2020, 238, 106207. [Google Scholar] [CrossRef]
- Cen, H.; Wan, L.; Zhu, J.; Li, Y.; Li, X.; Zhu, Y.; Weng, H.; Wu, W.; Yin, W.; Xu, C.; et al. Dynamic Monitoring of Biomass of Rice under Different Nitrogen Treatments Using a Lightweight UAV with Dual Image-Frame Snapshot Cameras. Plant Methods 2019, 15, 32. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early Detection of Plant Physiological Responses to Different Levels of Water Stress Using Reflectance Spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.-Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm. Agriculture 2021, 11, 387. [Google Scholar] [CrossRef]
- Alshihabi, O.; Persson, K.; Söderström, M. Easy Yield Mapping for Precision Agriculture. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2024, 74, 2411950. [Google Scholar] [CrossRef]
- Guevara, I.; Ryan, S.; Singh, A.; Brandon, C.; Margaria, T. Edge IoT Prototyping Using Model-Driven Representations: A Use Case for Smart Agriculture. Sensors 2024, 24, 495. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, M.; Zhu, Y.; Shi, X.; Liu, X.; Chen, Y.; Xu, J.; Yang, D.; Yuan, H. Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat. Agriculture 2021, 11, 1284. [Google Scholar] [CrossRef]
- Sillero-Medina, J.A.; González-Pérez, J.; Hueso-González, P.; González-Fernández, J.J.; Hormaza-Urroz, J.I.; Ruiz-Sinoga, J.D. Effect of Different Deficit Irrigation Regimens on Soil Moisture, Production Parameters of Mango (Mangifera indica L.), and Spectral Vegetation Indices in the Mediterranean Region of Southern Spain. Remote Sens. Appl. Soc. Environ. 2025, 37, 101415. [Google Scholar] [CrossRef]
- Jing Xan, C.; Nugroho, H.; Eswaran, S.; Fei Siang, T. Effective Edge Solution for Early Detection of Rice Disease on ARM- M Microcontroller. IEEE Access 2024, 12, 148267–148280. [Google Scholar] [CrossRef]
- Hämmerle, M.; Höfle, B. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture. Sensors 2014, 14, 24212–24230. [Google Scholar] [CrossRef]
- Mohammed, M.; Riad, K.; Alqahtani, N. Efficient IoT-Based Control for a Smart Subsurface Irrigation System to Enhance Irrigation Management of Date Palm. Sensors 2021, 21, 3942. [Google Scholar] [CrossRef]
- Čirjak, D.; Aleksi, I.; Lemic, D.; Pajač Živković, I. EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard. Agriculture 2023, 13, 961. [Google Scholar] [CrossRef]
- Innocenti, A.; Pazzi, V.; Napoli, M.; Ciampalini, R.; Orlandini, S.; Fanti, R. Electrical Resistivity Tomography: A Reliable Tool to Monitor the Efficiency of Different Irrigation Systems in Horticulture Field. J. Appl. Geophys. 2024, 230, 105527. [Google Scholar] [CrossRef]
- Sher, M.; Minallah, N.; Frnda, J.; Khan, W. Elevating Crop Classification Performance Through CNN-GRU Feature Fusion. IEEE Access 2024, 12, 141013–141025. [Google Scholar] [CrossRef]
- Karydas, C.; Chatziantoniou, M.; Stamkopoulos, K.; Iatrou, M.; Vassiliadis, V.; Mourelatos, S. Embedding a Precision Agriculture Service into a Farm Management Information System—Ifarma/PreFer. Smart Agric. Technol. 2023, 4, 100175. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Skobalski, J.; Grignola, F.; Sarkar, S.; Vilbig, J. End-to-End 3D CNN for Plot-Scale Soybean Yield Prediction Using Multitemporal UAV-Based RGB Images. Precis. Agric. 2024, 25, 834–864. [Google Scholar] [CrossRef]
- Buayai, P.; Saikaew, K.R.; Mao, X. End-to-End Automatic Berry Counting for Table Grape Thinning. IEEE Access 2021, 9, 4829–4842. [Google Scholar] [CrossRef]
- Feng, J.; Ong, W.E.; Teh, W.C.; Zhang, R. Enhanced Crop Disease Detection With EfficientNet Convolutional Group-Wise Transformer. IEEE Access 2024, 12, 44147–44162. [Google Scholar] [CrossRef]
- Promwee, A.; Nijibulat, S.; Nguyen, H.H. Enhancing Chinese Cabbage Production and Quality through IoT-Based Smart Farming in NFT-Hydroponics. Agronomy 2024, 14, 579. [Google Scholar] [CrossRef]
- Pukrongta, N.; Taparugssanagorn, A.; Sangpradit, K. Enhancing Crop Yield Predictions with PEnsemble 4: IoT and ML-Driven for Precision Agriculture. Appl. Sci. 2024, 14, 3313. [Google Scholar] [CrossRef]
- Falcioni, R.; Gonçalves, J.V.F.; Oliveira, K.M.D.; Oliveira, C.A.D.; Demattê, J.A.M.; Antunes, W.C.; Nanni, M.R. Enhancing Pigment Phenotyping and Classification in Lettuce through the Integration of Reflectance Spectroscopy and AI Algorithms. Plants 2023, 12, 1333. [Google Scholar] [CrossRef]
- Addas, A.; Tahir, M.; Ismat, N. Enhancing Precision of Crop Farming towards Smart Cities: An Application of Artificial Intelligence. Sustainability 2023, 16, 355. [Google Scholar] [CrossRef]
- Martini, M.; Ambrosio, M.; Navone, A.; Tuberga, B.; Chiaberge, M. Enhancing Visual Autonomous Navigation in Row-Based Crops with Effective Synthetic Data Generation. Precis. Agric. 2024, 25, 2881–2902. [Google Scholar] [CrossRef]
- Zhai, W.; Li, C.; Cheng, Q.; Mao, B.; Li, Z.; Li, Y.; Ding, F.; Qin, S.; Fei, S.; Chen, Z. Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications. Remote Sens. 2023, 15, 3653. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Putman, W.B.; Kharel, T.; Thoma, G.; Shew, A.; Popp, M.; Owens, P. Environmental Impact Assessment of Tractor Guidance Systems Based on Pasture Management Scenarios. J. ASABE 2022, 65, 645–653. [Google Scholar] [CrossRef]
- Graf, L.V.; Perich, G.; Aasen, H. EOdal: An Open-Source Python Package for Large-Scale Agroecological Research Using Earth Observation and Gridded Environmental Data. Comput. Electron. Agric. 2022, 203, 107487. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, X.; Liu, Y.; Jiang, Q.; Zhou, Y. Estimating Agricultural Cropping Intensity Using a New Temporal Mixture Analysis Method from Time Series MODIS. Remote Sens. 2023, 15, 4712. [Google Scholar] [CrossRef]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating Chlorophyll with Thermal and Broadband Multispectral High Resolution Imagery from an Unmanned Aerial System Using Relevance Vector Machines for Precision Agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different Irrigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2018, 9, 8. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, N.; Yang, B.; Zhu, Y. Estimating Leaf Nitrogen Content in Wheat Using Multimodal Features Extracted from Canopy Spectra. Agronomy 2022, 12, 1915. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Cheng, Q.; Duan, F.; Zhai, W.; Li, Z.; Mao, B.; Ding, F.; Kuang, X.; Chen, Z. Estimating Maize Crop Height and Aboveground Biomass Using Multi-Source Unmanned Aerial Vehicle Remote Sensing and Optuna-Optimized Ensemble Learning Algorithms. Remote Sens. 2024, 16, 3176. [Google Scholar] [CrossRef]
- Tilly, N.; Bareth, G. Estimating Nitrogen from Structural Crop Traits at Field Scale—A Novel Approach Versus Spectral Vegetation Indices. Remote Sens. 2019, 11, 2066. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, J.; Wang, X.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Yao, X. Estimating the Leaf Nitrogen Content with a New Feature Extracted from the Ultra-High Spectral and Spatial Resolution Images in Wheat. Remote Sens. 2021, 13, 739. [Google Scholar] [CrossRef]
- Ganji, E.; Grenzdörffer, G.; Andert, S. Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery. Agronomy 2023, 13, 354. [Google Scholar] [CrossRef]
- Singh, P.; Sehgal, V.; Dhakar, R.; Neale, C.; Goncalves, I.; Rani, A.; Jha, P.; Das, D.; Mukherjee, J.; Khanna, M.; et al. Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model. Water 2024, 16, 422. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N. Estimation of Maize Properties and Differentiating Moisture and Nitrogen Deficiency Stress via Ground—Based Remotely Sensed Data. Agric. Water Manag. 2020, 242, 106413. [Google Scholar] [CrossRef]
- Lin, N.; Ma, X.; Jiang, R.; Wu, M.; Zhang, W. Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture 2024, 14, 711. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat. Sensors 2014, 14, 20347–20359. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Song, X.; Yang, H.; Yang, G. Estimation of Potato Above-Ground Biomass Based on Vegetation Indices and Green-Edge Parameters Obtained from UAVs. Remote Sens. 2022, 14, 5323. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, H.; Jin, X.; Yue, J.; Liu, Y.; Li, Z.; Feng, Z.; Song, X.; Yang, G. Estimation of the Nitrogen Content of Potato Plants Based on Morphological Parameters and Visible Light Vegetation Indices. Front. Plant Sci. 2022, 13, 1012070. [Google Scholar] [CrossRef]
- López-Calderón, M.J.; Estrada-Ávalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
- Biffi, L.J.; Mitishita, E.A.; Liesenberg, V.; Centeno, J.A.S.; Schimalski, M.B.; Rufato, L. Evaluating the Performance of a Semi-Automatic Apple Fruit Detection in a High-Density Orchard System Using Low-Cost Digital RGB Imaging Sensor. Bol. Ciênc. Geod. 2021, 27, e2021014. [Google Scholar] [CrossRef]
- Lambert, J.P.T.; Hicks, H.L.; Childs, D.Z.; Freckleton, R.P. Evaluating the Potential of Unmanned Aerial Systems for Mapping Weeds at Field Scales: A Case Study with Alopecurus myosuroides. Weed Res. 2018, 58, 35–45. [Google Scholar] [CrossRef]
- Farooque, A.A.; Zare, M.; Abbas, F.; Zaman, Q.; Bos, M.; Esau, T.; Acharya, B.; Schumann, A.W. Evaluation of DualEM-II Sensor for Soil Moisture Content Estimation in the Potato Fields of Atlantic Canada. Plant Soil Environ. 2019, 65, 290–297. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Sahu, S.; Limkar, S.; Singh, P.; Mishra, A.; Kumar, M.; Mutlu, R. Evaluation of Growth Responses of Lettuce and Energy Efficiency of the Substrate and Smart Hydroponics Cropping System. Sensors 2023, 23, 1875. [Google Scholar] [CrossRef]
- Kumar, S.V.; Singh, C.D.; Rao, K.V.R.; Kumar, M.; Rajwade, Y.A.; Babu, B.; Singh, K. Evaluation of IoT Based Smart Drip Irrigation and ETc Based System for Sweet Corn. Smart Agric. Technol. 2023, 5, 100248. [Google Scholar] [CrossRef]
- Hieu Luu, T.; Thanh Tam, N.; Nguyen Ky Phuc, P.; Cuong Nguyen, H.; Van Le, L.; Hieu Ngo, Q. Evaluation of Land Roughness and Weather Effects on Paddy Field Using Cameras Mounted on Drone: A Comprehensive Analysis from Early to Mid-Growth Stages. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 101853. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Kübert-Flock, C.; Dahms, T.; Rummler, T.; Arnault, J.; Steffan-Dewenter, I.; Ullmann, T. Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sens. 2023, 15, 1830. [Google Scholar] [CrossRef]
- Catania, P.; Roma, E.; Orlando, S.; Vallone, M. Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard. Horticulturae 2023, 9, 133. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Leblon, B. Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn. Remote Sens. 2021, 13, 3105. [Google Scholar] [CrossRef]
- Santos, S.A.D.; Ferraz, G.A.E.S.; Figueiredo, V.C.; Volpato, M.M.L.; Machado, M.L.; Silva, V.A. Evaluation of the Water Conditions in Coffee Plantations Using RPA. AgriEngineering 2022, 5, 65–84. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Yuan, F.; Ata-UI-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Evaluation of Variable Application Rate of Fertilizers Based on Site-Specific Management Zones for Winter Wheat in Small-Scale Farming. Agronomy 2023, 13, 2812. [Google Scholar] [CrossRef]
- Novielli, P.; Romano, D.; Pavan, S.; Losciale, P.; Stellacci, A.M.; Diacono, D.; Bellotti, R.; Tangaro, S. Explainable Artificial Intelligence for Genotype-to-Phenotype Prediction in Plant Breeding: A Case Study with a Dataset from an Almond Germplasm Collection. Front. Plant Sci. 2024, 15, 1434229. [Google Scholar] [CrossRef]
- Rallo, P.; De Castro, A.I.; López-Granados, F.; Morales-Sillero, A.; Torres-Sánchez, J.; Jiménez, M.R.; Jiménez-Brenes, F.M.; Casanova, L.; Suárez, M.P. Exploring UAV-Imagery to Support Genotype Selection in Olive Breeding Programs. Sci. Hortic. 2020, 273, 109615. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Z.; Wang, X.; Odhiambo, M.O.; Sun, G. Fertilization Strategy and Application Model Using a Centrifugal Variable-Rate Fertilizer Spreader. Int. J. Agric. Biol. Eng. 2018, 11, 41–48. [Google Scholar] [CrossRef]
- Grella, M.; Gioelli, F.; Marucco, P.; Zwertvaegher, I.; Mozzanini, E.; Mylonas, N.; Nuyttens, D.; Balsari, P. Field Assessment of a Pulse Width Modulation (PWM) Spray System Applying Different Spray Volumes: Duty Cycle and Forward Speed Effects on Vines Spray Coverage. Precis. Agric. 2022, 23, 219–252. [Google Scholar] [CrossRef]
- Reznick, J.P.K.; Pauletti, V.; Barth, G. Field Estimate with NDVI of Grain Yield and Quality of Wheat Flour. Rev. Bras. Eng. Agríc. E Ambient. 2021, 25, 801–806. [Google Scholar] [CrossRef]
- Ravensbergen, A.P.P.; Van Ittersum, M.K.; Hijbeek, R.; Kempenaar, C.; Reidsma, P. Field Monitoring Reveals Scope to Reduce Environmental Impact of Ware Potato Cultivation in the Netherlands without Compromising Yield. Agric. Syst. 2024, 220, 104091. [Google Scholar] [CrossRef]
- Vurro, F.; Croci, M.; Impollonia, G.; Marchetti, E.; Gracia-Romero, A.; Bettelli, M.; Araus, J.L.; Amaducci, S.; Janni, M. Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato. Plants 2023, 12, 3851. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Sanz-Cortiella, R.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Vilaplana, V.; Gregorio, E. Fruit Detection and 3D Location Using Instance Segmentation Neural Networks and Structure-from-Motion Photogrammetry. Comput. Electron. Agric. 2020, 169, 105165. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A Global Dataset of 30 m Cropping Intensity Using Multisource Remote Sensing Imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
- Nanavati, R.V.; Meng, Y.; Coombes, M.; Liu, C. Generalized Data-Driven Optimal Path Planning Framework for Uniform Coverage Missions Using Crop Spraying UAVs. Precis. Agric. 2023, 24, 1497–1525. [Google Scholar] [CrossRef]
- Leroux, C.; Jones, H.; Pichon, L.; Guillaume, S.; Lamour, J.; Taylor, J.; Naud, O.; Crestey, T.; Lablee, J.-L.; Tisseyre, B. GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data. Agriculture 2018, 8, 73. [Google Scholar] [CrossRef]
- Sosa-Herrera, J.A.; Vallejo-Pérez, M.R.; Álvarez-Jarquín, N.; Cid-García, N.M.; López-Araujo, D.J. Geographic Object-Based Analysis of Airborne Multispectral Images for Health Assessment of Capsicum annuum L. Crops. Sensors 2019, 19, 4817. [Google Scholar] [CrossRef]
- Wang, T.; Mei, X.; Alex Thomasson, J.; Yang, C.; Han, X.; Yadav, P.K.; Shi, Y. GIS-Based Volunteer Cotton Habitat Prediction and Plant-Level Detection with UAV Remote Sensing. Comput. Electron. Agric. 2022, 193, 106629. [Google Scholar] [CrossRef]
- Lapidus, D.; Salem, M.E.; Beach, R.H.; Zayed, S.; Ortiz-Monasterio, I. Greenhouse Gas Mitigation Benefits and Profitability of the GreenSeeker Handheld NDVI Sensor: Evidence from Mexico. Precis. Agric. 2022, 23, 2388–2406. [Google Scholar] [CrossRef]
- Hennessy, P.J.; Esau, T.J.; Farooque, A.A.; Schumann, A.W.; Zaman, Q.U.; Corscadden, K.W. Hair Fescue and Sheep Sorrel Identification Using Deep Learning in Wild Blueberry Production. Remote Sens. 2021, 13, 943. [Google Scholar] [CrossRef]
- Jiménez-Buendía, M.; Soto-Valles, F.; Blaya-Ros, P.J.; Toledo-Moreo, A.; Domingo-Miguel, R.; Torres-Sánchez, R. High-Density Wi-Fi Based Sensor Network for Efficient Irrigation Management in Precision Agriculture. Appl. Sci. 2021, 11, 1628. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Jiang, Y.; Liu, T. High-Order Neural-Network-Based Multi-Model Nonlinear Adaptive Decoupling Control for Microclimate Environment of Plant Factory. Sensors 2023, 23, 8323. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; You, S.; Liu, A.; Li, P.; Zhang, J.; Deng, J. High-Resolution National-Scale Mapping of Paddy Rice Based on Sentinel-1/2 Data. Remote Sens. 2023, 15, 4055. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Abubakar, G.A.; Huang, J. High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images. Remote Sens. 2021, 13, 1148. [Google Scholar] [CrossRef]
- Prey, L.; Hu, Y.; Schmidhalter, U. High-Throughput Field Phenotyping Traits of Grain Yield Formation and Nitrogen Use Efficiency: Optimizing the Selection of Vegetation Indices and Growth Stages. Front. Plant Sci. 2020, 10, 1672. [Google Scholar] [CrossRef]
- Ezzy, H.; Charter, M.; Bonfante, A.; Brook, A. How the Small Object Detection via Machine Learning and UAS-Based Remote-Sensing Imagery Can Support the Achievement of SDG2: A Case Study of Vole Burrows. Remote Sens. 2021, 13, 3191. [Google Scholar] [CrossRef]
- Seol, J.; Park, Y.; Pak, J.; Jo, Y.; Lee, G.; Kim, Y.; Ju, C.; Hong, A.; Son, H.I. Human-Centered Robotic System for Agricultural Applications: Design, Development, and Field Evaluation. Agriculture 2024, 14, 1985. [Google Scholar] [CrossRef]
- Al-Badri, A.H.; Ismail, N.A.; Al-Dulaimi, K.; Rehman, A.; Abunadi, I.; Bahaj, S.A. Hybrid CNN Model for Classification of Rumex Obtusifolius in Grassland. IEEE Access 2022, 10, 90940–90957. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lin, J.; Chang, J.-W.; Huang, Y.-S.; Lai, M.-H.; Chang, Y.-J. Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data. Agriculture 2024, 14, 513. [Google Scholar] [CrossRef]
- De Queiroz Otone, J.D.; Theodoro, G.D.F.; Santana, D.C.; Teodoro, L.P.R.; De Oliveira, J.T.; De Oliveira, I.C.; Da Silva Junior, C.A.; Teodoro, P.E.; Baio, F.H.R. Hyperspectral Response of the Soybean Crop as a Function of Target Spot (Corynespora Cassiicola) Using Machine Learning to Classify Severity Levels. AgriEngineering 2024, 6, 330–343. [Google Scholar] [CrossRef]
- Liang, T.; Duan, B.; Luo, X.; Ma, Y.; Yuan, Z.; Zhu, R.; Peng, Y.; Gong, Y.; Fang, S.; Wu, X. Identification of High Nitrogen Use Efficiency Phenotype in Rice (Oryza sativa L.) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral Imagery. Front. Plant Sci. 2021, 12, 740414. [Google Scholar] [CrossRef]
- Silva, J.E.; Da Silva, W.H.B.; Ferraz, M.A.J.; Menezes, E.A.S.; Da Costa, O.P.; Inácio, F.D.; Barboza, T.O.C.; Melo, C.A.D.; Carvalho, G.R.; Santos, A.F.D. Impact of Spray Volume and Flight Speed on the Efficiency of Drone Applications in Coffee Plants of Different Ages. Smart Agric. Technol. 2024, 9, 100694. [Google Scholar] [CrossRef]
- Daccache, A.; Knox, J.W.; Weatherhead, E.K.; Daneshkhah, A.; Hess, T.M. Implementing Precision Irrigation in a Humid Climate—Recent Experiences and on-Going Challenges. Agric. Water Manag. 2015, 147, 135–143. [Google Scholar] [CrossRef]
- Cao, M.; Tang, F.; Ji, P.; Ma, F. Improved Real-Time Semantic Segmentation Network Model for Crop Vision Navigation Line Detection. Front. Plant Sci. 2022, 13, 898131. [Google Scholar] [CrossRef]
- Xu, B.; Meng, R.; Chen, G.; Liang, L.; Lv, Z.; Zhou, L.; Sun, R.; Zhao, F.; Yang, W. Improved Weed Mapping in Corn Fields by Combining UAV-based Spectral, Textural, Structural, and Thermal Measurements. Pest Manag. Sci. 2023, 79, 2591–2602. [Google Scholar] [CrossRef]
- Li, Y.; Miao, Y.; Zhang, J.; Cammarano, D.; Li, S.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving Estimation of Winter Wheat Nitrogen Status Using Random Forest by Integrating Multi-Source Data Across Different Agro-Ecological Zones. Front. Plant Sci. 2022, 13, 890892. [Google Scholar] [CrossRef]
- Schmidt, J.; Beegle, D.; Zhu, Q.; Sripada, R. Improving In-Season Nitrogen Recommendations for Maize Using an Active Sensor. Field Crops Res. 2011, 120, 94–101. [Google Scholar] [CrossRef]
- Li, Y.L.; Yi, S.P. Improving the Efficiency of Spatially Selective Operations for Agricultural Robotics in Cropping Field. Span. J. Agric. Res. 2013, 11, 56–64. [Google Scholar] [CrossRef]
- Vurro, F.; Manfredi, R.; Bettelli, M.; Bocci, G.; Cologni, A.L.; Cornali, S.; Reggiani, R.; Marchetti, E.; Coppedè, N.; Caselli, S.; et al. In Vivo Sensing to Monitor Tomato Plants in Field Conditions and Optimize Crop Water Management. Precis. Agric. 2023, 24, 2479–2499. [Google Scholar] [CrossRef]
- Devanna, R.P.; Milella, A.; Marani, R.; Garofalo, S.P.; Vivaldi, G.A.; Pascuzzi, S.; Galati, R.; Reina, G. In-Field Automatic Identification of Pomegranates Using a Farmer Robot. Sensors 2022, 22, 5821. [Google Scholar] [CrossRef]
- Milella, A.; Marani, R.; Petitti, A.; Reina, G. In-Field High Throughput Grapevine Phenotyping with a Consumer-Grade Depth Camera. Comput. Electron. Agric. 2019, 156, 293–306. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR. Remote Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
- Niu, H.; Peddagudreddygari, J.R.; Bhandari, M.; Landivar, J.A.; Bednarz, C.W.; Duffield, N. In-Season Cotton Yield Prediction with Scale-Aware Convolutional Neural Network Models and Unmanned Aerial Vehicle RGB Imagery. Sensors 2024, 24, 2432. [Google Scholar] [CrossRef]
- Hu, C.; Sapkota, B.B.; Thomasson, J.A.; Bagavathiannan, M.V. Influence of Image Quality and Light Consistency on the Performance of Convolutional Neural Networks for Weed Mapping. Remote Sens. 2021, 13, 2140. [Google Scholar] [CrossRef]
- Falco, N.; Wainwright, H.M.; Dafflon, B.; Ulrich, C.; Soom, F.; Peterson, J.E.; Brown, J.B.; Schaettle, K.B.; Williamson, M.; Cothren, J.D.; et al. Influence of Soil Heterogeneity on Soybean Plant Development and Crop Yield Evaluated Using Time-Series of UAV and Ground-Based Geophysical Imagery. Sci. Rep. 2021, 11, 7046. [Google Scholar] [CrossRef]
- Domingues, T.; Brandão, T.; Ribeiro, R.; Ferreira, J.C. Insect Detection in Sticky Trap Images of Tomato Crops Using Machine Learning. Agriculture 2022, 12, 1967. [Google Scholar] [CrossRef]
- Champ, J.; Mora-Fallas, A.; Goëau, H.; Mata-Montero, E.; Bonnet, P.; Joly, A. Instance Segmentation for the Fine Detection of Crop and Weed Plants by Precision Agricultural Robots. Appl. Plant Sci. 2020, 8, e11373. [Google Scholar] [CrossRef]
- Xu, B.; Fan, J.; Chao, J.; Arsenijevic, N.; Werle, R.; Zhang, Z. Instance Segmentation Method for Weed Detection Using UAV Imagery in Soybean Fields. Comput. Electron. Agric. 2023, 211, 107994. [Google Scholar] [CrossRef]
- Vélez, S.; Mier, G.; Ariza-Sentís, M.; Valente, J. Integrated Framework for Multipurpose UAV Path Planning in Hedgerow Systems Considering the Biophysical Environment. Crop Prot. 2025, 187, 106992. [Google Scholar] [CrossRef]
- Ortiz-Torres, G.; Zurita-Gil, M.A.; Rumbo-Morales, J.Y.; Sorcia-Vázquez, F.D.J.; Gascon Avalos, J.J.; Pérez-Vidal, A.F.; Ramos-Martinez, M.B.; Martínez Pascual, E.; Juárez, M.A. Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV. AgriEngineering 2024, 6, 2768–2794. [Google Scholar] [CrossRef]
- Silvestri, N.; Ercolini, L.; Grossi, N.; Ruggeri, M. Integrating NDVI and Agronomic Data to Optimize the Variable-Rate Nitrogen Fertilization. Precis. Agric. 2024, 25, 2554–2572. [Google Scholar] [CrossRef]
- Emmi, L.; Gonzalez-de-Soto, M.; Pajares, G.; Gonzalez-de-Santos, P. Integrating Sensory/Actuation Systems in Agricultural Vehicles. Sensors 2014, 14, 4014–4049. [Google Scholar] [CrossRef]
- Aurasopon, A.; Thongleam, T.; Kuankid, S. Integration of IoT Technology in Hydroponic Systems for Enhanced Efficiency and Productivity in Small-Scale Farming. Acta Technol. Agric. 2024, 27, 203–211. [Google Scholar] [CrossRef]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of Remote-weed Mapping and an Autonomous Spraying Unmanned Aerial Vehicle for Site-specific Weed Management. Pest Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Xu, B.; Wu, A.; Fu, J.; Chen, M.; Ma, B. Intelligent Algorithm Optimization of Liquid Manure Spreading Control. Agriculture 2023, 13, 278. [Google Scholar] [CrossRef]
- Ke, S.; Dai, G.; Pan, H.; Jin, B. Intelligent Vineyard Blade Density Measurement Method Incorporating a Lightweight Vision Transformer. Egypt. Inform. J. 2024, 26, 100456. [Google Scholar] [CrossRef]
- Morales, A.S.; D’Aquino, C.D.A.; Klaus, R.B.P.; Vargas, G.D.S.; Giassi, M.A.M.; Ourique, F.D.O. Internet of Things Experimental Platform for Real-Time Water Monitoring: A Case Study of the Araranguá River Estuary. Acta Sci. Technol. 2023, 45, e63130. [Google Scholar] [CrossRef]
- Ziliani, M.G.; Parkes, S.D.; Hoteit, I.; McCabe, M.F. Intra-Season Crop Height Variability at Commercial Farm Scales Using a Fixed-Wing UAV. Remote Sens. 2018, 10, 2007. [Google Scholar] [CrossRef]
- Lu, X.; Li, W.; Xiao, J.; Zhu, H.; Yang, D.; Yang, J.; Xu, X.; Lan, Y.; Zhang, Y. Inversion of Leaf Area Index in Citrus Trees Based on Multi-Modal Data Fusion from UAV Platform. Remote Sens. 2023, 15, 3523. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Yu, J.; Zhou, Z.; Wang, Q.; Zhao, W.; Hu, L. Inversion of Soil Moisture Content in Cotton Fields Using GBR-RF Algorithm Combined with Sentinel-2 Satellite Spectral Data. Agronomy 2024, 14, 784. [Google Scholar] [CrossRef]
- Zu, J.; Yang, H.; Wang, J.; Cai, W.; Yang, Y. Inversion of Winter Wheat Leaf Area Index from UAV Multispectral Images: Classical vs. Deep Learning Approaches. Front. Plant Sci. 2024, 15, 1367828. [Google Scholar] [CrossRef] [PubMed]
- Jenal, A.; Lussem, U.; Bolten, A.; Gnyp, M.L.; Schellberg, J.; Jasper, J.; Bongartz, J.; Bareth, G. Investigating the Potential of a Newly Developed UAV-Based VNIR/SWIR Imaging System for Forage Mass Monitoring. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 493–507. [Google Scholar] [CrossRef]
- Morchid, A.; Jebabra, R.; Khalid, H.M.; El Alami, R.; Qjidaa, H.; Ouazzani Jamil, M. IoT-Based Smart Irrigation Management System to Enhance Agricultural Water Security Using Embedded Systems, Telemetry Data, and Cloud Computing. Results Eng. 2024, 23, 102829. [Google Scholar] [CrossRef]
- Atalla, S.; Tarapiah, S.; Gawanmeh, A.; Daradkeh, M.; Mukhtar, H.; Himeur, Y.; Mansoor, W.; Hashim, K.F.B.; Daadoo, M. IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management. Information 2023, 14, 205. [Google Scholar] [CrossRef]
- Săcăleanu, D.-I.; Matache, M.-G.; Roșu, Ș.-G.; Florea, B.-C.; Manciu, I.-P.; Perișoară, L.-A. IoT-Enhanced Decision Support System for Real-Time Greenhouse Microclimate Monitoring and Control. Technologies 2024, 12, 230. [Google Scholar] [CrossRef]
- Forcén-Muñoz, M.; Pavón-Pulido, N.; López-Riquelme, J.A.; Temnani-Rajjaf, A.; Berríos, P.; Morais, R.; Pérez-Pastor, A. Irriman Platform: Enhancing Farming Sustainability through Cloud Computing Techniques for Irrigation Management. Sensors 2021, 22, 228. [Google Scholar] [CrossRef]
- Rosell-Polo, J.R.; Gregorio, E.; Gene, J.; Llorens, J.; Torrent, X.; Arno, J.; Escola, A. Kinect v2 Sensor-Based Mobile Terrestrial Laser Scanner for Agricultural Outdoor Applications. IEEEASME Trans. Mechatron. 2017, 22, 2420–2427. [Google Scholar] [CrossRef]
- Wibowo, H.; Sitanggang, I.S.; Mushthofa, M.; Adrianto, H.A. Large-Scale Oil Palm Trees Detection from High-Resolution Remote Sensing Images Using Deep Learning. Big Data Cogn. Comput. 2022, 6, 89. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Puntel, L.A.; Thompson, L.J.; Mieno, T. Leveraging Digital Agriculture for On-Farm Testing of Technologies. Front. Agron. 2024, 6, 1234232. [Google Scholar] [CrossRef]
- Xue, W.; Jeong, S.; Ko, J.; Tenhunen, J. Linking Canopy Reflectance to Crop Structure and Photosynthesis to Capture and Interpret Spatiotemporal Dimensions of Per-Field Photosynthetic Productivity. Biogeosciences 2017, 14, 1315–1332. [Google Scholar] [CrossRef]
- Pineda-Castro, D.; Diaz, H.; Soto, J.; Urban, M.O. LysipheN: A Gravimetric IoT Device for near Real-Time High-Frequency Crop Phenotyping: A Case Study on Common Beans. Plant Methods 2024, 20, 39. [Google Scholar] [CrossRef]
- Pathak, H.; Igathinathane, C.; Howatt, K.; Zhang, Z. Machine Learning and Handcrafted Image Processing Methods for Classifying Common Weeds in Corn Field. Smart Agric. Technol. 2023, 5, 100249. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Näsi, R.; Niemeläinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L.; et al. Machine Learning Estimators for the Quantity and Quality of Grass Swards Used for Silage Production Using Drone-Based Imaging Spectrometry and Photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
- Yeasin, M.; Haldar, D.; Kumar, S.; Paul, R.K.; Ghosh, S. Machine Learning Techniques for Phenology Assessment of Sugarcane Using Conjunctive SAR and Optical Data. Remote Sens. 2022, 14, 3249. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques Da Silva, J.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Garcia, S.; Palha, J.; Noéme, J. Mapping Management Zones Based on Soil Apparent Electrical Conductivity and Remote Sensing for Implementation of Variable Rate Irrigation—Case Study of Corn under a Center Pivot. Water 2020, 12, 3427. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, R.; Dai, W.; Zhou, X.; Zhang, D.; Yang, Y.; Cui, J. Mapping Soil Organic Matter Content Based on Feature Band Selection with ZY1-02D Hyperspectral Satellite Data in the Agricultural Region. Agronomy 2022, 12, 2111. [Google Scholar] [CrossRef]
- Tilse, M.J.; Bishop, T.F.A.; Triantafilis, J.; Filippi, P. Mapping the Impact of Subsoil Constraints on Soil Available Water Capacity and Potential Crop Yield. Crop Pasture Sci. 2022, 73, 636–651. [Google Scholar] [CrossRef]
- Machefer, M.; Lemarchand, F.; Bonnefond, V.; Hitchins, A.; Sidiropoulos, P. Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery. Remote Sens. 2020, 12, 3015. [Google Scholar] [CrossRef]
- Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May Smart Technologies Reduce the Environmental Impact of Nitrogen Fertilization? A Case Study for Paddy Rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef] [PubMed]
- Hassanijalilian, O.; Igathinathane, C.; Day, S.; Bajwa, S.; Nowatzki, J. Measuring Soybean Iron Deficiency Chlorosis Progression and Yield Prediction with Unmanned Aerial Vehicle. Smart Agric. Technol. 2023, 4, 100204. [Google Scholar] [CrossRef]
- Parasca, S.C.; Spaeth, M.; Rusu, T.; Bogdan, I. Mechanical Weed Control: Sensor-Based Inter-Row Hoeing in Sugar Beet (Beta vulgaris L.) in the Transylvanian Depression. Agronomy 2024, 14, 176. [Google Scholar] [CrossRef]
- Giupponi, C.; Zen, M. Methods and Tools for Developing Virtual Territories for Scenario Analysis of Agro-Ecosystems. Ital. J. Agron. 2016, 11, 743. [Google Scholar] [CrossRef]
- Kalamatianos, R.; Karydis, I.; Avlonitis, M. Methods for the Identification of Microclimates for Olive Fruit Fly. Agronomy 2019, 9, 337. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, Y.; Liu, X.; Yang, D.; Yuan, H. Minimizing Occupational Exposure to Pesticide and Increasing Control Efficacy of Pests by Unmanned Aerial Vehicle Application on Cowpea. Appl. Sci. 2021, 11, 9579. [Google Scholar] [CrossRef]
- Zhang, B.; Hastings, A.; Clifton-Brown, J.C.; Jiang, D.; Faaij, A.P.C. Modeled Spatial Assessment of Biomass Productivity and Technical Potential of Miscanthus × Giganteus, Panicum Virgatum L., and Jatropha on Marginal Land in China. GCB Bioenergy 2020, 12, 328–345. [Google Scholar] [CrossRef]
- Lv, Z.; Meng, R.; Man, J.; Zeng, L.; Wang, M.; Xu, B.; Gao, R.; Sun, R.; Zhao, F. Modeling of Winter Wheat fAPAR by Integrating Unmanned Aircraft Vehicle-Based Optical, Structural and Thermal Measurement. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102407. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Martins, L.; Sousa, A.; Peres, E.; Sousa, J.J. Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sens. 2020, 12, 3032. [Google Scholar] [CrossRef]
- Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-Camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef]
- Chedid, V.; Cortez, J.W.; Arcoverde, S.N.S. Monitoring the Vegetative State of Coffee Using Vegetation Indices. Eng. Agríc. 2024, 44, e20220212. [Google Scholar] [CrossRef]
- Niu, S.; Nie, Z.; Li, G.; Zhu, W. Multi-Altitude Corn Tassel Detection and Counting Based on UAV RGB Imagery and Deep Learning. Drones 2024, 8, 198. [Google Scholar] [CrossRef]
- Wang, P. Multi-Node Temperature Monitoring Method for Digital Agricultural Planting Based on Wireless Sensor Network. Turk. J. Agric. For. 2024, 48, 212–225. [Google Scholar] [CrossRef]
- Dunnett, A.; Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.; Joshi, P.K.; Pal, B.D.; Khatri-Chhetri, A.; Ghosh, J. Multi-Objective Land Use Allocation Modelling for Prioritizing Climate-Smart Agricultural Interventions. Ecol. Model. 2018, 381, 23–35. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Blasch, G.; Defourny, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sens. 2018, 10, 930. [Google Scholar] [CrossRef]
- Gallardo-Romero, D.J.; Apolo-Apolo, O.E.; Martínez-Guanter, J.; Pérez-Ruiz, M. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sens. 2023, 15, 3131. [Google Scholar] [CrossRef]
- Da Silva, P.C.; Ribeiro Junior, W.Q.; Ramos, M.L.G.; Lopes, M.F.; Santana, C.C.; Casari, R.A.D.C.N.; Brasileiro, L.D.O.; Veiga, A.D.; Rocha, O.C.; Malaquias, J.V.; et al. Multispectral Images for Drought Stress Evaluation of Arabica Coffee Genotypes Under Different Irrigation Regimes. Sensors 2024, 24, 7271. [Google Scholar] [CrossRef]
- Silva, B.C.D.; Prado, R.D.M.; Baio, F.H.R.; Campos, C.N.S.; Teodoro, L.P.R.; Teodoro, P.E.; Santana, D.C.; Fernandes, T.F.S.; Silva Junior, C.A.D.; Loureiro, E.D.S. New Approach for Predicting Nitrogen and Pigments in Maize from Hyperspectral Data and Machine Learning Models. Remote Sens. Appl. Soc. Environ. 2024, 33, 101110. [Google Scholar] [CrossRef]
- Barbosa, J.D.A.; Faria, R.T.D.; Coelho, A.P.; Dalri, A.B.; Palaretti, L.F. Nitrogen Fertilization Management in White Oat Using Spectral Indices. Pesqui. Agropecuária Trop. 2020, 50, e64924. [Google Scholar] [CrossRef]
- Alejandrino, J.D.; Concepcion Ii, R.S.; Bandala, A.A.; Sybingco, E.; Vicerra, R.R.P.; Dadios, E.P. Non-Invasive Plant Root Tomography Through Optimized Sonar Array Transducer Antenna Design Using Genetic Swarm Metaheuristic. J. Adv. Comput. Intell. Intell. Inform. 2024, 28, 59–66. [Google Scholar] [CrossRef]
- Tanveer, M.U.; Munir, K.; Raza, A.; Almutairi, M.S. Novel Artificial Intelligence Assisted Landsat-8 Imagery Analysis for Mango Orchard Detection and Area Mapping. PLoS ONE 2024, 19, e0304450. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, N.; Jørgensen, R.N.; Green, O. Novel Assessment of Region-Based CNNs for Detecting Monocot/Dicot Weeds in Dense Field Environments. Agronomy 2022, 12, 1167. [Google Scholar] [CrossRef]
- Vahdanjoo, M.; Sorensen, C.G. Novel Route Planning Method to Improve the Operational Efficiency of Capacitated Operations. Case: Application of Organic Fertilizer. AgriEngineering 2021, 3, 458–477. [Google Scholar] [CrossRef]
- Videgain, M.; Martínez-Casasnovas, J.A.; Vigo-Morancho, A.; Vidal, M.; García-Ramos, F.J. On-Farm Experimentation of Precision Agriculture for Differential Seed and Fertilizer Management in Semi-Arid Rainfed Zones. Precis. Agric. 2024, 25, 3048–3069. [Google Scholar] [CrossRef]
- Bragagnolo, J.; Amado, T.J.C.; Nicoloso, R.D.S.; Jasper, J.; Kunz, J.; Teixeira, T.D.G. Optical Crop Sensor for Variable-Rate Nitrogen Fertilization in Corn: I—Plant Nutrition and Dry Matter Production. Rev. Bras. Ciênc. Solo 2013, 37, 1288–1298. [Google Scholar] [CrossRef]
- Singh, N.; Ajaykumar, K.; Dhruw, L.K.; Choudhury, B.U. Optimization of Irrigation Timing for Sprinkler Irrigation System Using Convolutional Neural Network-Based Mobile Application for Sustainable Agriculture. Smart Agric. Technol. 2023, 5, 100305. [Google Scholar] [CrossRef]
- Loewen, S.; Maxwell, B.D. Optimizing Crop Seeding Rates on Organic Grain Farms Using on Farm Precision Experimentation. Field Crops Res. 2024, 318, 109593. [Google Scholar] [CrossRef]
- Meloni, R.; Cordero, E.; Capo, L.; Reyneri, A.; Sacco, D.; Blandino, M. Optimizing Nitrogen Rates for Winter Wheat Using In-Season Crop N Status Indicators. Field Crops Res. 2024, 318, 109545. [Google Scholar] [CrossRef]
- Zhao, Z.; Mao, Y.; Gao, S.; Lu, C.; Pan, C.; Li, X. Organic Carbon Accumulation and Aggregate Formation in Soils under Organic and Inorganic Fertilizer Management Practices in a Rice–Wheat Cropping System. Sci. Rep. 2023, 13, 3665. [Google Scholar] [CrossRef]
- López-Martínez, M.D.J.; Díaz-Flórez, G.; Villagrana-Barraza, S.; Castañeda-Miranda, C.L.; Solís-Sánchez, L.O.; Ortíz-Esquivel, D.I.; De La Rosa-Vargas, J.I.; Olvera-Olvera, C.A. Pattern Classification of an Onion Crop (Allium Cepa) Field Using Convolutional Neural Network Models. Agronomy 2024, 14, 1206. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Hu, G.; Zhang, H.; Tao, S.; Wang, Z.; Chen, J. PcMNet: An Efficient Lightweight Apple Detection Algorithm in Natural Orchards. Smart Agric. Technol. 2024, 9, 100623. [Google Scholar] [CrossRef]
- Li, T.; Chen, Q.; Zhang, X.; Ding, S.; Wang, X.; Mu, J. PeachYOLO: A Lightweight Algorithm for Peach Detection in Complex Orchard Environments. IEEE Access 2024, 12, 96220–96230. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kusudo, T.; Kimura, M.; Matsuno, Y. Performance Assessment of Farm Machinery for Persimmon Fruit Cultivation in a Japanese Mountainous Area. AgriEngineering 2022, 4, 17–31. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J.; Guda, B. Performance Evaluation of YOLO v5 Model for Automatic Crop and Weed Classification on UAV Images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
- Argyriou, A.V.; Tektonidis, N.; Alevizos, E.; Ferentinos, K.P.; Kourgialas, N.N.; Mathioudakis, M.M. Precision Farming Multimodal Technologies Using Optical Sensors for the Detection of Citrus Tristeza Virus Endemics. Sustainability 2024, 16, 5748. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Lorente, B.; García, A.J.G.; Vivaldi, G.A.; Thameur, A.; Salcedo, F.P. Predicting Carob Tree Physiological Parameters under Different Irrigation Systems Using Random Forest and Planet Satellite Images. Front. Plant Sci. 2024, 15, 1302435. [Google Scholar] [CrossRef]
- Teodoro, P.E.; Teodoro, L.P.R.; Baio, F.H.R.; Da Silva Junior, C.A.; Dos Santos, R.G.; Ramos, A.P.M.; Pinheiro, M.M.F.; Osco, L.P.; Gonçalves, W.N.; Carneiro, A.M.; et al. Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sens. 2021, 13, 4632. [Google Scholar] [CrossRef]
- Traore, A.; Ata-Ul-Karim, S.T.; Duan, A.; Soothar, M.K.; Traore, S.; Zhao, B. Predicting Equivalent Water Thickness in Wheat Using UAV Mounted Multispectral Sensor through Deep Learning Techniques. Remote Sens. 2021, 13, 4476. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Prediction of Biomass and N Fixation of Legume–Grass Mixtures Using Sensor Fusion. Front. Plant Sci. 2021, 11, 603921. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, F.; Ponce-González, J.R.; Guerrero-Osuna, H.A.; Carrasco-Navarro, R.; Luque-Vega, L.F.; Mata-Romero, M.E.; Martínez-Blanco, M.D.R.; Castañeda-Miranda, C.L.; Díaz-Flórez, G. Prediction of Internal Temperature in Greenhouses Using the Supervised Learning Techniques: Linear and Support Vector Regressions. Appl. Sci. 2023, 13, 8531. [Google Scholar] [CrossRef]
- Marković, D.; Vujičić, D.; Tanasković, S.; Đorđević, B.; Ranđić, S.; Stamenković, Z. Prediction of Pest Insect Appearance Using Sensors and Machine Learning. Sensors 2021, 21, 4846. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon Based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Marcu, I.; Drăgulinescu, A.-M.; Oprea, C.; Suciu, G.; Bălăceanu, C. Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform. Sustainability 2022, 14, 11487. [Google Scholar] [CrossRef]
- Rosso, P.; Nendel, C.; Gilardi, N.; Udroiu, C.; Chlebowski, F. Processing of Remote Sensing Information to Retrieve Leaf Area Index in Barley: A Comparison of Methods. Precis. Agric. 2022, 23, 1449–1472. [Google Scholar] [CrossRef]
- Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sens. 2016, 8, 55. [Google Scholar] [CrossRef]
- Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Dias, S.H.B.; Cunha, F.F.D.; Venancio, L.P. Productivity and Water Demand of Maize Estimated by the Modified Satellite Priestley-Taylor Algorithm. Semina Ciênc. Agrár. 2019, 40, 2991. [Google Scholar] [CrossRef]
- Bhadra, S.; Sagan, V.; Sarkar, S.; Braud, M.; Mockler, T.C.; Eveland, A.L. PROSAIL-Net: A Transfer Learning-Based Dual Stream Neural Network to Estimate Leaf Chlorophyll and Leaf Angle of Crops from UAV Hyperspectral Images. ISPRS J. Photogramm. Remote Sens. 2024, 210, 1–24. [Google Scholar] [CrossRef]
- Jiménez-Brenes, F.M.; López-Granados, F.; De Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M. Quantifying Pruning Impacts on Olive Tree Architecture and Annual Canopy Growth by Using UAV-Based 3D Modelling. Plant Methods 2017, 13, 55. [Google Scholar] [CrossRef]
- Boonupara, T.; Udomkun, P.; Kajitvichyanukul, P. Quantitative Analysis of Atrazine Impact on UAV-Derived Multispectral Indices and Correlated Plant Pigment Alterations: A Heatmap Approach. Agronomy 2024, 14, 814. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D.; et al. Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Tonnang, H.E.Z.; Balemi, T.; Masuki, K.F.; Mohammed, I.; Adewopo, J.; Adnan, A.A.; Mudereri, B.T.; Vanlauwe, B.; Craufurd, P. Rapid Acquisition, Management, and Analysis of Spatial Maize (Zea mays L.) Phenological Data—Towards ‘Big Data’ for Agronomy Transformation in Africa. Agronomy 2020, 10, 1363. [Google Scholar] [CrossRef]
- Han, N.; Zhang, B.; Liu, Y.; Peng, Z.; Zhou, Q.; Wei, Z. Rapid Diagnosis of Nitrogen Nutrition Status in Summer Maize over Its Life Cycle by a Multi-Index Synergy Model Using Ground Hyperspectral and UAV Multispectral Sensor Data. Atmosphere 2022, 13, 122. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.; Zhang, C.; Guo, H.; Sun, Z.; Wu, X. Real-Time Crop Recognition in Transplanted Fields With Prominent Weed Growth: A Visual-Attention-Based Approach. IEEE Access 2019, 7, 185310–185321. [Google Scholar] [CrossRef]
- Zong, Z.; Liu, G.; Zhao, S. Real-Time Localization Approach for Maize Cores at Seedling Stage Based on Machine Vision. Agronomy 2020, 10, 470. [Google Scholar] [CrossRef]
- He, J.; Jia, Y.; Li, Y.; Biswas, A.; Feng, H.; Yu, Q.; Wu, S.; Yang, G.; Siddique, H.H.M. Regional-Scale Precision Mapping of Cotton Suitability Using UAV and Satellite Data in Arid Environments. Agric. Water Manag. 2025, 307, 109215. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Gucci, R.; Priori, S. Remote and Proximal Sensing Techniques for Site-Specific Irrigation Management in the Olive Orchard. Appl. Sci. 2022, 12, 1309. [Google Scholar] [CrossRef]
- Na, I.S.; Lee, S.; Alamri, A.M.; AlQahtani, S.A. Remote Sensing and AI-Based Monitoring of Legume Crop Health and Growth. LEGUME Res.—Int. J. 2024, 47, 1179–1184. [Google Scholar] [CrossRef]
- Solgi, S.; Ahmadi, S.H.; Seidel, S.J. Remote Sensing of Canopy Water Status of the Irrigated Winter Wheat Fields and the Paired Anomaly Analyses on the Spectral Vegetation Indices and Grain Yields. Agric. Water Manag. 2023, 280, 108226. [Google Scholar] [CrossRef]
- Shao, H.; Tang, R.; Lei, Y.; Mu, J.; Guan, Y.; Xiang, Y. Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset. Plants 2021, 10, 1625. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, S.; Huang, X.; Liu, Y.; Guo, L. Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images and Red-Edge Bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
- Tseng, H.-H.; Yang, M.-D.; Saminathan, R.; Hsu, Y.-C.; Yang, C.-Y.; Wu, D.-H. Rice Seedling Detection in UAV Images Using Transfer Learning and Machine Learning. Remote Sens. 2022, 14, 2837. [Google Scholar] [CrossRef]
- Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic In-Row Weed Control in Vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [Google Scholar] [CrossRef]
- Rodriguez-Gallo, Y.; Escobar-Benitez, B.; Rodriguez-Lainez, J. Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery. AgriEngineering 2023, 5, 1415–1431. [Google Scholar] [CrossRef]
- Bai, X.; Gu, S.; Liu, P.; Yang, A.; Cai, Z.; Wang, J.; Yao, J. RPNet: Rice Plant Counting after Tillering Stage Based on Plant Attention and Multiple Supervision Network. Crop J. 2023, 11, 1586–1594. [Google Scholar] [CrossRef]
- Tarariko, O.; Ilienko, T.; Kuchma, T.; Novakovska, I. Satellite Agroecological Monitoring within the System of Sustainable Environmental Management. Agric. Sci. Pract. 2019, 6, 18–27. [Google Scholar] [CrossRef]
- Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.M. Segmentation of Apples in Aerial Images under Sixteen Different Lighting Conditions Using Color and Texture for Optimal Irrigation. Water 2018, 10, 1634. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. Selecting Patterns and Features for Between- and within- Crop-Row Weed Mapping Using UAV-Imagery. Expert Syst. Appl. 2016, 47, 85–94. [Google Scholar] [CrossRef]
- Rovira-Más, F.; Saiz-Rubio, V.; Cuenca-Cuenca, A. Sensing Architecture for Terrestrial Crop Monitoring: Harvesting Data as an Asset. Sensors 2021, 21, 3114. [Google Scholar] [CrossRef]
- Prey, L.; Schmidhalter, U. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat. Sensors 2019, 19, 3712. [Google Scholar] [CrossRef] [PubMed]
- Sachin, K.S.; Dass, A.; Dhar, S.; Rajanna, G.A.; Singh, T.; Sudhishri, S.; Sannagoudar, M.S.; Choudhary, A.K.; Kushwaha, H.L.; Praveen, B.R.; et al. Sensor-Based Precision Nutrient and Irrigation Management Enhances the Physiological Performance, Water Productivity, and Yield of Soybean under System of Crop Intensification. Front. Plant Sci. 2023, 14, 1282217. [Google Scholar] [CrossRef] [PubMed]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef]
- Santaga, F.S.; Benincasa, P.; Toscano, P.; Antognelli, S.; Ranieri, E.; Vizzari, M. Simplified and Advanced Sentinel-2-Based Precision Nitrogen Management of Wheat. Agronomy 2021, 11, 1156. [Google Scholar] [CrossRef]
- Lee, C.-J.; Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Sung, Y.; Chen, W.-L. Single-Plant Broccoli Growth Monitoring Using Deep Learning with UAV Imagery. Comput. Electron. Agric. 2023, 207, 107739. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-Specific Nitrogen Management in Winter Wheat Supported by Low-Altitude Remote Sensing and Soil Data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Ali, T.; Rehman, S.U.; Ali, S.; Mahmood, K.; Obregon, S.A.; Iglesias, R.C.; Khurshaid, T.; Ashraf, I. Smart Agriculture: Utilizing Machine Learning and Deep Learning for Drought Stress Identification in Crops. Sci. Rep. 2024, 14, 30062. [Google Scholar] [CrossRef]
- Ghanimi, H.M.A.; R, S.; Jeyaraj, J.P.G.; K, S.; Rangasamy, R.; Sengan, S. Smart Fertilizing Using IoT Multi-Sensor and Variable Rate Sprayer Integrated UAV. Scalable Comput. Pract. Exp. 2024, 25, 3766–3777. [Google Scholar] [CrossRef]
- Esmail Karar, M.; Abdel-Aty, A.-H.; Algarni, F.; Fadzil Hassan, M.; Abdou, M.A.; Reyad, O. Smart IoT-Based System for Detecting RPW Larvae in Date Palms Using Mixed Depthwise Convolutional Networks. Alex. Eng. J. 2022, 61, 5309–5319. [Google Scholar] [CrossRef]
- Cruz, M.; Mafra, S.; Teixeira, E.; Figueiredo, F. Smart Strawberry Farming Using Edge Computing and IoT. Sensors 2022, 22, 5866. [Google Scholar] [CrossRef]
- Asiimwe, G.; Jaafar, H.; Haidar, M.; Mourad, R. Soil Moisture or ET-Based Smart Irrigation Scheduling: A Comparison for Sweet Corn with Sap Flow Measurements. J. Irrig. Drain. Eng. 2022, 148, 04022017. [Google Scholar] [CrossRef]
- Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH Mapping with an On-The-Go Sensor. Sensors 2011, 11, 573–598. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Sagan, V.; Bhadra, S.; Rhodes, K.; Pokharel, M.; Fritschi, F.B. Soybean Seed Composition Prediction from Standing Crops Using PlanetScope Satellite Imagery and Machine Learning. ISPRS J. Photogramm. Remote Sens. 2023, 204, 257–274. [Google Scholar] [CrossRef]
- Kerry, R.; Ingram, B.; Hammond, K.; Shumate, S.R.; Gunther, D.; Jensen, R.R.; Schill, S.; Hansen, N.C.; Hopkins, B.G. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation Management. Agronomy 2023, 13, 1267. [Google Scholar] [CrossRef]
- Gargiulo, J.; Clark, C.; Lyons, N.; De Veyrac, G.; Beale, P.; Garcia, S. Spatial and Temporal Pasture Biomass Estimation Integrating Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data. Remote Sens. 2020, 12, 3222. [Google Scholar] [CrossRef]
- Cordero, E.; Longchamps, L.; Khosla, R.; Sacco, D. Spatial Management Strategies for Nitrogen in Maize Production Based on Soil and Crop Data. Sci. Total Environ. 2019, 697, 133854. [Google Scholar] [CrossRef]
- Stumpf, F.; Schneider, M.K.; Keller, A.; Mayr, A.; Rentschler, T.; Meuli, R.G.; Schaepman, M.; Liebisch, F. Spatial Monitoring of Grassland Management Using Multi-Temporal Satellite Imagery. Ecol. Indic. 2020, 113, 106201. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Jahandideh Mahjenabadi, V.A.; Khoshru, B.; Rezaei, M. Spatial Prediction of Winter Wheat Yield Gap: Agro-Climatic Model and Machine Learning Approaches. Front. Plant Sci. 2024, 14, 1309171. [Google Scholar] [CrossRef]
- Borra-Serrano, I.; Peña, J.; Torres-Sánchez, J.; Mesas-Carrascosa, F.; López-Granados, F. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688–19708. [Google Scholar] [CrossRef]
- Lourenço, V.R.; Montenegro, A.A.D.A.; Carvalho, A.A.D.; Sousa, L.D.B.D.; Almeida, T.A.B.; Almeida, T.F.S.D.; Vilar, B.P. Spatial Variability of Biophysical Multispectral Indexes under Heterogeneity and Anisotropy for Precision Monitoring. Rev. Bras. Eng. Agríc. E Ambient. 2023, 27, 848–857. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, J.; Wang, Z.; He, Z.; Wang, M.; Yao, W.; Feng, Y. Spatiotemporal Variations of Cropland Carbon Sequestration and Water Loss across China. Agric. Water Manag. 2023, 287, 108427. [Google Scholar] [CrossRef]
- Heinemann, P.; Schmidhalter, U. Spectral Assessments of N-Related Maize Traits: Evaluating and Defining Agronomic Relevant Detection Limits. Field Crops Res. 2022, 289, 108710. [Google Scholar] [CrossRef]
- Bazame, H.C.; Pinto, F.A.C.; Queiroz, D.S.; Queiroz, D.M.D.; Althoff, D. Spectral Sensors Prove Beneficial in Determining Nitrogen Fertilizer Needs of Urochloa Brizantha Cv. Xaraés Grass in Brazil. Trop. Grassl.-Forrajes Trop. 2020, 8, 60–71. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, Y.; Yin, D.; Chen, J.; Chen, X.; Liu, S.; Liu, L. Stacked Spectral Feature Space Patch: An Advanced Spectral Representation for Precise Crop Classification Based on Convolutional Neural Network. Crop J. 2022, 10, 1460–1469. [Google Scholar] [CrossRef]
- Lombardi, F.; Lualdi, M. Step-Frequency Ground Penetrating Radar for Agricultural Soil Morphology Characterisation. Remote Sens. 2019, 11, 1075. [Google Scholar] [CrossRef]
- Mattupalli, C.; Moffet, C.A.; Shah, K.N.; Young, C.A. Supervised Classification of RGB Aerial Imagery to Evaluate the Impact of a Root Rot Disease. Remote Sens. 2018, 10, 917. [Google Scholar] [CrossRef]
- Al-Naeem, M.; Hafizur Rahman, M.M.; Banerjee, A.; Sufian, A. Support Vector Machine-Based Energy Efficient Management of UAV Locations for Aerial Monitoring of Crops over Large Agriculture Lands. Sustainability 2023, 15, 6421. [Google Scholar] [CrossRef]
- Kim, D.-W.; Min, T.-S.; Kim, Y.; Silva, R.R.; Hyun, H.-N.; Kim, J.-S.; Kim, K.-H.; Kim, H.-J.; Chung, Y.S. Sustainable Agriculture by Increasing Nitrogen Fertilizer Efficiency Using Low-Resolution Camera Mounted on Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health 2019, 16, 3893. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Anand, V.; Gupta, S.; Alshahrani, H.; Reshan, M.S.A.; Rajab, A.; Shaikh, A.; Azar, A.T. Sustainable Apple Disease Management Using an Intelligent Fine-Tuned Transfer Learning-Based Model. Sustainability 2023, 15, 13228. [Google Scholar] [CrossRef]
- Abuova, A.B.; Tulkubayeva, S.A.; Tulayev, Y.V.; Somova, S.V.; Kizatova, M.Z. Sustainable Development of Crop Production with Elements of Precision Agriculture in Northern Kazakhstan. Entrep. Sustain. Issues 2020, 7, 3200–3214. [Google Scholar] [CrossRef]
- Qadir, A.; Mondal, P. Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India. Remote Sens. 2020, 12, 522. [Google Scholar] [CrossRef]
- Wu, C.; Tang, X.; Xu, X. System Design, Analysis, and Control of an Intelligent Vehicle for Transportation in Greenhouse. Agriculture 2023, 13, 1020. [Google Scholar] [CrossRef]
- Khan, R.; Ali, I.; Zakarya, M.; Ahmad, M.; Imran, M.; Shoaib, M. Technology-Assisted Decision Support System for Efficient Water Utilization: A Real-Time Testbed for Irrigation Using Wireless Sensor Networks. IEEE Access 2018, 6, 25686–25697. [Google Scholar] [CrossRef]
- Lyle, G.; Lewis, M.; Ostendorf, B. Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale. Remote Sens. 2013, 5, 1549–1567. [Google Scholar] [CrossRef]
- Lucena, F.; Breunig, F.M.; Kux, H. The Combined Use of UAV-Based RGB and DEM Images for the Detection and Delineation of Orange Tree Crowns with Mask R-CNN: An Approach of Labeling and Unified Framework. Future Internet 2022, 14, 275. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Šarauskis, E.; Lekavičienė, K.; Naujokienė, V.; Romaneckas, K.; Bručienė, I.; Buragienė, S.; Steponavičius, D. The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes 2022, 10, 2717. [Google Scholar] [CrossRef]
- Calvet-Mir, L.; Benyei, P.; Aceituno-Mata, L.; Pardo-de-Santayana, M.; López-García, D.; Carrascosa-García, M.; Perdomo-Molina, A.; Reyes-García, V. The Contribution of Traditional Agroecological Knowledge as a Digital Commons to Agroecological Transitions: The Case of the CONECT-e Platform. Sustainability 2018, 10, 3214. [Google Scholar] [CrossRef]
- Schillings, J.; Holohan, C.; Lively, F.; Arnott, G.; Russell, T. The Potential of Virtual Fencing Technology to Facilitate Sustainable Livestock Grazing Management. Animal 2024, 18, 101231. [Google Scholar] [CrossRef]
- Sanyaolu, M.; Sadowski, A. The Role of Precision Agriculture Technologies in Enhancing Sustainable Agriculture. Sustainability 2024, 16, 6668. [Google Scholar] [CrossRef]
- Keshet, D.; Brook, A.; Malkinson, D.; Izhaki, I.; Charter, M. The Use of Drones to Determine Rodent Location and Damage in Agricultural Crops. Drones 2022, 6, 396. [Google Scholar] [CrossRef]
- Iatrou, M.; Karydas, C.; Iatrou, G.; Pitsiorlas, I.; Aschonitis, V.; Raptis, I.; Mpetas, S.; Kravvas, K.; Mourelatos, S. Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture 2021, 11, 312. [Google Scholar] [CrossRef]
- Rebouh, N.Y.; Mohamed, E.S.; Polityko, P.M.; Dokukin, P.A.; Kucher, D.E.; Latati, M.; Okeke, S.E.; Ali, M.A. Towards Improving the Precision Agriculture Management of the Wheat Crop Using Remote Sensing: A Case Study in Central Non-Black Earth Region of Russia. Egypt. J. Remote Sens. Space Sci. 2023, 26, 505–517. [Google Scholar] [CrossRef]
- Pandey, D.K.; Mishra, R. Towards Sustainable Agriculture: Harnessing AI for Global Food Security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- Řezník, T.; Herman, L.; Klocová, M.; Leitner, F.; Pavelka, T.; Leitgeb, Š.; Trojanová, K.; Štampach, R.; Moshou, D.; Mouazen, A.M.; et al. Towards the Development and Verification of a 3D-Based Advanced Optimized Farm Machinery Trajectory Algorithm. Sensors 2021, 21, 2980. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Y.; Xiang, Y.; Yang, J.; Zhu, Y.; Li, X.; Li, S.; Zhang, J.; Gong, G. Two-Stage Detection Algorithm for Kiwifruit Leaf Diseases Based on Deep Learning. Plants 2022, 11, 768. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef]
- Hütt, C.; Bolten, A.; Hüging, H.; Bareth, G. UAV LiDAR Metrics for Monitoring Crop Height, Biomass and Nitrogen Uptake: A Case Study on a Winter Wheat Field Trial. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 65–76. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technol. 2018, 32, 2–6. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Holzhauser, K.; Rothardt, S.; Rose, M.; Komainda, M.; Herrmann, A.; Kage, H. UAV-Based Canopy Monitoring: Calibration of a Multispectral Sensor for Green Area Index and Nitrogen Uptake across Several Crops. Precis. Agric. 2024, 25, 1556–1580. [Google Scholar] [CrossRef]
- Khose, S.B.; Mailapalli, D.R. UAV-Based Multispectral Image Analytics and Machine Learning for Predicting Crop Nitrogen in Rice. Geocarto Int. 2024, 39, 2373867. [Google Scholar] [CrossRef]
- Chivasa, W.; Mutanga, O.; Biradar, C. UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improvement under Changing Climate Conditions. Remote Sens. 2020, 12, 2445. [Google Scholar] [CrossRef]
- Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L.E.; Guglieri, G.; et al. UAV-Spray Application in Vineyards: Flight Modes and Spray System Adjustment Effects on Canopy Deposit, Coverage, and off-Target Losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef]
- Higuti, V.A.H.; Velasquez, A.E.B.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under Canopy Light Detection and Ranging-based Autonomous Navigation. J. Field Robot. 2019, 36, 547–567. [Google Scholar] [CrossRef]
- Ragiman, R.; Babu Talluri, K.; Nrg, V.; Sagar, B.V. Unmanned Aerial Vehicle (UAV)-Assisted Pesticide Application for Pest and Disease Management in Rice. Int. J. Agric. Biol. Eng. 2024, 17, 88–95. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Yeom, J.; Maeda, M.M.; Landivar, J.A.; Enciso, J.M.; Avila, C.A.; Anciso, J.R. Unmanned Aircraft System-(UAS-)Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation. J. Sens. 2021, 2021, 8875606. [Google Scholar] [CrossRef]
- Siqueira, R.; Longchamps, L.; Dahal, S.; Khosla, R. Use of Fluorescence Sensing to Detect Nitrogen and Potassium Variability in Maize. Remote Sens. 2020, 12, 1752. [Google Scholar] [CrossRef]
- Altieri, G.; Maffia, A.; Pastore, V.; Amato, M.; Celano, G. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in Corylus avellana L. Tree Orchard. Sensors 2022, 22, 7103. [Google Scholar] [CrossRef]
- Aliabad, F.A.; Shojaei, S.; Mortaz, M.; Ferreira, C.S.S.; Kalantari, Z. Use of Landsat 8 and UAV Images to Assess Changes in Temperature and Evapotranspiration by Economic Trees Following Foliar Spraying with Light-Reflecting Compounds. Remote Sens. 2022, 14, 6153. [Google Scholar] [CrossRef]
- Khun, K.; Tremblay, N.; Panneton, B.; Vigneault, P.; Lord, E.; Cavayas, F.; Codjia, C. Use of Oblique RGB Imagery and Apparent Surface Area of Plants for Early Estimation of Above-Ground Corn Biomass. Remote Sens. 2021, 13, 4032. [Google Scholar] [CrossRef]
- Hank, T.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef]
- Beese, L.; Dalponte, M.; Asner, G.P.; Coomes, D.A.; Jucker, T. Using Repeat Airborne LiDAR to Map the Growth of Individual Oil Palms in Malaysian Borneo during the 2015–16 El Niño. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103117. [Google Scholar] [CrossRef]
- Sharifi, A. Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- Manu, A.; McDanel, J.; Brummel, D.; Avornyo, V.K.; Lawler, T. Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture. Drones 2024, 8, 633. [Google Scholar] [CrossRef]
- Li, D.; Hu, Q.; Ruan, S.; Liu, J.; Zhang, J.; Hu, C.; Liu, Y.; Dian, Y.; Zhou, J. Utilizing Hyperspectral Reflectance and Machine Learning Algorithms for Non-Destructive Estimation of Chlorophyll Content in Citrus Leaves. Remote Sens. 2023, 15, 4934. [Google Scholar] [CrossRef]
- Dahal, S.; Phillippi, E.; Longchamps, L.; Khosla, R.; Andales, A. Variable Rate Nitrogen and Water Management for Irrigated Maize in the Western US. Agronomy 2020, 10, 1533. [Google Scholar] [CrossRef]
- Nackley, L.L.; Warneke, B.; Fessler, L.; Pscheidt, J.W.; Lockwood, D.; Wright, W.C.; Sun, X.; Fulcher, A. Variable-Rate Spray Technology Optimizes Pesticide Application by Adjusting for Seasonal Shifts in Deciduous Perennial Crops. HortTechnology 2021, 31, 479–489. [Google Scholar] [CrossRef]
- De Oliveira Maia, F.C.; Bufon, V.B.; Leão, T.P. Vegetation Indices as a Tool for Mapping Sugarcane Management Zones. Precis. Agric. 2023, 24, 213–234. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation Approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- Karakizi, C.; Oikonomou, M.; Karantzalos, K. Vineyard Detection and Vine Variety Discrimination from Very High Resolution Satellite Data. Remote Sens. 2016, 8, 235. [Google Scholar] [CrossRef]
- Gavrilović, M.; Jovanović, D.; Božović, P.; Benka, P.; Govedarica, M. Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery. Remote Sens. 2024, 16, 584. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Baroudy, A.A.E.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali, A.M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
- Gu, H.; Mills, C.; Ritchie, G.L.; Guo, W. Water Stress Assessment of Cotton Cultivars Using Unmanned Aerial System Images. Remote Sens. 2024, 16, 2609. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, G.; Qiu, C.; Gu, B.; Zheng, K.; Liu, Q. Weed Detection in Potato Fields Based on Improved YOLOv4: Optimal Speed and Accuracy of Weed Detection in Potato Fields. Electronics 2022, 11, 3709. [Google Scholar] [CrossRef]
- Castellano, G.; De Marinis, P.; Vessio, G. Weed Mapping in Multispectral Drone Imagery Using Lightweight Vision Transformers. Neurocomputing 2023, 562, 126914. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Xu, X.; Shen, D.; Jiang, T.; Xie, B.; Duan, J. Wetting and Deposition Characteristics of Air-Assisted Spray Droplet on Large Broad-Leaved Crop Canopy. Front. Plant Sci. 2023, 14, 1079703. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Which Vegetation Index? Benchmarking Multispectral Metrics to Hyperspectral Mixture Models in Diverse Cropland. Remote Sens. 2023, 15, 971. [Google Scholar] [CrossRef]
- Scudiero, E.; Teatini, P.; Manoli, G.; Braga, F.; Skaggs, T.H.; Morari, F. Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data. Agronomy 2018, 8, 253. [Google Scholar] [CrossRef]
- Osman, Y.; Dennis, R.; Elgazzar, K. Yield Estimation and Visualization Solution for Precision Agriculture. Sensors 2021, 21, 6657. [Google Scholar] [CrossRef] [PubMed]
- Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L.; Agurto-Piñarreta, A.I. Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering 2024, 6, 2955–2969. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Luo, R.; Wang, C.; Pan, N.; Yang, X.; Ge, X. YOLOF-Snake: An Efficient Segmentation Model for Green Object Fruit. Front. Plant Sci. 2022, 13, 765523. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, C.; Xing, J. YOLOv5-ACS: Improved Model for Apple Detection and Positioning in Apple Forests in Complex Scenes. Forests 2023, 14, 2304. [Google Scholar] [CrossRef]
- Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Ramzan Khan, M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant Sci. 2022, 13, 92753. [Google Scholar] [CrossRef]
- Zurek, M.; Hebinck, A.; Selomane, O. Climate Change and the Urgency to Transform Food Systems. Science 2022, 376, 1416–1421. [Google Scholar] [CrossRef]
- Amoak, D.; Luginaah, I.; McBean, G. Climate Change, Food Security, and Health: Harnessing Agroecology to Build Climate-Resilient Communities. Sustainability 2022, 14, 13954. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Postigo, J.C.; Smith, P.; Cowie, A.; Singh, P.K.; Rivera-Ferre, M.; Tirado-von der Pahlen, M.C.; Campbell, D.; Neufeldt, H. Agroecology as a Transformative Approach to Tackle Climatic, Food, and Ecosystemic Crises. Curr. Opin. Environ. Sustain. 2023, 62, 101275. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Viera-Arroyo, W.; Binego, L.; Ryans, F.; López, D.; Moya, M.; Vera, L.; Caicedo, C. Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability 2025, 17, 6053. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can Agroecology Improve Food Security and Nutrition? A Review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Sullivan, S. Ag-Tech, Agroecology, and the Politics of Alternative Farming Futures: The Challenges of Bringing Together Diverse Agricultural Epistemologies. Agric. Hum. Values 2023, 40, 913–928. [Google Scholar] [CrossRef]
- Némethová, J.; Svobodová, H.; Věžník, A. Changes in Spatial Distribution of Arable Land, Crop Production and Yield of Selected Crops in the EU Countries after 2004. Agriculture 2022, 12, 1697. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Zandberg, J.D.; Fernandez, C.T.; Danilevicz, M.F.; Thomas, W.J.W.; Edwards, D.; Batley, J. The Global Assessment of Oilseed Brassica Crop Species Yield, Yield Stability and the Underlying Genetics. Plants 2022, 11, 2740. [Google Scholar] [CrossRef]
- Attia, Z.; Pogoda, C.S.; Reinert, S.; Kane, N.C.; Hulke, B.S. Breeding for Sustainable Oilseed Crop Yield and Quality in a Changing Climate. Theor. Appl. Genet. 2021, 134, 1817–1827. [Google Scholar] [CrossRef]
- Abobatta, W.F.; Hegab, R.H.; El-Hashash, E.F. Challenges and Opportunities for the Global Cultivation and Adaptation of Legumes B. Opportunities for Increasing Legumes Production and Availability. Ann. Agric. Crop Sci. 2022, 7, 1107. [Google Scholar] [CrossRef]
- Lieder, S.; Schröter-Schlaack, C. Smart Farming Technologies in Arable Farming: Towards a Holistic Assessment of Opportunities and Risks. Sustainability 2021, 13, 6783. [Google Scholar] [CrossRef]
- El-Ansary, D.O. Smart Farming and Orchard Management: Insights and Innovations. Curr. Food Sci. Technol. Rep. 2025, 3, 10. [Google Scholar] [CrossRef]
- Wang, Z.; Xun, Y.; Wang, Y.; Yang, Q. Review of smart robots for fruit and vegetable picking in agriculture. Int. J. Agric. Biol. Eng. 2022, 15, 33–54. [Google Scholar] [CrossRef]
- Canicattì, M.; Vallone, M. Drones in Vegetable Crops: A Systematic Literature Review. Smart Agric. Technol. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
- Rafique, R.; Ahmad, T.; Kalsoom, T.; Khan, M.A.; Ahmed, M. Climatic Challenge for Global Viticulture and Adaptation Strategies. In Global Agricultural Production: Resilience to Climate Change; Ahmed, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 611–634. ISBN 978-3-031-14973-3. [Google Scholar]
- Darra, N.; Anastasiou, E.; Kriezi, O.; Lazarou, E.; Kalivas, D.; Fountas, S. Can Yield Prediction Be Fully Digitilized? A Systematic Review. Agronomy 2023, 13, 2441. [Google Scholar] [CrossRef]
- Chamara, N.; Islam, M.D.; Bai, G.; Shi, Y.; Ge, Y. Ag-IoT for Crop and Environment Monitoring: Past, Present, and Future. Agric. Syst. 2022, 203, 103497. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect Pest Monitoring with Camera-Equipped Traps: Strengths and Limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Precise Application of Water and Fertilizer to Crops: Challenges and Opportunities. Front. Plant Sci. 2024, 15, 1444560. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Krus, A.; Barrientos, A.; Del Cerro, J.; Valero, C. Trend Technologies for Robotic Fertilization Process in Row Crops. Front. Robot. AI 2022, 9, 808484. [Google Scholar] [CrossRef]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.; Cercas, F. IoT-Based Systems for Soil Nutrients Assessment in Horticulture. Sensors 2023, 23, 403. [Google Scholar] [CrossRef]
- Longchamps, L.; Tisseyre, B.; Taylor, J.; Sagoo, L.; Momin, A.; Fountas, S.; Manfrini, L.; Ampatzidis, Y.; Schueller, J.K.; Khosla, R. Yield Sensing Technologies for Perennial and Annual Horticultural Crops: A Review. Precis. Agric. 2022, 23, 2407–2448. [Google Scholar] [CrossRef]
- Violino, S.; Figorilli, S.; Ferrigno, M.; Manganiello, V.; Pallottino, F.; Costa, C.; Menesatti, P. A Data-Driven Bibliometric Review on Precision Irrigation. Smart Agric. Technol. 2023, 5, 100320. [Google Scholar] [CrossRef]
- Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in Site-Specific Weed Management in Agriculture—A Review. Weed Res. 2022, 62, 123–133. [Google Scholar] [CrossRef]
- Šarauskis, E.; Sokas, S.; Rukaitė, J. Variable Depth Tillage: Importance, Applicability, and Impact—An Overview. AgriEngineering 2024, 6, 1870–1885. [Google Scholar] [CrossRef]
- Ma, Z.; Rayhana, R.; Feng, K.; Liu, Z.; Xiao, G.; Ruan, Y.; Sangha, J.S. A Review on Sensing Technologies for High-Throughput Plant Phenotyping. IEEE Open J. Instrum. Meas. 2022, 1, 1–21. [Google Scholar] [CrossRef]
- Sridhar, A.; Balakrishnan, A.; Jacob, M.M.; Sillanpää, M.; Dayanandan, N. Global Impact of COVID-19 on Agriculture: Role of Sustainable Agriculture and Digital Farming. Environ. Sci. Pollut. Res. 2023, 30, 42509–42525. [Google Scholar] [CrossRef]
- Ravi, S.; Rajasekaran, S.R.C. A Perspective of Digital Marketing in Rural Areas: A Literature Review. Int. J. Prof. Bus. Rev. 2023, 8, 26. [Google Scholar] [CrossRef]
- Fieldsend, A.F.; Cronin, E.; Varga, E.; Biró, S.; Rogge, E. ‘Sharing the Space’ in the Agricultural Knowledge and Innovation System: Multi-Actor Innovation Partnerships with Farmers and Foresters in Europe. J. Agric. Educ. Ext. 2021, 27, 423–442. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Sabbir Hossain, M.; Rahman, M.; Rahman, A.; Mohsin Kabir, M.; Mridha, M.F.; Huang, J.; Shin, J. Automatic Navigation and Self-Driving Technology in Agricultural Machinery: A State-of-the-Art Systematic Review. IEEE Access 2025, 13, 94370–94401. [Google Scholar] [CrossRef]
- Hassan, S.I.; Alam, M.M.; Illahi, U.; Al Ghamdi, M.A.; Almotiri, S.H.; Su’ud, M.M. A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. IEEE Access 2021, 9, 32517–32548. [Google Scholar] [CrossRef]
- Wilson, A.N.; Gupta, K.A.; Koduru, B.H.; Kumar, A.; Jha, A.; Cenkeramaddi, L.R. Recent Advances in Thermal Imaging and Its Applications Using Machine Learning: A Review. IEEE Sens. J. 2023, 23, 3395–3407. [Google Scholar] [CrossRef]
- Brenner, M.; Reyes, N.H.; Susnjak, T.; Barczak, A.L.C. RGB-D and Thermal Sensor Fusion: A Systematic Literature Review. IEEE Access 2023, 11, 82410–82442. [Google Scholar] [CrossRef]
- Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Benelli, A.; Cevoli, C.; Fabbri, A. In-Field Hyperspectral Imaging: An Overview on the Ground-Based Applications in Agriculture. J. Agric. Eng. 2020, 51, 129–139. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef]
- Laveglia, S.; Altieri, G.; Genovese, F.; Matera, A.; Di Renzo, G.C. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering 2024, 6, 3084–3120. [Google Scholar] [CrossRef]
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
- Gómez-Chabla, R.; Real-Avilés, K.; Morán, C.; Grijalva, P.; Recalde, T. IoT Applications in Agriculture: A Systematic Literature Review. In ICT for Agriculture and Environment; Valencia-García, R., Alcaraz-Mármol, G., Cioppo-Morstadt, J.d., Vera-Lucio, N., Bucaram-Leverone, M., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 901, pp. 68–76. ISBN 978-3-030-10727-7. [Google Scholar]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From Satellite to UAV-Based Remote Sensing: A Review on Precision Agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Barbosa, M.R., Jr.; Santos, R.G.d.; Sales, L.d.A.; Oliveira, L.P. de Advancements in Agricultural Ground Robots for Specialty Crops: An Overview of Innovations, Challenges, and Prospects. Plants 2024, 13, 3372. [Google Scholar] [CrossRef]
- Vasquez, S.; Ibba, P.; Gullino, M.; Ciccone, G.; Rasheed, A.; Allarà, C.; Lugli, P.; Petti, L. Plant Wearables: Bridging Technology and Sustainability in Precision Agriculture. Appl. Phys. Lett. 2025, 127, 050501. [Google Scholar] [CrossRef]
- Lamanna, M.; Bovo, M.; Cavallini, D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals 2025, 15, 458. [Google Scholar] [CrossRef]
- Fountas, S.; Sorensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Liakos, V.; Gemtos, T. Farm Machinery Management Information System. Comput. Electron. Agric. 2015, 110, 131–138. [Google Scholar] [CrossRef]
- Poppe, K.; Vrolijk, H.; Bosloper, I. Integration of Farm Financial Accounting and Farm Management Information Systems for Better Sustainability Reporting. Electronics 2023, 12, 1485. [Google Scholar] [CrossRef]
- Melzer, M.; Bellingrath-Kimura, S.; Gandorfer, M. Commercial Farm Management Information Systems—A Demand-Oriented Analysis of Functions in Practical Use. Smart Agric. Technol. 2023, 4, 100203. [Google Scholar] [CrossRef]
- Mushi, G.E.; Di Marzo Serugendo, G.; Burgi, P.-Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Tombe, R.; Smuts, H. Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Appl. Sci. 2023, 13, 6382. [Google Scholar] [CrossRef]
- Bhaskara, S.; Bawa, K.S. Societal Digital Platforms for Sustainability: Agriculture. Sustainability 2021, 13, 5048. [Google Scholar] [CrossRef]
- Schoemaker, E.; Talhouk, R.; Kamanu, C.; McDonaugh, E.; McDonaugh, C.; Casey, E.; Wills, A.; Richardson, F.; Donner, J. Social Agriculture: Examining the Affordances of Social Media for Agricultural Practices. In Proceedings of the ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS), Toronto, ON, Canada, 22–25 July 2025; ACM: Seattle, WA, USA, 2022; pp. 476–489. [Google Scholar]
- Singh, N.; Dey, K. A Typology of Agricultural Market Information Systems and Its Dimensions: Case Studies of Digital Platforms. Electron. Mark. 2023, 33, 42. [Google Scholar] [CrossRef]
- Abdalla, Z.; El-Ramady, H. Applications and Challenges of Smart Farming for Developing Sustainable Agriculture. Environ. Biodivers. Soil Secur. 2022, 6, 81–90. [Google Scholar] [CrossRef]
- Gorai, T.; Yadav, P.K.; Choudhary, G.L.; Kumar, A. Site-Specific Crop Nutrient Management for Precision Agriculture—A Review. Curr. J. Appl. Sci. Technol. 2021, 40, 37–52. [Google Scholar] [CrossRef]
- Concepcion, R.; Esguerra, B.J.; Mendigoria, C.H.; Aquino, H.; Alajas, O.J.; Francisco, K.; Montañez, J.J.; Bandala, A.; Dadios, E. Intelligent Permaculture: A Sustainable and Profitable Practice for Tropical and Maritime Climate Urban and Peri-Urban Agricultural Ecosystems. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar]
- Subedi, Y.R.; Godde, C.; Korale-Gedara, P.; Farr, J.; Fyfe, S. Exploring the Complexity of Food Systems Assessments: A Systematic Literature Review of Frameworks and Indicators. Glob. Food Secur. 2025, 46, 100881. [Google Scholar] [CrossRef]
- Vercher, N.; Bosworth, G.; Esparcia, J. Developing a Framework for Radical and Incremental Social Innovation in Rural Areas. J. Rural Stud. 2023, 99, 233–242. [Google Scholar] [CrossRef]
- Orjuela-Garzon, W.A.; Sandoval-Aldana, A.; Mendez-Arteaga, J.J. Systematic Literature Review of Barriers and Enablers to Implementing Food Informatics Technologies: Unlocking Agri-Food Chain Innovation. Foods 2024, 13, 3349. [Google Scholar] [CrossRef]
- Musa, S.F.P.D.; Basir, K.H. Smart Farming: Towards a Sustainable Agri-Food System. Br. Food J. 2021, 123, 3085–3099. [Google Scholar] [CrossRef]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, L. Transforming Agriculture: A Mini-Review of IoT Innovations and Their Impact. In Proceedings of the 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-SoC), Tanger, Morocco, 6–9 October 2024; pp. 1–6. [Google Scholar]
- Nandini, Y.; Shrivastava, A.K. A Review on Different Types of Autonomous Agriculture Machines. Pharma Innov. J. 2021, SP-10, 880–884. [Google Scholar]
- Thongnim, P.; Duangkaew, P.; Srinil, P. Smart Farming and Agricultural Safety through TechnologicalAdvancement in Drone Spraying. JMCER 2024, 2024, 82–92. [Google Scholar]
- Liu, Y.; Swinton, S.M.; Miller, N.R. Is Site-Specific Yield Response Consistent over Time? Does It Pay? Am. J. Agric. Econ. 2006, 88, 471–483. [Google Scholar] [CrossRef]
- Meesala, H.; Brunori, G. Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach. Agriculture 2025, 15, 1636. [Google Scholar] [CrossRef]
- Ellahi, R.M.; Wood, L.C.; Bekhit, A.E.-D.A. Blockchain-Driven Food Supply Chains: A Systematic Review for Unexplored Opportunities. Appl. Sci. 2024, 14, 8944. [Google Scholar] [CrossRef]
- Høye, T.T.; Montagna, M.; Oteman, B.; Roy, D.B. Emerging Technologies for Pollinator Monitoring. Curr. Opin. Insect Sci. 2025, 69, 101367. [Google Scholar] [CrossRef]
- Sobhy, D.M.; Anandhi, A. Soil Nutrient Monitoring Technologies for Sustainable Agriculture: A Systematic Review. Sustainability 2025, 17, 8477. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, X.; Wu, W.; Liu, Z.; Fang, G.; Yang, P. Agroecosystem Services: A Review of Concepts, Indicators, Assessment Methods and Future Research Perspectives. Ecol. Indic. 2022, 142, 109218. [Google Scholar] [CrossRef]
- Gkisakis, V.D.; Damianakis, K. Digital Innovations for the Agroecological Transition: A User Innovation and Commons-Based Approach. Landbauforsch. J. Sustain. Org. Agric. Syst. 2020, 70, 1–4. [Google Scholar] [CrossRef]
- Curry, G.N.; Nake, S.; Koczberski, G.; Oswald, M.; Rafflegeau, S.; Lummani, J.; Peter, E.; Nailina, R. Disruptive Innovation in Agriculture: Socio-Cultural Factors in Technology Adoption in the Developing World. J. Rural Stud. 2021, 88, 422–431. [Google Scholar] [CrossRef]
- Ferrari, A.; Bacco, M.; Gaber, K.; Jedlitschka, A.; Hess, S.; Kaipainen, J.; Koltsida, P.; Toli, E.; Brunori, G. Drivers, Barriers and Impacts of Digitalisation in Rural Areas from the Viewpoint of Experts. Inf. Softw. Technol. 2022, 145, 106816. [Google Scholar] [CrossRef]
- Walker, E.; Hernandez, A.V.; Kattan, M.W. Meta-Analysis: Its Strengths and Limitations. Cleve. Clin. J. Med. 2008, 75, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Breslin, D.; Callahan, J.L.; Iszatt-White, M. Advancing Literature Review Methodology through Rigour, Generativity, Scope and Transparency. Int. J. Manag. Rev. 2022, 24, 171–180. [Google Scholar] [CrossRef]
- Mehdic, A.; Gunton, T.; Rutherford, M. Assessing the Role of Subjective Judgment and Science in Environmental Impact Assessment: Implications and Options for Reform. J. Environ. Plan. Manag. 2020, 63, 1771–1790. [Google Scholar] [CrossRef]












| Web of Science Database Query |
|---|
| (TS=(“Internet of Things”) OR TS=(“cloud computing”) OR TS=(“big data”) OR TS=(“artificial intelligence”) OR TS=(“machine learning”) OR TS=(“simulation”) OR TS=(“augmented reality”) OR TS=(“additive manufacturing”) OR TS=(“horizontal and vertical system integration”) OR TS=(“autonomous robo*”) OR TS=(“cybersecurity”) OR TS=(“DSS”) OR TS=(“decision support”) OR TS=(“sens*”) OR TS=(“databas*”) OR TS=(“ICT”) OR TS=(“robo*”) OR TS=(“GPS”) OR TS=(“GNSS”) OR TS=(“information syste*”) OR TS=(“image analys?s”) OR TS=(“image processing”) OR TS=(“camera*”) OR TS=(“video”) OR TS=(“RFID”) OR TS=(“eID”) OR TS=(“ruminal bolus”) OR TS=(“drafting”) OR TS=(“walk over weight”) OR TS=(“thermistore*”) OR TS=(“smart trap*”) OR TS=(“e?trap*”) OR TS=(“insect trap*”) OR TS=(“UAV*”) OR TS=(“UAS*”) OR TS=(“accelerometer*”) OR TS=(“pedometer*”) OR TS=(“virtual fencing”) OR TS=(“RGB”) OR TS=(“multispectral”) OR TS=(“hyperspectral”) OR TS=(“thermal”) OR TS=(“LIDAR”) OR TS=(“RADAR”) OR TS=(“EMI”) OR TS=(“satellite”) OR TS=(“UGV*”) OR TS=(“recording”) OR TS=(“guidance”) OR TS=(“steering”) OR TS=(“reacting”) OR TS=(“variable rate”) OR TS=(“monitoring”) OR TS=(“social network*”) OR TS=(“social platform*”) OR TS=(“social media”) OR TS=(“platform*”) OR TS=(“aerial”) OR TS=(“proximal”) OR TS=(“ground”) OR TS=(“FMIS”) OR TS=(“farm management information syste*”) OR TS=(“blockchain”) OR TS=(“marketplace*”) OR TS=(“load cell*”) OR TS=(“flow meter*”) OR TS=(“microphone*”) OR TS=(“feeder*”) OR TS=(“drinker*”) OR TS=(“body temperature device”) OR TS=(“photoelectric sensor”) OR TS=(“scale”) OR TS=(“force plat*”)) AND (TS=(“diversit*”) OR TS=(“knowledge AND (co-creat* OR shar*)”) OR TS=(“synerg*”) OR TS=(“efficien*”) OR TS=(“recycl*”) OR TS=(“value* AND (human OR social)”) OR TS=(“cultur*”) OR TS=(“food AND tradition*”) OR TS=(“responsib* AND govern*”) OR TS=(“economy AND (circular OR solidarity)”)) AND (TS=(“digital agriculture”) OR TS=(“digital farming”) OR TS=(“agroecolog*”) OR TS=(“agro-ecolog*”) OR TS=(“sustainable agriculture”) OR TS=(“precision agriculture”) OR TS=(“smart farming”) OR TS=(“smart agriculture”) OR TS=(“precision livestock farming”)) AND (TS=(“crop*”) OR TS=(“vineyard*”) OR TS=(“vegetable*”) OR TS=(“orchard*”) OR TS=(“arable”) OR TS=(“livestock”) OR TS=(“poultry”) OR TS=(“chicken”) OR TS=(“hen”) OR TS=(“ruminant*”) OR TS=(“pig*”) OR TS=(“goat*”) OR TS=(“sheep”) OR TS=(“lamb*”) OR TS=(“cow*”) OR TS=(“cattle”)) |
| Classes | Options |
|---|---|
| Crop-related characteristics and applications | |
| Farming Type | Arable Crops; Vegetable Crops; Orchard Crops; Vineyards |
| Farming System Type | Conventional; Organic; Integrated Management |
| Operation Type | Land Preparation; Irrigation; Fertilisation; Pest Control; Weeding; Harvest; Monitoring; Marketing; Breeding |
| Characteristics and use of digital tools on crops | |
| Application Type | Guidance/Steering; Recording/Monitoring/Mapping; Reacting/VRA (Variable Rate Application)/Control; Information/Knowledge Sharing |
| Platform | Satellite; UAV (Uncrewed Aerial Vehicle); UGV (Uncrewed Ground Vehicle); Crewed Ground Vehicles; Stationary; Wearable; Mobile Ground; Crewed Aerial Vehicles |
| Sensors | Hyperspectral; Multispectral; Thermal; RGB/RGB-D; LIDAR; Weather Station; Load Cell; Sound Sensor; Flow Meter; Temperature Sensor; Weight Sensor; Soil Sensor; Stem Water Potential Sensor; NIRS (Near- Infrared Spectroscopy; Smart Trap; Synthetic Aperture Radar; GNSS; Soil Electrical Conductivity Sensor; Canopy Sensor; Fluorescence; Water Quality Sensor; Ground-Penetrating Radar; Soil Cutting Resistance Sensor; Electronic Plate Meter; Force Plate; pH Sensor |
| Software | Software; FMIS (Farm Management Information System); DSS (Decision Support System); Social Platform; Digital Marketplace |
| Contribution to transition to agroecology | |
| Tier of Agroecology | Tier One: reduce inputs; Tier Two: substitute with sustainable inputs; Tier Three: redesign agricultural systems to incorporate biodiversity; Tier Four: reconnect producers and consumers; Tier Five: create a just and equitable global food system |
| Impact Type | Impact |
|---|---|
| Economic Impact | Productivity Revenue, profit, farm income Input costs Shelf life of product Product quality Product wastage |
| Environmental Impact | Air protection Soil protection Water protection Biodiversity protection GHG emission |
| Social Impact | Labour time Stress for farmer Amount of heavy physical labour Number and/or severity of personal injury accidents Number and/or severity of accidents resulting in spills, property damage, incorrect application of inputs, etc. Human exposure to chemicals |
| Impact | Numeric Value | ||||
|---|---|---|---|---|---|
| Large Decrease | Small Decrease | No Effect | Small Increase | Large Increase | |
| Economic Impacts | |||||
| Productivity | −2 | −1 | 0 | +1 | +2 |
| Revenue, profit, farm income | −2 | −1 | 0 | +1 | +2 |
| Input costs | +2 | +1 | 0 | −1 | −2 |
| Shelf life of product | −2 | −1 | 0 | +1 | +2 |
| Product quality | −2 | −1 | 0 | +1 | +2 |
| Product wastage | +2 | +1 | 0 | −1 | −2 |
| Environmental Impacts | |||||
| Air protection | −2 | −1 | 0 | 1 | +2 |
| Soil protection | −2 | −1 | 0 | 1 | +2 |
| Water protection | −2 | −1 | 0 | 1 | +2 |
| Biodiversity protection | −2 | −1 | 0 | +1 | +2 |
| GHG emission | +2 | +1 | 0 | −1 | −2 |
| Social Impacts | |||||
| Labour time | +2 | +1 | 0 | −1 | −2 |
| Stress for farmer | +2 | +1 | 0 | −1 | −2 |
| Amount of heavy physical labour | +2 | +1 | 0 | −1 | −2 |
| Number and/or severity of personal injury accidents | +2 | +1 | 0 | −1 | −2 |
| Number and/or severity of accidents resulting in spills, property damage, incorrect application of inputs, etc. | +2 | +1 | 0 | −1 | −2 |
| Human exposure to chemicals | +2 | +1 | 0 | −1 | −2 |
| Impact Type | Weight for Each Impact Type | Numeric Values | ||
|---|---|---|---|---|
| Low Impact | Medium Impact | High Impact | ||
| Economic | 1 | <4 | ≥4 and <8 | ≥8 |
| Environmental | 1 | <3 | ≥3 and <7 | ≥7 |
| Social | 1 | <4 | ≥4 and <8 | ≥8 |
| Economic and Environmental * | 0.5 | <4 | ≥4 and <8 | ≥8 |
| Overall ** | 0.33 | <4 | ≥4 and <8 | ≥8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, E.; Kasimati, A.; Papadopoulos, G.; Vatsanidou, A.; Gemtou, M.; Kantelhardt, J.; Gabriel, A.; Schwierz, F.; Matavel, C.E.; Meyer-Aurich, A.; et al. Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy 2025, 15, 2600. https://doi.org/10.3390/agronomy15112600
Anastasiou E, Kasimati A, Papadopoulos G, Vatsanidou A, Gemtou M, Kantelhardt J, Gabriel A, Schwierz F, Matavel CE, Meyer-Aurich A, et al. Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy. 2025; 15(11):2600. https://doi.org/10.3390/agronomy15112600
Chicago/Turabian StyleAnastasiou, Evangelos, Aikaterini Kasimati, George Papadopoulos, Anna Vatsanidou, Marilena Gemtou, Jochen Kantelhardt, Andreas Gabriel, Friederike Schwierz, Custodio Efraim Matavel, Andreas Meyer-Aurich, and et al. 2025. "Review and Assessment of Crop-Related Digital Tools for Agroecology" Agronomy 15, no. 11: 2600. https://doi.org/10.3390/agronomy15112600
APA StyleAnastasiou, E., Kasimati, A., Papadopoulos, G., Vatsanidou, A., Gemtou, M., Kantelhardt, J., Gabriel, A., Schwierz, F., Matavel, C. E., Meyer-Aurich, A., Maritan, E., Behrendt, K., Moroder, A., Bellingrath-Kimura, S. D., Pedersen, S. M., Landi, A., Pesonen, L., Rojic, J., Kim, M., ... Fountas, S. (2025). Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy, 15(11), 2600. https://doi.org/10.3390/agronomy15112600

