Next Article in Journal
LSES1, Encoding a Member of the Casein Kinase 1 Family, Is Involved in the Regulation of Leaf Senescence in Rice
Previous Article in Journal
Stability of Lack of Fitness Cost Associated with G143A Mutation in Pyricularia oryzae Triticum
Previous Article in Special Issue
Development of Shunt Connection Communication and Bimanual Coordination-Based Smart Orchard Robot
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Review and Assessment of Crop-Related Digital Tools for Agroecology

by
Evangelos Anastasiou
1,2,*,
Aikaterini Kasimati
1,
George Papadopoulos
1,
Anna Vatsanidou
3,
Marilena Gemtou
1,
Jochen Kantelhardt
4,
Andreas Gabriel
5,
Friederike Schwierz
6,
Custodio Efraim Matavel
6,
Andreas Meyer-Aurich
6,
Elias Maritan
7,
Karl Behrendt
7,
Alma Moroder
8,9,
Sonoko Dorothea Bellingrath-Kimura
8,9,
Søren Marcus Pedersen
10,
Andrea Landi
10,
Liisa Pesonen
11,
Junia Rojic
12,
Minkyeong Kim
12,
Heiner Denzer
12 and
Spyros Fountas
1
add Show full author list remove Hide full author list
1
Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece
2
Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
3
Department of Agricultural Development, Agrofood and Management of Natural Resources, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, 34400 Psahna, Greece
4
Department of Economics and Social Sciences, Institute of Agricultural and Forestry Economics, BOKU University, Feistmantelstr. 4, 1180 Vienna, Austria
5
Institute for Agricultural Engineering and Animal Husbandry, Bavarian State Research Center for Agriculture (LfL), Kleeberg 14, 94099 Ruhstorf an der Rott, Germany
6
Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
7
Harper Adams Business School, Harper Adams University, Newport TF10 8NB, UK
8
Leibniz Centre for Agricultural Landscape Research e.V., Eberswalder Straße 84, 15374 Müncheberg, Germany
9
Faculty of Life Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany
10
Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
11
Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
12
Pessl Instruments GmbH, Werksweg 107, 8160 Weiz, Austria
*
Author to whom correspondence should be addressed.
Agronomy 2025, 15(11), 2600; https://doi.org/10.3390/agronomy15112600
Submission received: 22 September 2025 / Revised: 30 October 2025 / Accepted: 4 November 2025 / Published: 12 November 2025
(This article belongs to the Special Issue Smart Farming: Advancing Techniques for High-Value Crops)

Abstract

The use of digital tools in agroecological crop production can help mitigate current farming challenges such as labour shortage and climate change. The aim of this study was to map digital tools used in crop production, assess their impacts across economic, environmental, and social dimensions, and determine their potential as enablers of agroecology. A systematic search and screening process, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses methodology, identified 453 relevant studies. The results showed that most digital tools are applied for crop monitoring (83.4%), with unmanned aerial vehicles (37.7%) and camera sensors (75.2% combined) being the most frequently used technologies. Farm Management Information Systems (57.6%) and Decision Support Systems (25.2%) dominated the tool categories, while platforms for market access, social networking, and collaborative learning were rare. Most tools addressed the first tier of agroecology, which refers to input reduction, highlighting a strong focus on efficiency improvements rather than systemic redesign. Although digital tools demonstrated positive contributions to social, environmental, and economic dimensions, studies concentrated mainly on economic benefits. Future research should investigate the potential role of digital technologies in advancing higher tiers of agroecology, emphasising participatory design, agroecosystem services, and broader coverage of the agricultural value chain.

1. Introduction

During the previous decades, the world exhibited rapid technological and economic growth in all sectors [1]. However, this growth was conducted without taking into consideration the limited available resources that the planet offers as well as the environmental consequences that may arise by using unsustainable production methods [2,3]. Thus, various issues have arisen from this approach, including climate change, environmental pollution, health risks, demographic changes, and biodiversity decline [4,5,6,7,8]. The agricultural sector has not been an exception to this. Heavy dependence on chemical pesticides and synthetic fertilisers has resulted in health problems due to the consumption of unhealthy food, as well as water, soil, and air pollution [9]. Moreover, the use of heavy machinery has led to soil degradation [10], while urban migration has also led to the abandonment of rural areas [11]. Furthermore, farmers’ aging may further limit the ability to feed an increasing population in coming years [12].
Thus, there is a need for more sustainable and socially just agricultural production systems. Many initiatives have started in the previous years at national and international levels (e.g., European Union’s Green Deal [13], United Nations’ Sustainable Development Goals [14], and Paris Agreement [15]) that apply to agriculture and promote an economically, socially, and environmentally sustainable future. Adoption of agroecology can contribute to this future. Agroecology refers to a holistic approach that combines social, economic, and environmental elements that can lead to sustainable agricultural production [16]. Agroecology can contribute to both incremental and transformational changes in agriculture. According to previous research, adoption of agroecological practices can be categorised into five different tiers, namely: Tier One: input reduction; Tier Two: substitution with sustainable inputs; Tier Three: incorporation of biodiversity through agricultural system redesign; Tier Four: reconnection of producers and consumers; and Tier Five: creation of a just and equitable global food system [17].
The path of agroecology is not the only one that can lead to a more sustainable future. Smart farming can also contribute to this future. Many studies have indicated the incremental and transformational power of the adoption of digital tools that are applied in agriculture. Digital tools refer to offline or online software-based systems (e.g., programs, applications, platforms, and other computational resources) that are used on computers, mobile, or other devices for the completion of tasks through the utilisation of digital information [18]. Digital tools applied in agriculture include various sensors like red-green-blue (RGB), red-green-blue-depth (RGB-D), multispectral, hyperspectral, and thermal cameras, light detection and ranging (LiDAR), Internet of Things (IoT)-based weather sensors (air temperature, air humidity, precipitation, wind velocity and direction), smart traps, soil sensors (moisture, temperature, soil electrical conductivity) and actuators, soil electrical conductivity sensors, synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSSs), proximal canopy sensors, and others. These are mounted on satellites, crewed and uncrewed terrestrial or aerial vehicles, or stationary platforms [19,20,21]. The data collected from these sensors are analysed using artificial intelligence (AI) and machine learning (ML) methods to provide insights to optimise crop production [22,23].
Although the aims of smart farming and digitalisation in agriculture are consistent with the scope of agroecology, their relationship is still relatively new and underexplored [24,25]. Furthermore, there is a huge debate among advocates and opponents of using digitisation for agroecological transformation. The first supports this by emphasising improved yields and optimal decision-making, whereas the latter refers to restricted autonomy in decision-making and disenfranchisement [26]. Consequently, the primary goal of this study was to map digital tools utilised in crop production and analyse their economic, environmental, and social impacts in order to determine their potential as agroecology enablers.

2. Materials and Methods

2.1. Search Strategy and Query Design

A systematic literature search using the Web of Science database was conducted to identify relevant digital tools that were applied in crop production over the past ten years and that could enable the transition to agroecology. The reason for selecting Web of Science as the sole database is that it is one of the leading research article databases, covering more than 34,000 journals and containing over 270 million records [27]. Additionally, the long time span helps reduce potential biases caused by the limited number of studies included in the analysis. A structured query was applied on 28 February 2025 to the search engine to identify relevant research articles (Table 1). The query was developed for identifying relevant information for crop, animal, and agroforestry production as part of the Horizon Europe and Innovate UK co-funded project Digitalisation for Agroecology (D4AgEcol) [28]. The outcomes of this query were further screened to extract relevant studies with a focus on crop production.

2.2. Results Filtering

The selected research articles were published between 2012 and December 2024 in order to concentrate on recent research publications. To map the pertinent research papers and guarantee a methodical and transparent approach, the literature review adhered to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses [29].
The aforementioned query yielded 2412 research articles, which were reviewed by people with prior experience on the topics of this study. The systematic map targeted research articles in English with a focus on digital tools applied to arable, vegetable, and orchard crops, as well as vineyards. Consequently, studies related to livestock, agroforestry, or livestock–crop farming systems were excluded, as well as studies with a focus on genetics and mechanised interventions without the use of digital tools. Each record was screened independently by two reviewers at the stages of screening and eligibility. Conflicts at either stage were resolved by a third reviewer, who adjudicated and issued the final decision. As a result, the first outcomes were filtered to exclude articles that, based on the title and abstract, were unrelated to the study’s goal. On this basis, 1531 of the retrieved items were omitted. The subsequent screening round was applied on the remaining 881 articles and excluded inaccessible items as well as articles that were irrelevant to the study scope based on the entire text. The final number of suitable articles that were evaluated in depth for this study was 453 (Figure 1).

2.3. Classification

The selected articles were categorised into three generic classes and several subclasses based on relevant research [17,19,20,21,30,31,32]. Each article followed a consistent methodology for categorisation, involving two reviewers for assessment and a third reviewer to resolve any conflicts. The classification into agroecology tiers was based on the following criteria. Articles focusing on digital tools aimed at increasing the efficiency of agricultural operations at the field level (e.g., variable rate nitrogen application [33], decision support system for pest monitoring [34]) were assigned to Tier One, “reduce inputs.” When digital tools were referenced in conjunction with sustainable inputs (e.g., organic fertilisers [35], or other sustainable practices like mechanical pruning [36]), the articles were classified under Tier Two, “substitute with sustainable inputs.” Tier Three, “redesign agricultural systems to incorporate biodiversity,” included articles addressing holistic management approaches at the regional level (e.g., land suitability tools [37], risk assessment for heavy metal pollution in soils [38]). Articles related to applications that enhance crop yield characteristics to better meet consumer needs (e.g., plant phenotyping [39]), contribute to food safety (e.g., yield prediction [40]), or improve traceability [41] were assigned to Tier Four, “reconnect producers and consumers.” Tier Five, “create a just and equitable global food system,” comprised articles focusing on regional-level food systems (e.g., [42,43]). The final selection of studies was subjected to qualitative and statistical analysis to extract key insights into existing digital tools for the crop sector (Table 2). One article can be categorised into multiple keywords, resulting in percentages of each keyword contribution, not summing up to 100%.

2.4. Impact Categorisation

The collected records were assessed in terms of different impacts, and specifically environmental, economic, and social impacts. The impacts were based on the work performed by Wolters et al. [44] (Table 3).
An “Impact Scale” with a simple grading was used to analyse the impact of digital tools for agroecology found in the research articles. This scale, ranging from “Large Decrease” to “Large Increase,” was used to assess the impact of digital technologies on the aforementioned economic, environmental, and social variables [28]. The aim of using this scale was to classify the effect of each solution allowing, for a disciplined and uniform way of measuring the possible advantages or drawbacks. The scale’s categorical nature allowed for a clear delineation of impact, highlighting tools that might substantially improve conditions or those that could possibly pose risks or challenges across the assessed areas. Numerical values were assigned for each impact based on each category with the aim of making the impact of digital tools, which present heterogeneous evidence, easily comparable (Table 4). Each digital tool was accounted for once, regardless of its application system. In case one publication introduced several tools, the impact scale was created for the combined use of the digital tools. Two reviewers with relevant experience assigned the numeric values to each record, where if there was a conflict, a third reviewer made the final decision.
After evaluating the economic, environmental, and social impact, the overall score for each category was calculated by summing the scores for each type of impact. A similar technique was used to assess the combined economic and environmental impact, as well as the overall impact, which considered economic, environmental, and social impacts. This was conducted to provide a more holistic assessment, since economic, environmental, and social dimensions are often interdependent and can influence one another. However, the combinations of economic with social and environmental with social were not considered, as these pairs do not provide the same level of complementary insight. In these evaluations, weights were used to normalise the numbers to account for the fact that the environmental effect category has one fewer type of impact than the economic and social categories [28,45]. Specifically, the weights in the Table 5 were assigned to ensure comparability across categories and to avoid over-representing any single dimension when impacts were combined. For the economic, environmental, and social categories, a weight of 1 was used, since each represents a distinct and independent type of impact. In contrast, combined categories such as economic and environmental and the overall impact (economic, environmental, and social) were given smaller weights (0.5 and 0.33 for each impact, respectively) to normalise their scores. In this way, balanced scores for the combined categories in relation to the single-dimension scores was ensured (Table 5).
The distribution of the overall scores was used to provide a standardised and data-driven way of defining thresholds to assign each record to low, medium, or high impact [28]. Specifically, values falling in the lower numeric values range were categorised as low impact, mid-range values as medium impact, and upper numeric values as high impact (Table 5).

2.5. Analysis

The statistical analysis included the number of research studies published annually. In addition, frequency analysis was performed for the crop characteristics (type, operation, and farming system), the digital tools (scope of use, sensors, and platforms), the agroecology tier, and the impact assessment. The PRISMA checklist, the classification and analysis of the selected research articles are presented in the Supplementary Materials [33,34,35,36,37,38,39,40,41,42,43,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487].

3. Results

3.1. Annual Publications

Between 2012 and 2024, there was a significant and consistent increase in the number of published research articles on digital tools for crop production that could support the transition to agroecology. Starting with a negligible number of articles in 2012, the research output shows a gradual rise until 2017, after which there is an exponential growth, culminating in over 100 articles in 2024 (Figure 2).

3.2. Crop-Related Characteristics and Applications of Digital Tools

The percentages of research articles that correspond to different agricultural management systems are presented in Figure 3. According to the analysis, the conventional agricultural management overwhelmingly dominates the discourse, with digital tools being applied in 99.3% of relevant articles. In contrast, “Integrated Management” and “Organic” farming systems show significantly lower percentages, at 74.2% and 57.4%, respectively. While “Integrated Management” still features digital tools in a substantial portion of its research, the gap between this and “Conventional” is considerable. “Organic” agriculture, which aligns most closely with agroecological principles, has the lowest mention of digital tools.
The percentage of research articles that use digital tools in crop production across different crop categories is presented in Figure 4. The results indicate that “Arable Crops” dominate the research landscape, accounting for 61.8% of the articles. In contrast, “Vegetable Crops” and “Orchard Crops” receive considerably less attention, representing 24.1% and 22.3% of the articles, respectively. While still a notable portion, their combined share is less than that of arable crops. Finally, “Vineyards” receive the lowest percentage, representing only 15.0% of the research articles.
Regarding the application of digital tools in crop production across various farming operations, “Monitoring” overwhelmingly dominates the research landscape, accounting for 83.4% of the articles. “Fertilisation” and “Harvest” are the next most researched areas, at 22.7% and 19.0%, respectively. “Irrigation” and “Pest Control” ranked fourth and fifth, also receiving substantial attention in 18.5% and 12.8% of the articles, respectively. “Weeding,” “Land Preparation,” “Breeding,” and “Marketing” have comparatively lower percentages at 9.7%, 7.1%, 5.7%, and 1.1%, respectively (Figure 5).

3.3. Characteristics and Use of Digital Tools on Crops

As presented in Figure 6, regarding the application type of digital tools on crops, “Recording/Monitoring/Mapping” stands out as the predominant use, accounting for a remarkable 85.7% of the research articles. “Reacting/VRA/control” is the second most common use of digital tools in crops, but at a significantly lower percentage (14.8%). This category involves using data gathered from monitoring devices to trigger specific actions, such as automatically adjusting irrigation, applying fertilisers at variable rates, or controlling machinery. Finally, “Information/Knowledge Sharing” at 6.6% and “Guidance/Steering” at 4.6% were the least frequent application type categories.
Figure 7 shows the percentage distribution of different sensor types used in the selected research articles. According to the analysis, there is a diverse but uneven focus across various sensing technologies. “Multispectral” and “RGB/RGB-D” sensors are clearly the most prominent, used in 33.6% and 28.3% of the selected research articles, respectively. Following these, “Hyperspectral” sensors (9.1%) and “Soil Sensor” (9.7%) also show significant usage. “Weather Station” (7.1%), “Canopy sensor” (6.6%), “LiDAR” (5.1%) and Thermal” (4.2%), represent another tier of commonly used sensors. Many other sensor types, such as “Soil Electrical Conductivity Sensor” (4.2%), “Fluorescence” (1.1%), and “GNSS” (0.9%), are present but with much lower percentages, reflecting their more specialised applications or their role as components within larger digital systems rather than primary data collection tools for crop parameters (e.g., GNSS for location, not direct crop sensing). A large number of sensor types, including “load cell,” “sound sensor,” “flow meter,” “weight sensor,” “stem water potential sensor,” “NIRS,” “smart trap,” “Synthetic Aperture Radar,” “water quality sensor,” “ground-penetrating radar,” “soil cutting resistance sensor,” “electronic plate meter,” “force plate,” and “pH sensor” were rarely mentioned (mostly under 2% and many under 1%).
In Figure 8, the percentage of articles per platform type is presented. According to the results, “UAV” ranked first as the most frequently researched platform, accounting for 37.7% of the articles. “Stationary” platforms ranked second at 22.3%, “Mobile Ground” platforms ranked third at 21.6%, and “Satellite” platforms ranked fourth at 19.6%. The remaining platform types showed significantly lower percentages, specifically, “Crewed Ground Vehicles” at 8.2%, “UGV” at 4.9%, “Crewed Aerial Vehicles” at 1.1%, and “Wearable” devices at 0.7%.
Regarding the distribution of research articles per software type, “FMIS” (Farm Management Information Systems) was by far the most prominent system type in the screened research, accounting for 57.6% of the articles, with “DSS” following as the second most common system type, representing 25.2% of the articles. On the contrary, “Social Platform” and “Digital Marketplace” showed low percentages, at 1.1% and 0.9%, respectively (Figure 9).

3.4. Crop-Related Digital Tools and Contribution to Transition to Agroecology

As presented in Figure 10, regarding the distribution of research articles on digital tools in crop production across the five different “tiers” of agroecological transformation, “Tier One: reduce inputs” received the most research focus, accounting for 66.9% (303 from 453) of the articles, followed by “Tier Three: redesign agricultural systems to incorporate biodiversity” at 24.7% (112 from 453) and “Tier Two: substitute with sustainable inputs” at 12.4% (56 from 453) of the articles. “Tier Five: create a just and equitable global food system” and “Tier Four: reconnect producers and consumers” exhibited very low percentages, at 6.4% (29 from 456) and 2.4% (11 from 453), respectively.

3.5. Impact Assessment of Application of Digital Tools on Crops

According to the results of the impact assessment analysis, the use of digital tools in crop production contributes to positive economic, environmental, and social impacts (Figure 11). Specifically, from an economic perspective, the impact of digital tools in crop production is positive. Digital tools can contribute to large increases in productivity and farm income. Additionally, the digital tools found in the research articles contributed to a decrease in input costs and product wastage. Furthermore, the use of digital tools was associated with “Some” or a “Large Increase” in product quality (70%). Most digital tools showed little to no impact on the product’s shelf life.
Regarding the environmental benefits of digital tools, the results indicated that the use of digital tools in crop production can contribute to increased protection of biodiversity, water, soil, and air. However, no contribution (“No Effect”) to environmental protection may also be experienced by using digital tools, according to the results. Regarding greenhouse gas emissions, more than 70% of the applications of digital tools in crop production can contribute to “Some” or a “Large Decrease.”
In the social dimension, digital tools can contribute to a reduction in the amount of heavy physical labour, stress for farmers, accidents leading to spills or property damage, and personal injury accidents. Most of the applications of digital tools led to “No Effect” regarding human exposure to chemicals (more than 50%). Finally, most of the articles indicated “Some” or a “Large Decrease” in labour time.
For the accumulated economic impact, the results indicated that digital tools can mainly result in “High Impact” (46.1%). Digital tools exhibited “Medium Impact” and “Low Impact” at 27.4% and 26.5% of the studies, respectively. With regard to environmental impact, digital tools exhibited “High Impact,” “Medium Impact,” and “Low Impact” at 44.8%, 21.2%, and 34.0% of the research articles, respectively. Similar results were found for the social impact with “High Impact” at 51.0%, “Medium Impact” at 13.7%, and “Low Impact” at 35.3% of the research articles. Considering the “Economic and Environmental Impacts,” the results presented “High Impact” at 44.8%, “Medium Impact” at 21.9%, and “Low Impact” at 33.3% of the research articles. Finally, for “All Impacts,” the distribution was at 43.3% for “High Impact,” 21.0% for “Medium Impact,” and 35.8% for “Low Impact” regarding the use of digital tools in crop production (Figure 12).

4. Discussion

4.1. Number of Publications

The increase in research article publications on the use of crop-related digital tools for agroecology, particularly from 2018 onwards, can be justified by several factors. One of the reasons is the increasing urgency of sustainable agriculture due to climate change and environmental degradation [488,489]. Also, the growing maturity and accessibility of digital technologies (such as AI, IoT, and remote sensing) applicable to agriculture can justify this trend [19,21]. Moreover, the scientific community is increasingly recognising the potential of agroecology in ensuring food security and promoting ecological sustainability [490,491].

4.2. Crop Characteristics

The high percentage of studies on conventional farming systems indicates that the vast majority of research on digital tools in crop production is still focused on optimising and enhancing traditional, input-intensive farming practices. This can be justified by the historical prevalence of conventional agriculture, by the existing infrastructure and relatively small market for organic farming technologies, and the immediate economic incentives for maximising yields through technological means in established systems [492]. Regarding “Organic” and “Integrated Management,” the lower values suggest that the integration of digital technologies into more sustainable and agroecological approaches is still in its nascent stages [493]. The lower figures for Integrated and Organic management could be justified by several factors. These include the inherent complexity of agroecological systems, which may not be easily amenable to conventional digital optimisation [494], and the debate within these movements towards open-source and simple solutions specifically tailored for their unique requirements [26,495].
Regarding the results on crop types, the predominance of tools used in arable crops is justified by the vast cultivated area dedicated to arable crops (e.g., cereals, oilseeds, and pulses), their critical role in global food security, and the significant economic scale of their production [496,497,498,499,500], which incentivises the adoption and research of digital technologies for efficiency and yield optimisation [501]. Regarding the lower percentage in vegetables and orchards, this can be justified by their generally smaller individual farm sizes, more specialised cultivation practices, and sometimes exhibiting higher operation complexity compared with large-scale arable farming, which might lead to different priorities for digital tool development [502,503,504]. Similarly for the vineyards, the lower percentage can be justified given that viticulture is a highly specialised and often regionalised agricultural sector compared with the rest of the crops while requiring higher operational complexity [505,506].
The high percentage of articles that address “Monitoring” operations is well justified given that this operation is foundational to smart farming and enables data-driven decision-making across almost all other farming operations. Digital tools like sensors, drones, and satellite imagery are crucial for data collection on crop health, soil conditions, and environmental factors. Processed data from these sensors can lead to timely and accurate decisions for all operations [507,508,509,510]. The emphasis on “Fertilisation” reflects the economic and environmental importance of optimising nutrient application, where digital tools (e.g., variable rate spreaders, IoT sensors for nutrient analysis) can be used for optimising application of nutrients based on crop needs due to better detection of crops (<5% error) and can achieve savings of >8% depending on the nutrients compared with traditional practices [511,512]. Accordingly, digital tools for “Harvest” are used to improve efficiency, reduce losses, and optimise timing for quality and yield by achieving yield prediction of >90% [513]. Similarly, “Pest Control” and “Irrigation” benefit significantly from digital solutions for optimised pest management and water application due to the fact that they can reduce chemical use and resource waste by >70% according to the pesticide type through the use of prescription maps and >10% in irrigation water by coupling weather, soil, and crop data to assess the specific needs [21,514]. Regarding the low percentages of “Weeding” and “Land preparation,” these can be justified by the fact that these operations are of high importance, mainly in arable crops. Digital tools can save >20% herbicides through spot spraying due to high accuracy in weed detection (>90%), while >50% fuel savings and >0.6 tonnes reduction of air pollution can be achieved due to trajectory optimisation and path following through the use of autosteering and appropriate tillage depth compared with traditional practices [501,515,516]. The low focus on “Breeding” can be justified by it being a longer-term, more scientific process that is not as directly impacted by real-time digital tools in the field [517]. The very low percentage for “Marketing” suggests that research on digital tools in crop production predominantly focuses on the production aspects within the farm gate, with less emphasis on post-harvest value chain and market access strategies using digital technologies, while this aspect is of higher interest in urban agriculture [518,519].
The main focus on the “Recording/Monitoring/Mapping” application can be justified by the fact that digital tools are mainly used to monitor and map the agricultural environment and provide the essential data layer for all other advanced digital farming applications [507,508,509,510]. Accordingly, “Reacting/VRA/control,” while crucial for optimising inputs and outputs, inherently relies on the preceding “Recording/Monitoring/Mapping” phase, which justifies its lower percentage [20]. “Information/Knowledge Sharing,” while important for knowledge transfer and community building, does not exhibit immediate and measurable results [520]. Similarly, the low percentage of “Guidance” can be justified by its niche application to specific machinery operations, compared with the broad utility of monitoring, although it is vital for precision and efficiency in field operations [521,522].

4.3. Digital Tools

Our study showed that imaging sensors can provide a higher volume of information compared with other sensors, and for this reason they were selected in the field studies, in accordance with preceding studies. Specifically, multispectral imaging captures specific light bands to assess crop health, nutrients, and stress, while thermal imaging measures temperature variations to detect water stress and disease. Both are key in remote sensing for large-area monitoring [523,524]. RGB/RGB-D cameras support visual inspection (e.g., weed, pest, crop), 3D mapping, and agricultural robotics [525,526]. Hyperspectral imaging provides even richer spectral detail for advanced plant analysis, though it is less common due to higher cost and data complexity [527,528]. Additionally, soil sensors are fundamental for precise irrigation and fertilisation, measuring parameters like moisture, pH, and nutrient levels, directly impacting resource efficiency [529]. LiDAR provides highly accurate 3D structural information of crops and fields, useful for canopy volume, plant height, and terrain mapping that can be used for optimising application of nutrients and plant protection products, pruning, and yield prediction [530]. Canopy sensors directly measure plant properties, often relating to nitrogen status or biomass. These sensors support more specific or detailed analyses compared with broad-area remote sensing [531]. Regarding the low use of the rest of the sensors in crops, the results can be justified by the fact that these sensors are used in specific agricultural applications. Also, they are less frequently the primary focus of research articles on digital tools in crop production compared with the more broadly applicable and widely adopted imaging and soil sensing technologies. Finally, these sensors provide limited benefit in comparison with the other sensor types [19,21].
The high percentage of “UAV” in the category platform is well justified by the unique advantages of UAVs in agriculture, namely their ability to provide high-resolution, on-demand imagery, flexibility in deployment, and capacity to cover significant areas quickly and cost effectively for application and monitoring compared with ground-based methods. They are particularly valuable for monitoring and mapping, which, as seen in a previous analysis, is the dominant use of digital tools [532]. “Stationary platforms” includes fixed-position sensors and actuators (e.g., soil sensors, solenoid valves) and weather stations. Their significant presence is justified by the need for continuous, long-term, and precise data collection at specific points within the field, providing a stable and reliable data source for various agricultural parameters [533]. “Mobile Ground” platforms encompass a range of handheld devices, mainly used for monitoring and mapping. Their importance lies in their ability to perform close-range sensing, detailed sampling, and precise application of inputs, complementing aerial data with ground-truth information [531]. “Satellites” offer broad-area coverage and frequent revisit times, but their resolution can be lower than UAVs, and cloud cover can be an issue when using optical data. Also, satellites are used for enabling accurate positioning, and consequently, allowing accurate navigation and application of crop robots. However, their ability to cover vast regions makes them economically crucial for large-scale monitoring and regional analysis, justifying their substantial, though not leading, share [534]. “Crewed Ground Vehicles” and “Crewed Aerial Vehicles” represent traditional human-driven machinery and aircraft, which are less the focus of novel digital tool research compared with autonomous or remote systems, justifying their lower percentages due to safety and less work effort for the operators [19,21]. The “UGV” category, while promising for precision tasks and reducing labour, are still in earlier stages of adoption and research compared with UAVs, explaining their modest share due to regulations and higher manufacturing costs [535]. “Wearable” devices, while useful, are currently less central to the automated data collection and application processes that dominate digital agriculture research. Hence, they exhibited limited use in crop-related studies, although they are widely used in the livestock sector [536,537].
Regarding the results on software types, the high percentage of “FMIS” is highly justified because the systems are comprehensive software platforms designed to integrate and manage various aspects of farm operations, from planning and record-keeping to resource management and financial analysis. They serve as the central hub for data collected by sensors and other digital tools, enabling holistic decision-making and operational efficiency. The strong emphasis on FMIS aligns with the previous findings that “monitoring” is the dominant use of digital tools, as FMISs are crucial for processing and utilising these monitored data [538,539,540]. DSS are specialised computer programs that analyse data to provide recommendations or assist farmers in making informed decisions regarding, for example, optimal fertilisation, irrigation scheduling, or pest control. Their substantial presence is logical, as they represent the analytical and actionable layer built upon the data foundation provided by FMIS and monitoring tools [541]. In contrast, “Social Platform” and “Digital Marketplace” percentages indicate that research has very little focus on platforms designed for farmer-to-farmer interaction, knowledge exchange, or direct buying and selling of agricultural products. This could be justified by the fact that the core of precision agriculture research is typically centred on in-field production efficiency and optimisation, rather than on social aspects or broader supply chain and market dynamics where the farmers are utilising traditional platforms [542,543,544,545].

4.4. Transition to Agroecology

The application of digital tools in agriculture presented the strongest focus on “Tier One: input reduction,” where digital tools optimise fertilisers, pesticides, water, and energy use to cut waste and environmental impact while maintaining yields, aligning with precision agriculture goals [546]. Accordingly, digital tools that address “Tier Two: substitution with sustainable inputs” received less focus, because most tools are designed to improve the efficiency of existing inputs rather than replacing them, although in some cases they can be used for the application of sustainable crop inputs (e.g., organic fertilisers and pesticides) [547]. Similarly, digital tools for “Tier Three: incorporation of biodiversity through agricultural system redesign” received less focus due to the need for more complicated systems [548]. “Tier Four: reconnection of producers and consumers” and “Tier Five: creation of a just and equitable global food system” received minimal research, as current digital agriculture efforts remain centred on on-farm production [542,543,544,545]. The results can be justified by the fact that Tiers Four and Five aim at value chains as well as complicated food systems. These involve interconnected activities and actors that make it challenging to develop and assess solutions [549]. Moreover, incremental changes like the ones that correspond to Tiers One, Two, and Three are more preferable due to lower risk, shorter adoption and adaptation periods, and a lower number of conflicts compared with the radical changes that correspond to Tiers Four and Five [550]. Also, different barriers have been identified for the adoption of informatics technologies in agri-food chains that are relevant to production processing and commercialisation and include data privacy and security, high costs to connectivity, training, interoperability, data standards, scalability, governance, technological and infrastructure gaps, technological readiness, farm size, time consumption, and age [551]. Thus, appropriate policies and practices should be implemented to address these barriers and enable the development of radical digital tools that address Tier Four and Tier Five.

4.5. Impact Assessment

Regarding the results on the impacts, these are in alignment with other studies that found that there are economic, environmental, and societal benefits to the use of digital tools in agriculture. Digital tools are expected to reduce product wastage, improve product quality and shelf life, cut input costs, and boost revenue, profit, farm income, and productivity. These gains derive from better timing, resource optimisation, and targeted application of inputs indicating that the adoption of digital tools can provide direct economic benefits [547,552,553,554]. Accordingly, environmental impacts were also beneficial. Digital tools contribute to decreased GHG emissions by optimising fuel and fertiliser use. Many studies referred to increases in biodiversity, water, and air protection, with some seeing no effect. Soil protection trends are positive, reflecting benefits from the use of digital tools [555,556,557]. Moreover, the social impacts of digital tools in agriculture were also in alignment with the rest of the results from the other impacts. Digital tools can contribute to reduced human exposure to chemicals through precision operations (e.g., spraying, fertilisation) and automation, and they also tend to slightly lower the number and severity of accidents and personal injuries. The amount of heavy physical labour is widely expected to decrease due to the use of robots and other automated systems, although they may add pressures from data management, complexity, and financial costs [21,558,559,560].
Digital tool use in agriculture is generally seen as positive by the reviewers of the database across economic, environmental, and social dimensions, with the strongest consensus around significant economic benefits such as increased productivity, revenue, and reduced input costs, and very few studies rating the impact as low. However, concerns have been raised that productivity gains might not cover the capital costs of investments, for instance in site-specific management [561]. Environmental impacts are also widely seen as beneficial, though the scale of these benefits is slightly lower than for economic gains. Social impacts, despite mixed assessments, also received a high proportion of high-impact ratings, likely reflecting a broader recognition that digital tools can substantially reshape labour needs. Combined assessments showed that economic and environmental impacts together are rated as high in 44.7%, medium in 21.9%, and low in 33.3% of the research articles, while all impacts combined (economic, environmental, and social) receive high, medium, and low ratings in 43.2%, 21.1%, and 35.7% of the cases, respectively. The slight drop in high-impact ratings when all dimensions are considered suggests that lower-impact perceptions in certain social aspects diluted the strong economic and environmental scores. This is justified by the limited focus of the research on digital tools in the social impact category [518,519].

4.6. Future Directions

The findings highlight a significant opportunity and need for increased research and development into digital tools that genuinely support and enable the transition towards more sustainable and agroecological farming systems, rather than predominantly reinforcing conventional methods. Specifically, the identified digital tools prioritise crop yield and input optimisation rather than contributing to radical agroecological transformation. Thus, there is a need to support whole-system transformation and social innovation such as polyculture, agribusiness diversification strategies, and community-based networks [561]. Additionally, the wide use of FMIS and DSS platforms reflects that there is a focus on farm-level decision-making. However, agroecology emphasises the co-creation of knowledge, participatory learning, and stronger relations across value chains, and for this reason, these should be further investigated [562]. For example, the integration of blockchain technologies can promote environmental sustainability and efficient resource contribution and enhance trust and traceability while optimising inventory and distribution [563], and thus, it should be further developed. Similarly, different types of sensors should be developed to provide a richer picture of agroecosystem functions (e.g., pollinator activity through insect traps with camera sensors, multi-sensor integrated approaches for soil nutrient cycles monitoring) [564,565,566] along with robotics and automation platforms that are better adapted to agroecological environments and handle multicultural systems [132]. From the abovementioned discussion, it is clear that a better coupling between digitalisation and agroecology at socio-technical levels through participatory design is needed to empower all actors across value chains under the principles of agroecology [24,562,567]. Also, the socio-cultural drivers and barriers that affect the adoption level of digital tools that can be utilised as enablers of agroecology should be further investigated at regional, cultural, and traditional levels [568,569], along with the suggested technologies referred to above.

5. Study Limitations

The present literature review, while providing valuable insights into the intersection of digital tools and agroecology in crop production, is subject to several limitations that warrant consideration. Firstly, the query structure employed, relying on specific keywords, inherently narrowed the scope of included articles. This approach, while necessary for focus, may have inadvertently excluded relevant studies that utilised alternative terminologies, focused on related but not directly matched concepts, or were published in disciplines less accustomed to the precise phrasing used in the search string, particularly at the nuanced interface of “digital tools” and “agroecology.” Secondly, the review’s reliance on a defined number of years (2012 to 2024 as seen in the initial analysis) means that foundational research published prior to this period, or very recent, cutting-edge developments that have not yet been indexed or widely disseminated, may have been omitted. Thirdly, the exclusive use of one database for article retrieval introduces a potential bias, as different academic databases index varying sets of journals across diverse disciplines and geographical regions. This singular source might not fully capture the global breadth and depth of research, leading to an incomplete representation of the existing literature [570]. Additionally, the broad focus of this survey did not allow narrowing of the focus to the most significant cases where digital tools have the most impact [571]. Finally, the inherent subjectivity in interpreting and categorising information from diverse research articles and impact assessments, coupled with the rapidly evolving nature of digital agriculture, means that the findings represent a snapshot in time and may not fully capture the dynamic landscape of this interdisciplinary field [572].

6. Conclusions

As it was presented above, crop-related digital tools are more focused on input reduction, which corresponds to the first tier of agroecology. This indicates that current developments remain primarily efficiency-oriented and do not fully integrate systemic agroecological approaches that can be radical and transformative across value chains and regions. Accordingly, the impact assessment revealed that although the digital tools can contribute positively to economic, environmental, and social dimensions, the majority of studies focused on economic outcomes, with limited evaluation of environmental and social impacts.
Thus, future research on the digitalisation of crop production should place greater emphasis on assessing and enhancing the environmental and social contributions of digital tools, integrating appropriate agroecological frameworks into their development. Efforts should also explore the potential of underutilised technologies, such as ground-based robots, wearable sensors, and diversified environmental monitoring systems, across a wider range of production stages, including breeding, land preparation, and post-harvest marketing. More databases (e.g., IEEE, Scopus, Google Scholar) should be included in future studies to better map the relevant technologies. Finally, digital tools should be co-designed with farmers and other stakeholders to identify potential socio-cultural drivers and barriers that may differ and to consequently ensure social acceptability, foster participatory knowledge exchange, and support transitions toward higher tiers of agroecology.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/agronomy15112600/s1, Supplementary File: The PRISMA checklist and the supporting information on the scientific literature review assessment.

Author Contributions

E.A.: Writing—Review and Editing, Writing—Original Draft, Visualisation, Methodology, Investigation, Formal Analysis, Data Curation, Conceptualisation, Supervision; A.K.: Writing—Original Draft, Methodology, Investigation, Data Curation; G.P.: Writing—Original Draft, Visualisation, Investigation, Data Curation; A.V.: Writing—Review and Editing, Investigation, Data Curation; M.G.: Writing—Review and Editing, Investigation, Data Curation; J.K.: Investigation, Data Curation; A.G.: Investigation, Data Curation; C.E.M.: Investigation, Data Curation; E.M.: Writing—Review and Editing, Investigation, Data Curation; K.B.: Writing—Review and Editing, Investigation, Data Curation; A.M.: Investigation, Data Curation; S.D.B.-K.: Writing—Review and Editing, Investigation, Data Curation; S.M.P.: Writing—Review and Editing, Investigation, Data Curation; A.L.: Writing—Review and Editing, Investigation, Data Curation; L.P.: Writing—Review and Editing, Investigation, Data Curation; J.R.: Investigation, Data Curation; M.K.: Investigation, Data Curation; H.D.: Investigation, Data Curation; F.S.: Investigation, Data Curation; Project Administration; A.M.-A.: Writing—Review and Editing, Investigation, Data Curation; Project Administration; S.F.: Writing—Review and Editing, Conceptualisation, Supervision. All authors have read and agreed to the published version of the manuscript.

Funding

The research has been funded by the European Union project D4AgEcol: ‘DIGITALISATION FOR AGROECOLOGY’, under Grant Agreement No.: 101060759. The research has been co-funded by UK Research and Innovation (UKRI Reference No. 10037994).

Data Availability Statement

The original contributions presented in this study are included in the Supplementary Materials. Further inquiries can be directed to the corresponding author.

Acknowledgments

We would like to thank Karl Reimand and Andreas Niedermayr for their valuable help in the investigation. During the preparation of this manuscript/study, the authors used Quillbot for the purposes of grammar. The authors have reviewed and edited the output and take full responsibility for the content of this publication.

Conflicts of Interest

Authors Junia Rojic, Minkyeong Kim and Heiner Denzer were employed by the company Pessl Instruments GmbH. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. My Thi Thi, D.; Tran Phu Do, T. The Interrelationships between Economic Growth and Innovation: International Evidence. J. Appl. Econ. 2024, 27, 2332975. [Google Scholar] [CrossRef]
  2. Lawrence, J.; Mekoth, N. Demarketing for Sustainability: A Review and Future Research Agenda. Int. J. Consum. Stud. 2023, 47, 2157–2180. [Google Scholar] [CrossRef]
  3. Zhang, L.; Xu, M.; Chen, H.; Li, Y.; Chen, S. Globalization, Green Economy and Environmental Challenges: State of the Art Review for Practical Implications. Front. Environ. Sci. 2022, 10, 870271. [Google Scholar] [CrossRef]
  4. Singh, S.; Sharma, M.; Gupta, Y. A Systematic Review of Environmental Sustainability and Economic Growth. World Rev. Entrep. Manag. Sustain. Dev. 2024, 20, 683–715. [Google Scholar] [CrossRef]
  5. Hensher, M.; McCartney, G.; Ochodo, E. Health Economics in a World of Uneconomic Growth. Appl. Health Econ. Health Policy 2024, 22, 427–433. [Google Scholar] [CrossRef]
  6. Dasgupta, P.; Levin, S. Economic Factors Underlying Biodiversity Loss. Philos. Trans. R. Soc. B Biol. Sci. 2023, 378, 20220197. [Google Scholar] [CrossRef]
  7. Albert, M.J. Beyond Continuationism: Climate Change, Economic Growth, and the Future of World (Dis)Order. Camb. Rev. Int. Aff. 2022, 35, 868–887. [Google Scholar] [CrossRef]
  8. Mason, A.; Lee, R.; Members of the NTA Network. Six Ways Population Change Will Affect the Global Economy. Popul. Dev. Rev. 2022, 48, 51–73. [Google Scholar] [CrossRef]
  9. Jote, C.A. The Impacts of Using Inorganic Chemical Fertilizers on the Environment and Human Health. Org. Med. Chem. Int. J. 2023, 13, 555864. [Google Scholar]
  10. Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and Its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
  11. Ruas, R.d.B.; Costa, L.M.S.; Bered, F. Urbanization Driving Changes in Plant Species and Communities—A Global View. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar] [CrossRef]
  12. Borda, Á.J.; Sárvári, B.; Balogh, J.M. Generation Change in Agriculture: A Systematic Review of the Literature. Economies 2023, 11, 129. [Google Scholar] [CrossRef]
  13. Boix-Fayos, C.; de Vente, J. Challenges and Potential Pathways towards Sustainable Agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
  14. Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a Sustainable Future: The Climate Change Threat to Agriculture, Food Security, and Sustainable Development Goals. J. Umm Al-Qura Univ. Appl. Sci. 2024, 11, 1–17. [Google Scholar] [CrossRef]
  15. Amahnui, G.A.; Vanegas, M.; Verchot, L.; Castro-Nunez, A. Achieving the Paris Agreement Goals by Transitioning to Low-Emissions Food Systems: A Comprehensive Review of Countries’ Actions. Environ. Sci. Policy 2025, 163, 103968. [Google Scholar] [CrossRef]
  16. Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
  17. Gliessman, S. Transforming Food Systems with Agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
  18. Moorhouse, B.L.; Yan, L. Use of Digital Tools by English Language Schoolteachers. Educ. Sci. 2023, 13, 226. [Google Scholar] [CrossRef]
  19. Anastasiou, E.; Balafoutis, A.T.; Fountas, S. Trends in Remote Sensing Technologies in Olive Cultivation. Smart Agric. Technol. 2023, 3, 100103. [Google Scholar] [CrossRef]
  20. Balafoutis, A.T.; Beck, B.; Fountas, S.; Tsiropoulos, Z.; Vangeyte, J.; van der Wal, T.; Soto-Embodas, I.; Gómez-Barbero, M.; Pedersen, S.M. Smart Farming Technologies—Description, Taxonomy and Economic Impact. In Precision Agriculture: Technology and Economic Perspectives; Pedersen, S.M., Lind, K.M., Eds.; Progress in Precision Agriculture; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–77. ISBN 978-3-319-68715-5. [Google Scholar]
  21. Anastasiou, E.; Fountas, S.; Voulgaraki, M.; Psiroukis, V.; Koutsiaras, M.; Kriezi, O.; Lazarou, E.; Vatsanidou, A.; Fu, L.; Bartolo, F.D.; et al. Precision Farming Technologies for Crop Protection: A Meta-Analysis. Smart Agric. Technol. 2023, 5, 100323. [Google Scholar] [CrossRef]
  22. Aijaz, N.; Lan, H.; Raza, T.; Yaqub, M.; Iqbal, R.; Pathan, M.S. Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. J. Agric. Food Res. 2025, 20, 101762. [Google Scholar] [CrossRef]
  23. Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing Precision Agriculture: A Comprehensive Review of Machine Learning and AI Vision Applications in All-Terrain Vehicle for Farm Automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
  24. Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital Revolution for the Agroecological Transition of Food Systems: A Responsible Research and Innovation Perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
  25. Maurel, V.B.; Huyghe, C. Putting Agricultural Equipment and Digital Technologies at the Cutting Edge of Agroecology. OCL 2017, 24, D307. [Google Scholar] [CrossRef]
  26. Shilomboleni, H.; Schnurr, M.A. Are Disruptive Agricultural Technologies Compatible with Agroecology? Npj Sustain. Agric. 2025, 3, 21. [Google Scholar] [CrossRef]
  27. Web of Science. 2025. Available online: https://clarivate.com/academia-government/scientific-and-academic-research/research-discovery-and-referencing/web-of-science/ (accessed on 23 October 2025).
  28. Anastasiou, E.; Kasimati, A.; Papadopoulos, G.; Vatsanidou, A.; Gemtou, M.; Schwierz, F.; Meyer-Aurich, A.; Fountas, S. Assessing the Agroecological Impact of Digital Tools in Livestock Production: A Systematic Review. Smart Agric. Technol. 2025, 12, 101480. [Google Scholar] [CrossRef]
  29. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
  30. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
  31. Albiero, D.; Pontin Garcia, A.; Kiyoshi Umezu, C.; Leme de Paulo, R. Swarm Robots in Mechanized Agricultural Operations: A Review about Challenges for Research. Comput. Electron. Agric. 2022, 193, 106608. [Google Scholar] [CrossRef]
  32. Aqeel-ur-Rehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A Review of Wireless Sensors and Networks’ Applications in Agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
  33. Nordblom, T.L.; Hutchings, T.R.; Godfrey, S.S.; Schefe, C.R. Precision Variable Rate Nitrogen for Dryland Farming on Waterlogging Riverine Plains of Southeast Australia? Agric. Syst. 2021, 186, 102962. [Google Scholar] [CrossRef]
  34. Potamitis, I.; Rigakis, I.; Fysarakis, K. The Electronic McPhail Trap. Sensors 2014, 14, 22285–22299. [Google Scholar] [CrossRef]
  35. Marti-Jerez, K.; Català-Forner, M.; Tomàs, N.; Murillo, G.; Ortiz, C.; Sánchez-Torres, M.J.; Vitali, A.; Lopes, M.S. Agronomic Performance and Remote Sensing Assessment of Organic and Mineral Fertilization in Rice Fields. Front. Plant Sci. 2023, 14, 1230012. [Google Scholar] [CrossRef]
  36. Logeshwaran, J.; Srivastava, D.; Kumar, K.S.; Rex, M.J.; Al-Rasheed, A.; Getahun, M.; Soufiene, B.O. Improving Crop Production Using an Agro-Deep Learning Framework in Precision Agriculture. BMC Bioinform. 2024, 25, 341. [Google Scholar] [CrossRef] [PubMed]
  37. Abdelkader, M.; Delali, A. Support System Based on GIS and Weighted Sum Method for Drawing up of Land Suitability Map for Agriculture. Application to Durum Wheat Cultivation in the Area of Mleta (Algeria). Span. J. Agric. Res. 2012, 10, 34–43. [Google Scholar] [CrossRef]
  38. Pan, S.; Wang, K.; Wang, L.; Wang, Z.; Han, Y. Risk Assessment System Based on WebGIS for Heavy Metal Pollution in Farmland Soils in China. Sustainability 2017, 9, 1846. [Google Scholar] [CrossRef]
  39. Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of Vegetation Indices for High-Throughput Phenotyping of Wheat Using Aerial Imaging. Plant Methods 2018, 14, 20. [Google Scholar] [CrossRef]
  40. Sun, C.; Feng, L.; Zhang, Z.; Ma, Y.; Crosby, T.; Naber, M.; Wang, Y. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning. Sensors 2020, 20, 5293. [Google Scholar] [CrossRef]
  41. Nguyen, D.-H.; Huynh-Tuong, N.; Pham, H.-A. A Blockchain-Based Framework for Developing Traceability Applications towards Sustainable Agriculture in Vietnam. Secur. Commun. Netw. 2022, 2022, 1834873. [Google Scholar] [CrossRef]
  42. Xiao, L.; Wang, G.; Zhou, H.; Jin, X.; Luo, Z. Coupling Agricultural System Models with Machine Learning to Facilitate Regional Predictions of Management Practices and Crop Production. Environ. Res. Lett. 2022, 17, 114027. [Google Scholar] [CrossRef]
  43. Safarov, F.; Temurbek, K.; Jamoljon, D.; Temur, O.; Chedjou, J.C.; Abdusalomov, A.B.; Cho, Y.-I. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture. Sensors 2022, 22, 9784. [Google Scholar] [CrossRef] [PubMed]
  44. Wolters, S.L.; Balafoutis, T.; Fountas, S.; Evert, F.K. van Industry Solutions on Smart Farming Technology. Zenodo 2017. [Google Scholar] [CrossRef]
  45. Ezell, B.; Lynch, C.J.; Hester, P.T. Methods for Weighting Decisions to Assist Modelers and Decision Analysts: A Review of Ratio Assignment and Approximate Techniques. Appl. Sci. 2021, 11, 10397. [Google Scholar] [CrossRef]
  46. Fathi, M.; Shah-Hosseini, R.; Moghimi, A. 3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data. Remote Sens. 2023, 15, 5551. [Google Scholar] [CrossRef]
  47. Zhou, L.; Chen, N.; Chen, Z. A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring. ISPRS Int. J. Geo-Inf. 2016, 5, 81. [Google Scholar] [CrossRef]
  48. Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Valente, J. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Front. Plant Sci. 2020, 11, 1086. [Google Scholar] [CrossRef]
  49. Mylonas, P.; Voutos, Y.; Sofou, A. A Collaborative Pilot Platform for Data Annotation and Enrichment in Viticulture. Information 2019, 10, 149. [Google Scholar] [CrossRef]
  50. M’hamdi, O.; Takács, S.; Palotás, G.; Ilahy, R.; Helyes, L.; Pék, Z. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants 2024, 13, 746. [Google Scholar] [CrossRef]
  51. Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.P.; Mabhaudhi, T. A Comparative Estimation of Maize Leaf Water Content Using Machine Learning Techniques and Unmanned Aerial Vehicle (UAV)-Based Proximal and Remotely Sensed Data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
  52. Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
  53. Filintas, A.; Nteskou, A.; Kourgialas, N.; Gougoulias, N.; Hatzichristou, E. A Comparison between Variable Deficit Irrigation and Farmers’ Irrigation Practices under Three Fertilization Levels in Cotton Yield (Gossypium hirsutum L.) Using Precision Agriculture, Remote Sensing, Soil Analyses, and Crop Growth Modeling. Water 2022, 14, 2654. [Google Scholar] [CrossRef]
  54. Ghazvini, A.; Sharef, N.M.; Balasundram, S.K.; Lee, L.S. A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms. Appl. Sci. 2024, 14, 3383. [Google Scholar] [CrossRef]
  55. Du, C.; Zhang, L.; Ma, X.; Lou, X.; Shan, Y.; Li, H.; Zhou, R. A Cotton High-Efficiency Water-Fertilizer Control System Using Wireless Sensor Network for Precision Agriculture. Processes 2021, 9, 1693. [Google Scholar] [CrossRef]
  56. Cai, Y.; Li, Y.; Qi, X.; Zhao, J.; Jiang, L.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, X. A Deep Learning Approach for Deriving Wheat Phenology from Near-Surface RGB Image Series Using Spatiotemporal Fusion. Plant Methods 2024, 20, 153. [Google Scholar] [CrossRef]
  57. Cerrato, S.; Mazzia, V.; Salvetti, F.; Martini, M.; Angarano, S.; Navone, A.; Chiaberge, M. A Deep Learning Driven Algorithmic Pipeline for Autonomous Navigation in Row-Based Crops. IEEE Access 2024, 12, 138306–138318. [Google Scholar] [CrossRef]
  58. Malambo, L.; Popescu, S.; Ku, N.-W.; Rooney, W.; Zhou, T.; Moore, S. A Deep Learning Semantic Segmentation-Based Approach for Field-Level Sorghum Panicle Counting. Remote Sens. 2019, 11, 2939. [Google Scholar] [CrossRef]
  59. Panjaitan, S.D.; Dewi, Y.S.K.; Hendri, M.I.; Wicaksono, R.A.; Priyatman, H. A Drone Technology Implementation Approach to Conventional Paddy Fields Application. IEEE Access 2022, 10, 120650–120658. [Google Scholar] [CrossRef]
  60. Valente, A.; Costa, C.; Pereira, L.; Soares, B.; Lima, J.; Soares, S. A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination. Agriculture 2022, 12, 1695. [Google Scholar] [CrossRef]
  61. Song, X.; Bramley, R.G.V.; Evans, K.J. A Method to Position a Simple Strip Trial to Improve Trial Efficiency and Maximise the Value of Vineyard Variability for Decision-Making. OENO One 2023, 57, 97–107. [Google Scholar] [CrossRef]
  62. Yuzugullu, O.; Erten, E.; Hajnsek, I. A Multi-Year Study on Rice Morphological Parameter Estimation with X-Band Polsar Data. Appl. Sci. 2017, 7, 602. [Google Scholar] [CrossRef]
  63. Babaeian, E.; Sidike, P.; Newcomb, M.S.; Maimaitijiang, M.; White, S.A.; Demieville, J.; Ward, R.W.; Sadeghi, M.; LeBauer, D.S.; Jones, S.B.; et al. A New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture. Front. Big Data 2019, 2, 37. [Google Scholar] [CrossRef]
  64. Bazinas, C.; Vrochidou, E.; Kalampokas, T.; Karampatea, A.; Kaburlasos, V.G. A Non-Destructive Method for Grape Ripeness Estimation Using Intervals’ Numbers (INs) Techniques. Agronomy 2022, 12, 1564. [Google Scholar] [CrossRef]
  65. Herrera, P.; Dorado, J.; Ribeiro, Á. A Novel Approach for Weed Type Classification Based on Shape Descriptors and a Fuzzy Decision-Making Method. Sensors 2014, 14, 15304–15324. [Google Scholar] [CrossRef] [PubMed]
  66. Nan, F.; Song, Y.; Yu, X.; Nie, C.; Liu, Y.; Bai, Y.; Zou, D.; Wang, C.; Yin, D.; Yang, W.; et al. A Novel Method for Maize Leaf Disease Classification Using the RGB-D Post-Segmentation Image Data. Front. Plant Sci. 2023, 14, 1268015. [Google Scholar] [CrossRef] [PubMed]
  67. Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef]
  68. Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A Novel Semi-Supervised Framework for UAV Based Crop/Weed Classification. PLoS ONE 2021, 16, e0251008. [Google Scholar] [CrossRef]
  69. Khan, A.M. A novel study of the interrelationship of seasonality, satellite data and weed compositional changes of the agro-ecological system of gujrat, pakistan. Appl. Ecol. Environ. Res. 2018, 16, 2995–3018. [Google Scholar] [CrossRef]
  70. Wehrhan, M.; Sommer, M. A Parsimonious Approach to Estimate Soil Organic Carbon Applying Unmanned Aerial System (UAS) Multispectral Imagery and the Topographic Position Index in a Heterogeneous Soil Landscape. Remote Sens. 2021, 13, 3557. [Google Scholar] [CrossRef]
  71. Bregaglio, S.; Savian, F.; Raparelli, E.; Morelli, D.; Epifani, R.; Pietrangeli, F.; Nigro, C.; Bugiani, R.; Pini, S.; Culatti, P.; et al. A Public Decision Support System for the Assessment of Plant Disease Infection Risk Shared by Italian Regions. J. Environ. Manag. 2022, 317, 115365. [Google Scholar] [CrossRef]
  72. Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture. AgriEngineering 2019, 1, 391–402. [Google Scholar] [CrossRef]
  73. Cambra Baseca, C.; Sendra, S.; Lloret, J.; Tomas, J. A Smart Decision System for Digital Farming. Agronomy 2019, 9, 216. [Google Scholar] [CrossRef]
  74. Li, Y.; Yan, W.; An, S.; Gao, W.; Jia, J.; Tao, S.; Wang, W. A Spatio-Temporal Fusion Framework of UAV and Satellite Imagery for Winter Wheat Growth Monitoring. Drones 2022, 7, 23. [Google Scholar] [CrossRef]
  75. Jiang, B.; Zhang, J.-L.; Su, W.-H.; Hu, R. A SPH-YOLOv5x-Based Automatic System for Intra-Row Weed Control in Lettuce. Agronomy 2023, 13, 2915. [Google Scholar] [CrossRef]
  76. Jia, W.; Wei, J.; Zhang, Q.; Pan, N.; Niu, Y.; Yin, X.; Ding, Y.; Ge, X. Accurate Segmentation of Green Fruit Based on Optimized Mask RCNN Application in Complex Orchard. Front. Plant Sci. 2022, 13, 955256. [Google Scholar] [CrossRef]
  77. Shekhawat, K.; Singh, V.K.; Rathore, S.S.; Raj, R.; Das, T.K. Achieving Sustainability in Food Systems: Addressing Changing Climate through Real Time Nitrogen and Weed Management in a Conservation Agriculture-Based Maize–Wheat System. Sustainability 2021, 13, 5010. [Google Scholar] [CrossRef]
  78. Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active Canopy Sensor-Based Precision N Management Strategy for Rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef]
  79. Argolo Dos Santos, R.; Chartuni Mantovani, E.; Filgueiras, R.; Inácio Fernandes-Filho, E.; Cristielle Barbosa Da Silva, A.; Peroni Venancio, L. Actual Evapotranspiration and Biomass of Maize from a Red–Green-Near-Infrared (RGNIR) Sensor on Board an Unmanned Aerial Vehicle (UAV). Water 2020, 12, 2359. [Google Scholar] [CrossRef]
  80. Myint, S.W.; Aggarwal, R.; Zheng, B.; Wentz, E.A.; Holway, J.; Fan, C.; Selover, N.J.; Wang, C.; Fischer, H.A. Adaptive Crop Management under Climate Uncertainty: Changing the Game for Sustainable Water Use. Atmosphere 2021, 12, 1080. [Google Scholar] [CrossRef]
  81. Kiani, F.; Seyyedabbasi, A.; Nematzadeh, S.; Candan, F.; Çevik, T.; Anka, F.A.; Randazzo, G.; Lanza, S.; Muzirafuti, A. Adaptive Metaheuristic-Based Methods for Autonomous Robot Path Planning: Sustainable Agricultural Applications. Appl. Sci. 2022, 12, 943. [Google Scholar] [CrossRef]
  82. Rehman, M.U.; Eesaar, H.; Abbas, Z.; Seneviratne, L.; Hussain, I.; Chong, K.T. Advanced Drone-Based Weed Detection Using Feature-Enriched Deep Learning Approach. Knowl.-Based Syst. 2024, 305, 112655. [Google Scholar] [CrossRef]
  83. Iagăru, P.; Pavel, P.; Iagăru, R.; Șipoș, A. Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability. Sustainability 2022, 14, 6011. [Google Scholar] [CrossRef]
  84. Lopez-Jimenez, J.; Quijano, N.; Vande Wouwer, A. Agent-Based Sensor Location Strategy for Smart Irrigation of Large Crop Fields. Comput. Electron. Agric. 2023, 214, 108282. [Google Scholar] [CrossRef]
  85. Luciani, R.; Laneve, G.; JahJah, M. Agricultural Monitoring, an Automatic Procedure for Crop Mapping and Yield Estimation: The Great Rift Valley of Kenya Case. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2196–2208. [Google Scholar] [CrossRef]
  86. Catala-Roman, P.; Segura-Garcia, J.; Dura, E.; Navarro-Camba, E.A.; Alcaraz-Calero, J.M.; Garcia-Pineda, M. AI-Based Autonomous UAV Swarm System for Weed Detection and Treatment: Enhancing Organic Orange Orchard Efficiency with Agriculture 5.0. Internet Things 2024, 28, 101418. [Google Scholar] [CrossRef]
  87. De Lima Silva, Y.K.; Furlani, C.E.A.; Canata, T.F. AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering 2024, 6, 361–374. [Google Scholar] [CrossRef]
  88. Ye, Z.; Yin, S.; Cao, Y.; Wang, Y. AI-Driven Optimization of Agricultural Water Management for Enhanced Sustainability. Sci. Rep. 2024, 14, 25721. [Google Scholar] [CrossRef]
  89. Khan, A.; Malebary, S.J.; Dang, L.M.; Binzagr, F.; Song, H.-K.; Moon, H. AI-Enabled Crop Management Framework for Pest Detection Using Visual Sensor Data. Plants 2024, 13, 653. [Google Scholar] [CrossRef]
  90. Kim, T.H.; AlZubi, A.A. AI-Enhanced Precision Irrigation in Legume Farming: Optimizing Water Use Efficiency. LEGUME Res.—Int. J. 2024, 47, 1382–1389. [Google Scholar] [CrossRef]
  91. Wang, S.; Guan, K.; Wang, Z.; Ainsworth, E.A.; Zheng, T.; Townsend, P.A.; Liu, N.; Nafziger, E.; Masters, M.D.; Li, K.; et al. Airborne Hyperspectral Imaging of Nitrogen Deficiency on Crop Traits and Yield of Maize by Machine Learning and Radiative Transfer Modeling. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102617. [Google Scholar] [CrossRef]
  92. Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
  93. Zhang, W.; Li, J.; Yu, W.; Ding, P.; Wang, J.; Zhang, X. Algorithm for UAV Path Planning in High Obstacle Density Environments: RFA-Star. Front. Plant Sci. 2024, 15, 1391628. [Google Scholar] [CrossRef]
  94. Guimarães, N.; Pádua, L.; Sousa, J.J.; Bento, A.; Couto, P. Almond Cultivar Identification Using Machine Learning Classifiers Applied to UAV-Based Multispectral Data. Int. J. Remote Sens. 2023, 44, 1533–1555. [Google Scholar] [CrossRef]
  95. Ariza-Sentís, M.; Vélez, S.; Baja, H.; Valenti, R.G.; Valente, J. An Aerial Framework for Multi-View Grape Bunch Detection and Route Optimization Using ACO. Comput. Electron. Agric. 2024, 221, 108972. [Google Scholar] [CrossRef]
  96. Chen, W.; Zhang, J.; Guo, B.; Wei, Q.; Zhu, Z. An Apple Detection Method Based on Des-YOLO v4 Algorithm for Harvesting Robots in Complex Environment. Math. Probl. Eng. 2021, 2021, 7351470. [Google Scholar] [CrossRef]
  97. Diacono, M.; Castrignanò, A.; Vitti, C.; Stellacci, A.M.; Marino, L.; Cocozza, C.; De Benedetto, D.; Troccoli, A.; Rubino, P.; Ventrella, D. An Approach for Assessing the Effects of Site-Specific Fertilization on Crop Growth and Yield of Durum Wheat in Organic Agriculture. Precis. Agric. 2014, 15, 479–498. [Google Scholar] [CrossRef]
  98. Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors 2015, 15, 5504–5517. [Google Scholar] [CrossRef]
  99. Hosseiny, B.; Rastiveis, H.; Homayouni, S. An Automated Framework for Plant Detection Based on Deep Simulated Learning from Drone Imagery. Remote Sens. 2020, 12, 3521. [Google Scholar] [CrossRef]
  100. Li, K.-Y.; Burnside, N.G.; De Lima, R.S.; Peciña, M.V.; Sepp, K.; Cabral Pinheiro, V.H.; De Lima, B.R.C.A.; Yang, M.-D.; Vain, A.; Sepp, K. An Automated Machine Learning Framework in Unmanned Aircraft Systems: New Insights into Agricultural Management Practices Recognition Approaches. Remote Sens. 2021, 13, 3190. [Google Scholar] [CrossRef]
  101. De Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef]
  102. Zhang, C.; Kang, F.; Wang, Y. An Improved Apple Object Detection Method Based on Lightweight YOLOv4 in Complex Backgrounds. Remote Sens. 2022, 14, 4150. [Google Scholar] [CrossRef]
  103. Urvina, R.P.; Guevara, C.L.; Vásconez, J.P.; Prado, A.J. An Integrated Route and Path Planning Strategy for Skid–Steer Mobile Robots in Assisted Harvesting Tasks with Terrain Traversability Constraints. Agriculture 2024, 14, 1206. [Google Scholar] [CrossRef]
  104. Yi, W.; Wang, P.; Xu, Z.; Dong, S.; Liu, G. An Integrated System of Bulk Tea Harvesting Robot With Profiling Logic. IEEE Access 2024, 12, 137568–137584. [Google Scholar] [CrossRef]
  105. Math, R.M.; Dharwadkar, N.V. An Intelligent Irrigation Scheduling and Monitoring System for Precision Agriculture Application. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 1–24. [Google Scholar] [CrossRef]
  106. Jamroen, C.; Komkum, P.; Fongkerd, C.; Krongpha, W. An Intelligent Irrigation Scheduling System Using Low-Cost Wireless Sensor Network Toward Sustainable and Precision Agriculture. IEEE Access 2020, 8, 172756–172769. [Google Scholar] [CrossRef]
  107. Morellos, A.; Dolaptsis, K.; Tziotzios, G.; Pantazi, X.E.; Kateris, D.; Berruto, R.; Bochtis, D. An IoT Transfer Learning-Based Service for the Health Status Monitoring of Grapevines. Appl. Sci. 2024, 14, 1049. [Google Scholar] [CrossRef]
  108. Nutini, F.; Confalonieri, R.; Crema, A.; Movedi, E.; Paleari, L.; Stavrakoudis, D.; Boschetti, M. An Operational Workflow to Assess Rice Nutritional Status Based on Satellite Imagery and Smartphone Apps. Comput. Electron. Agric. 2018, 154, 80–92. [Google Scholar] [CrossRef]
  109. Casella, A.; Orden, L.; Pezzola, N.A.; Bellaccomo, C.; Winschel, C.I.; Caballero, G.R.; Delegido, J.; Gracia, L.M.N.; Verrelst, J. Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations. Agronomy 2022, 12, 1884. [Google Scholar] [CrossRef]
  110. Blekos, K.; Tsakas, A.; Xouris, C.; Evdokidis, I.; Alexandropoulos, D.; Alexakos, C.; Katakis, S.; Makedonas, A.; Theoharatos, C.; Lalos, A. Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. J. Sens. Actuator Netw. 2021, 10, 15. [Google Scholar] [CrossRef]
  111. Puig-Sirera, À.; Antichi, D.; Warren Raffa, D.; Rallo, G. Application of Remote Sensing Techniques to Discriminate the Effect of Different Soil Management Treatments over Rainfed Vineyards in Chianti Terroir. Remote Sens. 2021, 13, 716. [Google Scholar] [CrossRef]
  112. Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
  113. Kalyani, Y.; Vorster, L.; Whetton, R.; Collier, R. Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure. Future Internet 2024, 16, 100. [Google Scholar] [CrossRef]
  114. Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Alam, F.M.; Burgos, E.N.; Muthukumar, S.; Prasad, S. ASSERT: A Platform Technology for Rapid Electrochemical Sensing of Soil Ammonium. ACS Omega 2024, 9, 33928–33934. [Google Scholar] [CrossRef]
  115. González-Gómez, L.; Intrigliolo, D.S.; Rubio-Asensio, J.S.; Buesa, I.; Ramírez-Cuesta, J.M. Assessing Almond Response to Irrigation and Soil Management Practices Using Vegetation Indexes Time-Series and Plant Water Status Measurements. Agric. Ecosyst. Environ. 2022, 339, 108124. [Google Scholar] [CrossRef]
  116. Chu, T.; Starek, M.; Brewer, M.; Murray, S.; Pruter, L. Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sens. 2017, 9, 923. [Google Scholar] [CrossRef]
  117. Siqueira, R.; Mandal, D.; Longchamps, L.; Khosla, R. Assessing Nitrogen Variability at Early Stages of Maize Using Mobile Fluorescence Sensing. Remote Sens. 2022, 14, 5077. [Google Scholar] [CrossRef]
  118. Uribeetxebarria, A.; Martínez-Casasnovas, J.A.; Tisseyre, B.; Guillaume, S.; Escolà, A.; Rosell-Polo, J.R.; Arnó, J. Assessing Ranked Set Sampling and Ancillary Data to Improve Fruit Load Estimates in Peach Orchards. Comput. Electron. Agric. 2019, 164, 104931. [Google Scholar] [CrossRef]
  119. Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sens. 2020, 12, 1207. [Google Scholar] [CrossRef]
  120. Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, D.; Bianchi, A.; Brancadoro, L. Assessing the Effectiveness of Variable-Rate Drip Irrigation on Water Use Efficiency in a Vineyard in Northern Italy. Water 2019, 11, 1964. [Google Scholar] [CrossRef]
  121. Zhou, K.; Cheng, T.; Zhu, Y.; Cao, W.; Ustin, S.L.; Zheng, H.; Yao, X.; Tian, Y. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data. Front. Plant Sci. 2018, 9, 964. [Google Scholar] [CrossRef]
  122. Laroche-Pinel, E.; Cianciola, V.; Singh, K.; Vivaldi, G.A.; Brillante, L. Assessing the Spatial-Temporal Performance of Machine Learning in Predicting Grapevine Water Status from Landsat 8 Imagery via Block-out and Date-out Cross-Validation. Agric. Water Manag. 2024, 306, 109163. [Google Scholar] [CrossRef]
  123. Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes. Remote Sens. 2023, 15, 4777. [Google Scholar] [CrossRef]
  124. Psiroukis, V.; Espejo-Garcia, B.; Chitos, A.; Dedousis, A.; Karantzalos, K.; Fountas, S. Assessment of Different Object Detectors for the Maturity Level Classification of Broccoli Crops Using UAV Imagery. Remote Sens. 2022, 14, 731. [Google Scholar] [CrossRef]
  125. Choudhary, V.; Machavaram, R.; Singh, N.; Nagar, H. Assessment of Sensor-Based Automatic Smart Watering Unit for Paddy Nurseries under Indian Perspective. Smart Agric. Technol. 2024, 8, 100518. [Google Scholar] [CrossRef]
  126. Greene, A.D.; Reay-Jones, F.P.F.; Kirk, K.R.; Peoples, B.K.; Greene, J.K. Associating Site Characteristics With Distributions of Pestiferous and Predaceous Arthropods in Soybean. Environ. Entomol. 2021, 50, 477–488. [Google Scholar] [CrossRef] [PubMed]
  127. Biffi, L.J.; Mitishita, E.; Liesenberg, V.; Santos, A.A.D.; Gonçalves, D.N.; Estrabis, N.V.; Silva, J.D.A.; Osco, L.P.; Ramos, A.P.M.; Centeno, J.A.S.; et al. ATSS Deep Learning-Based Approach to Detect Apple Fruits. Remote Sens. 2020, 13, 54. [Google Scholar] [CrossRef]
  128. Ribeiro, J.B.; Da Silva, R.R.; Dias, J.D.; Escarpinati, M.C.; Backes, A.R. Automated Detection of Sugarcane Crop Lines from UAV Images Using Deep Learning. Inf. Process. Agric. 2024, 11, 385–396. [Google Scholar] [CrossRef]
  129. Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
  130. Boulent, J.; St-Charles, P.-L.; Foucher, S.; Théau, J. Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Front. Artif. Intell. 2020, 3, 564878. [Google Scholar] [CrossRef]
  131. Zhao, B.; Li, J.; Baenziger, P.S.; Belamkar, V.; Ge, Y.; Zhang, J.; Shi, Y. Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy 2020, 10, 1762. [Google Scholar] [CrossRef]
  132. Ditzler, L.; Driessen, C. Automating Agroecology: How to Design a Farming Robot Without a Monocultural Mindset? J. Agric. Environ. Ethics 2022, 35, 2. [Google Scholar] [CrossRef]
  133. Fuentes-Peñailillo, F.; Carrasco Silva, G.; Pérez Guzmán, R.; Burgos, I.; Ewertz, F. Automating Seedling Counts in Horticulture Using Computer Vision and AI. Horticulturae 2023, 9, 1134. [Google Scholar] [CrossRef]
  134. Feng, J.; Sun, Y.; Zhang, K.; Zhao, Y.; Ren, Y.; Chen, Y.; Zhuang, H.; Chen, S. Autonomous Detection of Spodoptera Frugiperda by Feeding Symptoms Directly from UAV RGB Imagery. Appl. Sci. 2022, 12, 2592. [Google Scholar] [CrossRef]
  135. Ariza-Sentís, M.; Vélez, S.; Valente, J. BBR: An Open-Source Standard Workflow Based on Biophysical Crop Parameters for Automatic Botrytis Cinerea Assessment in Vineyards. SoftwareX 2023, 24, 101542. [Google Scholar] [CrossRef]
  136. Wang, K.; Kooistra, L.; Wang, Y.; Vélez, S.; Wang, W.; Valente, J. Benchmarking of Monocular Camera UAV-Based Localization and Mapping Methods in Vineyards. Comput. Electron. Agric. 2024, 227, 109661. [Google Scholar] [CrossRef]
  137. Han, Y.; Tarakey, B.A.; Hong, S.-J.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Kim, G. Calibration and Image Processing of Aerial Thermal Image for UAV Application in Crop Water Stress Estimation. J. Sens. 2021, 2021, 5537795. [Google Scholar] [CrossRef]
  138. Brillante, L.; Martínez-Lüscher, J.; Yu, R.; Kurtural, S.K. Carbon Isotope Discrimination (Δ13 C) of Grape Musts Is a Reliable Tool for Zoning and the Physiological Ground-Truthing of Sensor Maps in Precision Viticulture. Front. Environ. Sci. 2020, 8, 561477. [Google Scholar] [CrossRef]
  139. Bakhshipour, A. Cascading Feature Filtering and Boosting Algorithm for Plant Type Classification Based on Image Features. IEEE Access 2021, 9, 82021–82030. [Google Scholar] [CrossRef]
  140. Banerjee, B.P.; Spangenberg, G.; Kant, S. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements. Biosensors 2021, 12, 16. [Google Scholar] [CrossRef] [PubMed]
  141. Mu, Y.; Fujii, Y.; Takata, D.; Zheng, B.; Noshita, K.; Honda, K.; Ninomiya, S.; Guo, W. Characterization of Peach Tree Crown by Using High-Resolution Images from an Unmanned Aerial Vehicle. Hortic. Res. 2018, 5, 74. [Google Scholar] [CrossRef]
  142. Cheng, Z.; Qi, L.; Cheng, Y. Cherry Tree Crown Extraction from Natural Orchard Images with Complex Backgrounds. Agriculture 2021, 11, 431. [Google Scholar] [CrossRef]
  143. Ampatzidis, Y.; Partel, V.; Meyering, B.; Albrecht, U. Citrus Rootstock Evaluation Utilizing UAV-Based Remote Sensing and Artificial Intelligence. Comput. Electron. Agric. 2019, 164, 104900. [Google Scholar] [CrossRef]
  144. Santana, D.C.; De Oliveira, I.C.; Cavalheiro, S.B.; Das Chagas, P.H.M.; Teixeira Filho, M.C.M.; Della-Silva, J.L.; Teodoro, L.P.R.; Campos, C.N.S.; Baio, F.H.R.; Da Silva Junior, C.A.; et al. Classification of Soybean Genotypes as to Calcium, Magnesium, and Sulfur Content Using Machine Learning Models and UAV–Multispectral Sensor. AgriEngineering 2024, 6, 1581–1593. [Google Scholar] [CrossRef]
  145. López-Morales, J.A.; Martínez, J.A.; Caro, M.; Erena, M.; Skarmeta, A.F. Climate-Aware and IoT-Enabled Selection of the Most Suitable Stone Fruit Tree Variety. Sensors 2021, 21, 3867. [Google Scholar] [CrossRef] [PubMed]
  146. Bindu, L.R.; Titus, P.; Dhanya, D. Clustered Wireless Sensor Network in Precision Agriculture via Graph Theory. Intell. Autom. Soft Comput. 2023, 36, 1435–1449. [Google Scholar] [CrossRef]
  147. Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [Google Scholar] [CrossRef]
  148. Raptis, E.K.; Englezos, K.; Kypris, O.; Krestenitis, M.; Kapoutsis, A.C.; Ioannidis, K.; Vrochidis, S.; Kosmatopoulos, E.B. CoFly: An Automated, AI-Based Open-Source Platform for UAV Precision Agriculture Applications. SoftwareX 2023, 23, 101414. [Google Scholar] [CrossRef]
  149. Mesías-Ruiz, G.A.; Peña, J.M.; De Castro, A.I.; Borra-Serrano, I.; Dorado, J. Cognitive Computing Advancements: Improving Precision Crop Protection through UAV Imagery for Targeted Weed Monitoring. Remote Sens. 2024, 16, 3026. [Google Scholar] [CrossRef]
  150. Nocco, M.A.; Zipper, S.C.; Booth, E.G.; Cummings, C.R.; Loheide, S.P.; Kucharik, C.J. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sens. 2019, 11, 2460. [Google Scholar] [CrossRef]
  151. Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sens. 2019, 12, 21. [Google Scholar] [CrossRef]
  152. Yang, W.; Wu, J.; Xu, W.; Li, H.; Li, X.; Lan, Y.; Li, Y.; Zhang, L. Comparative Evaluation of the Performance of the PTD and CSF Algorithms on UAV LiDAR Data for Dynamic Canopy Height Modeling in Densely Planted Cotton. Agronomy 2024, 14, 856. [Google Scholar] [CrossRef]
  153. Buunk, T.; Vélez, S.; Ariza-Sentís, M.; Valente, J. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation. Sensors 2023, 23, 8625. [Google Scholar] [CrossRef] [PubMed]
  154. Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. [Google Scholar] [CrossRef]
  155. Bosilj, P.; Duckett, T.; Cielniak, G. Connected Attribute Morphology for Unified Vegetation Segmentation and Classification in Precision Agriculture. Comput. Ind. 2018, 98, 226–240. [Google Scholar] [CrossRef]
  156. Arakawa, T.; Kamio, S. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Plants 2023, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
  157. Wang, Y.; Chen, Y.; Wang, D. Convolution Network Enlightened Transformer for Regional Crop Disease Classification. Electronics 2022, 11, 3174. [Google Scholar] [CrossRef]
  158. Carneiro, F.M.; Furlani, C.E.A.; Zerbato, C.; Menezes, P.C.D.; Gírio, L.A.D.S. Correlations Among Vegetation Indices and Peanut Traits During Different Crop Development Stages. Eng. Agríc. 2019, 39, 33–40. [Google Scholar] [CrossRef]
  159. De Bortoli, L.; Marsi, S.; Marinello, F.; Gallina, P. Cost-Efficient Algorithm for Autonomous Cultivators: Implementing Template Matching with Field Digital Twins for Precision Agriculture. Comput. Electron. Agric. 2024, 227, 109509. [Google Scholar] [CrossRef]
  160. Vavlas, N.-C.; Porre, R.; Meng, L.; Elhakeem, A.; Van Egmond, F.; Kooistra, L.; De Deyn, G.B. Cover Crop Impacts on Soil Organic Matter Dynamics and Its Quantification Using UAV and Proximal Sensing. Smart Agric. Technol. 2024, 9, 100621. [Google Scholar] [CrossRef]
  161. Abbasi, R.; Martinez, P.; Ahmad, R. Crop Diagnostic System: A Robust Disease Detection and Management System for Leafy Green Crops Grown in an Aquaponics Facility. Artif. Intell. Agric. 2023, 10, 1–12. [Google Scholar] [CrossRef]
  162. Garcia Millan, V.E.; Rankine, C.; Sanchez-Azofeifa, G.A. Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data. Remote Sens. 2020, 12, 981. [Google Scholar] [CrossRef]
  163. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
  164. Zheng, Y.; Wu, B.; Zhang, M.; Zeng, H. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products. Sensors 2016, 16, 2099. [Google Scholar] [CrossRef] [PubMed]
  165. Ronchetti, G.; Mayer, A.; Facchi, A.; Ortuani, B.; Sona, G. Crop Row Detection through UAV Surveys to Optimize On-Farm Irrigation Management. Remote Sens. 2020, 12, 1967. [Google Scholar] [CrossRef]
  166. Aranguren, M.; Castellón, A.; Aizpurua, A. Crop Sensor Based Non-Destructive Estimation of Nitrogen Nutritional Status, Yield, and Grain Protein Content in Wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
  167. Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop Water Stress Detection Based on UAV Remote Sensing Systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar] [CrossRef]
  168. Talaat, F.M. Crop Yield Prediction Algorithm (CYPA) in Precision Agriculture Based on IoT Techniques and Climate Changes. Neural Comput. Appl. 2023, 35, 17281–17292. [Google Scholar] [CrossRef]
  169. Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets. Agriculture 2021, 11, 530. [Google Scholar] [CrossRef]
  170. Aragon, B.; Ziliani, M.G.; Houborg, R.; Franz, T.E.; McCabe, M.F. CubeSats Deliver New Insights into Agricultural Water Use at Daily and 3 m Resolutions. Sci. Rep. 2021, 11, 12131. [Google Scholar] [CrossRef]
  171. Goldenits, G.; Mallinger, K.; Raubitzek, S.; Neubauer, T. Current Applications and Potential Future Directions of Reinforcement Learning-Based Digital Twins in Agriculture. Smart Agric. Technol. 2024, 8, 100512. [Google Scholar] [CrossRef]
  172. Weraikat, D.; Šorič, K.; Žagar, M.; Sokač, M. Data Analytics in Agriculture: Enhancing Decision-Making for Crop Yield Optimization and Sustainable Practices. Sustainability 2024, 16, 7331. [Google Scholar] [CrossRef]
  173. Bwambale, E.; Abagale, F.K.; Anornu, G.K. Data-Driven Modelling of Soil Moisture Dynamics for Smart Irrigation Scheduling. Smart Agric. Technol. 2023, 5, 100251. [Google Scholar] [CrossRef]
  174. Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep Convolutional Neural Networks for Mobile Capture Device-Based Crop Disease Classification in the Wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
  175. Math, R.M.; Dharwadkar, N.V. Deep Learning and Computer Vision for Leaf Miner Infestation Severity Detection on Muskmelon (Cucumis melo) Leaves. Comput. Electr. Eng. 2023, 110, 108843. [Google Scholar] [CrossRef]
  176. Silva, J.A.O.S.; Siqueira, V.S.D.; Mesquita, M.; Vale, L.S.R.; Marques, T.D.N.B.; Silva, J.L.B.D.; Silva, M.V.D.; Lacerda, L.N.; Oliveira-Júnior, J.F.D.; Lima, J.L.M.P.D.; et al. Deep Learning for Weed Detection and Segmentation in Agricultural Crops Using Images Captured by an Unmanned Aerial Vehicle. Remote Sens. 2024, 16, 4394. [Google Scholar] [CrossRef]
  177. Genze, N.; Ajekwe, R.; Güreli, Z.; Haselbeck, F.; Grieb, M.; Grimm, D.G. Deep Learning-Based Early Weed Segmentation Using Motion Blurred UAV Images of Sorghum Fields. Comput. Electron. Agric. 2022, 202, 107388. [Google Scholar] [CrossRef]
  178. Khan, T.; Sherazi, H.H.R.; Ali, M.; Letchmunan, S.; Butt, U.M. Deep Learning-Based Growth Prediction System: A Use Case of China Agriculture. Agronomy 2021, 11, 1551. [Google Scholar] [CrossRef]
  179. De Albuquerque, A.O.; De Carvalho Júnior, O.A.; Carvalho, O.L.F.D.; De Bem, P.P.; Ferreira, P.H.G.; De Moura, R.D.S.; Silva, C.R.; Trancoso Gomes, R.A.; Fontes Guimarães, R. Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data. Remote Sens. 2020, 12, 2159. [Google Scholar] [CrossRef]
  180. Perron, I.; Cambouris, A.N.; Chokmani, K.; Vargas Gutierrez, M.F.; Zebarth, B.J.; Moreau, G.; Biswas, A.; Adamchuk, V. Delineating Soil Management Zones Using a Proximal Soil Sensing System in Two Commercial Potato Fields in New Brunswick, Canada. Can. J. Soil Sci. 2018, 98, 724–737. [Google Scholar] [CrossRef]
  181. Martinez, F.; Romaine, J.B.; Manzano, J.M.; Ierardi, C.; Millán Gata, P. Deployment and Verification of Custom Autonomous Low-Budget IoT Devices for Image Feature Extraction in Wheat. IEEE Access 2024, 12, 124636–124657. [Google Scholar] [CrossRef]
  182. Khan, H.A.; Farooq, U.; Saleem, S.R.; Rehman, U.; Tahir, M.N.; Iqbal, T.; Cheema, M.J.M.; Aslam, M.A.; Hussain, S. Design and Development of Machine Vision Robotic Arm for Vegetable Crops in Hydroponics. Smart Agric. Technol. 2024, 9, 100628. [Google Scholar] [CrossRef]
  183. Li, L.; He, X.; Song, J.; Liu, Y.; Zeng, A.; Yang, L.; Liu, C.; Liu, Z. Design and Experiment of Variable Rate Orchard Sprayer Based on Laser Scanning Sensor. Int. J. Agric. Biol. Eng. 2018, 11, 101–108. [Google Scholar] [CrossRef]
  184. Roshanianfard, A.; Noguchi, N.; Kamata, T. Design and Performance of a Robotic Arm for Farm Use. Int. J. Agric. Biol. Eng. 2019, 12, 146–158. [Google Scholar] [CrossRef]
  185. Ramli, M.I.; Mohd Ariffin, M.A.; Zainol, Z.; Mohd Amin, M.N.; Hirawan, D.; Sumitra, I.D.; Jamil, N. Design of a Smart Portable Farming Kit for Indoor Cultivation Using the Raspberry Pi Platform. Pertanika J. Sci. Technol. 2023, 31, 1731–1754. [Google Scholar] [CrossRef]
  186. Agüera, J.; Carballido, J.; Gil, J.; Gliever, C.; Perez-Ruiz, M. Design of a Soil Cutting Resistance Sensor for Application in Site-Specific Tillage. Sensors 2013, 13, 5945–5957. [Google Scholar] [CrossRef] [PubMed]
  187. Ibrahim Mohammad Abuzanouneh, K.; Al-Wesabi, F.N.; Abdulrahman Albraikan, A.; Al Duhayyim, M.; Al-Shabi, M.; Mustafa Hilal, A.; Ahmed Hamza, M.; Sarwar Zamani, A.; Muthulakshmi, K. Design of Machine Learning Based Smart Irrigation System for Precision Agriculture. Comput. Mater. Contin. 2022, 72, 109–124. [Google Scholar] [CrossRef]
  188. Tang, R.; Sun, W.; Aridas, N.K.; Talip, M.S.A.; You, X. Design of Precise Fertilization Method for Greenhouse Vegetables Based on Improved Backpropagation Neural Network. Front. Sustain. Food Syst. 2024, 8, 1405051. [Google Scholar] [CrossRef]
  189. Moriya, É.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Rosalen, D.L. Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy 2023, 13, 1542. [Google Scholar] [CrossRef]
  190. Martins, G.D.; Galo, M.D.L.B.T.; Vieira, B.S. Detecting and Mapping Root-Knot Nematode Infection in Coffee Crop Using Remote Sensing Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5395–5403. [Google Scholar] [CrossRef]
  191. Cai, Y.; Guan, K.; Nafziger, E.; Chowdhary, G.; Peng, B.; Jin, Z.; Wang, S.; Wang, S. Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5153–5166. [Google Scholar] [CrossRef]
  192. Bazzi, H.; Baghdadi, N.; Najem, S.; Jaafar, H.; Le Page, M.; Zribi, M.; Faraslis, I.; Spiliotopoulos, M. Detecting Irrigation Events over Semi-Arid and Temperate Climatic Areas Using Sentinel-1 Data: Case of Several Summer Crops. Agronomy 2022, 12, 2725. [Google Scholar] [CrossRef]
  193. Liu, X.; Li, G.; Chen, W.; Liu, B.; Chen, M.; Lu, S. Detection of Dense Citrus Fruits by Combining Coordinated Attention and Cross-Scale Connection with Weighted Feature Fusion. Appl. Sci. 2022, 12, 6600. [Google Scholar] [CrossRef]
  194. Dorbu, F.; Hashemi-Beni, L. Detection of Individual Corn Crop and Canopy Delineation from Unmanned Aerial Vehicle Imagery. Remote Sens. 2024, 16, 2679. [Google Scholar] [CrossRef]
  195. Abrahão, S.A.; Pinto, F.D.A.D.C.; Queiroz, D.M.D.; Santos, N.T.; Carneiro, J.E.D.S. Determination of Nitrogen and Chlorophyll Levels in Bean-Plant Leaves by Using Spectral Vegetation Bands and Indices. Rev. Ciênc. Agron. 2013, 44, 464–473. [Google Scholar] [CrossRef]
  196. Wang, D.; Struik, P.C.; Liang, L.; Yin, X. Developing Remote Sensing- and Crop Model-Based Methods to Optimize Nitrogen Management in Rice Fields. Comput. Electron. Agric. 2024, 220, 108899. [Google Scholar] [CrossRef]
  197. Issac, A.; Ebrahimi, A.; Mohammadpour Velni, J.; Rains, G. Development and Deployment of a Big Data Pipeline for Field-Based High-Throughput Cotton Phenotyping Data. Smart Agric. Technol. 2023, 5, 100265. [Google Scholar] [CrossRef]
  198. Ale, S.; Su, Q.; Singh, J.; Himanshu, S.; Fan, Y.; Stoker, B.; Gonzalez, E.; Sapkota, B.R.; Adams, C.; Biggers, K.; et al. Development and Evaluation of a Decision Support Mobile Application for Cotton Irrigation Management. Smart Agric. Technol. 2023, 5, 100270. [Google Scholar] [CrossRef]
  199. Micheletto, M.; Zubiaga, L.; Santos, R.; Galantini, J.; Cantamutto, M.; Orozco, J. Development and Validation of a LiDAR Scanner for 3D Evaluation of Soil Vegetal Coverage. Electronics 2020, 9, 109. [Google Scholar] [CrossRef]
  200. Zhang, Z.; He, W.; Wu, F.; Quesada, L.; Xiang, L. Development of a Bionic Hexapod Robot with Adaptive Gait and Clearance for Enhanced Agricultural Field Scouting. Front. Robot. AI 2024, 11, 1426269. [Google Scholar] [CrossRef]
  201. Bristow, N.; Rengaraj, S.; Chadwick, D.R.; Kettle, J.; Jones, D.L. Development of a LoRaWAN IoT Node with Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture. Sensors 2022, 22, 9100. [Google Scholar] [CrossRef]
  202. Di Gennaro, S.F.; Cini, D.; Berton, A.; Matese, A. Development of a Low-Cost Smart Irrigation System for Sustainable Water Management in the Mediterranean Region. Smart Agric. Technol. 2024, 9, 100629. [Google Scholar] [CrossRef]
  203. Preza-Fontes, G.; Wang, J.; Umar, M.; Qi, M.; Banger, K.; Pittelkow, C.; Nafziger, E. Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production. Sustainability 2021, 13, 5649. [Google Scholar] [CrossRef]
  204. Jayakumar, V.; Mohideen, A.B.K.; Saeed, M.H.; Alsulami, H.; Hussain, A.; Saeed, M. Development of Complex Linear Diophantine Fuzzy Soft Set in Determining a Suitable Agri-Drone for Spraying Fertilizers and Pesticides. IEEE Access 2023, 11, 9031–9041. [Google Scholar] [CrossRef]
  205. Hussain, A.; Fatima, H.S.; Zia, S.M.; Hasan, S.; Khurram, M.; Stricker, D.; Afzal, M.Z. Development of Cost-Effective and Easily Replicable Robust Weeding Machine—Premiering Precision Agriculture in Pakistan. Machines 2023, 11, 287. [Google Scholar] [CrossRef]
  206. Sánchez Millán, F.; Ortiz, F.J.; Mestre Ortuño, T.C.; Frutos, A.; Martínez, V. Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors 2023, 23, 3177. [Google Scholar] [CrossRef]
  207. Colaço, A.F.; Whelan, B.M.; Bramley, R.G.V.; Richetti, J.; Fajardo, M.; McCarthy, A.C.; Perry, E.M.; Bender, A.; Leo, S.; Fitzgerald, G.J.; et al. Digital Strategies for Nitrogen Management in Grain Production Systems: Lessons from Multi-Method Assessment Using on-Farm Experimentation. Precis. Agric. 2024, 25, 983–1013. [Google Scholar] [CrossRef]
  208. Zhao, X.; Wang, W.; Wen, L.; Chen, Z.; Wu, S.; Zhou, K.; Sun, M.; Xu, L.; Hu, B.; Wu, C.; et al. Digital Twins in Smart Farming: An Autoware-Based Simulator for Autonomous Agricultural Vehicles. Int. J. Agric. Biol. Eng. 2023, 16, 184–189. [Google Scholar] [CrossRef]
  209. Li, N.; Cui, J.; Zhao, J.; An, C.; Wei, Z.; Shen, Y.; Sun, C.; Wang, C.; Zhan, S.; Li, X.; et al. Dual-Loaded Nano Pesticide System Based on Industrial Grade Scaleable Carrier Materials with Combinatory Efficacy and Improved Safety. J. Nanobiotechnology 2024, 22, 349. [Google Scholar] [CrossRef]
  210. Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernàndez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic Management Zones for Irrigation Scheduling. Agric. Water Manag. 2020, 238, 106207. [Google Scholar] [CrossRef]
  211. Cen, H.; Wan, L.; Zhu, J.; Li, Y.; Li, X.; Zhu, Y.; Weng, H.; Wu, W.; Yin, W.; Xu, C.; et al. Dynamic Monitoring of Biomass of Rice under Different Nitrogen Treatments Using a Lightweight UAV with Dual Image-Frame Snapshot Cameras. Plant Methods 2019, 15, 32. [Google Scholar] [CrossRef]
  212. Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early Detection of Plant Physiological Responses to Different Levels of Water Stress Using Reflectance Spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
  213. Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.-Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm. Agriculture 2021, 11, 387. [Google Scholar] [CrossRef]
  214. Alshihabi, O.; Persson, K.; Söderström, M. Easy Yield Mapping for Precision Agriculture. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2024, 74, 2411950. [Google Scholar] [CrossRef]
  215. Guevara, I.; Ryan, S.; Singh, A.; Brandon, C.; Margaria, T. Edge IoT Prototyping Using Model-Driven Representations: A Use Case for Smart Agriculture. Sensors 2024, 24, 495. [Google Scholar] [CrossRef] [PubMed]
  216. Yan, X.; Wang, M.; Zhu, Y.; Shi, X.; Liu, X.; Chen, Y.; Xu, J.; Yang, D.; Yuan, H. Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat. Agriculture 2021, 11, 1284. [Google Scholar] [CrossRef]
  217. Sillero-Medina, J.A.; González-Pérez, J.; Hueso-González, P.; González-Fernández, J.J.; Hormaza-Urroz, J.I.; Ruiz-Sinoga, J.D. Effect of Different Deficit Irrigation Regimens on Soil Moisture, Production Parameters of Mango (Mangifera indica L.), and Spectral Vegetation Indices in the Mediterranean Region of Southern Spain. Remote Sens. Appl. Soc. Environ. 2025, 37, 101415. [Google Scholar] [CrossRef]
  218. Jing Xan, C.; Nugroho, H.; Eswaran, S.; Fei Siang, T. Effective Edge Solution for Early Detection of Rice Disease on ARM- M Microcontroller. IEEE Access 2024, 12, 148267–148280. [Google Scholar] [CrossRef]
  219. Hämmerle, M.; Höfle, B. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture. Sensors 2014, 14, 24212–24230. [Google Scholar] [CrossRef]
  220. Mohammed, M.; Riad, K.; Alqahtani, N. Efficient IoT-Based Control for a Smart Subsurface Irrigation System to Enhance Irrigation Management of Date Palm. Sensors 2021, 21, 3942. [Google Scholar] [CrossRef]
  221. Čirjak, D.; Aleksi, I.; Lemic, D.; Pajač Živković, I. EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard. Agriculture 2023, 13, 961. [Google Scholar] [CrossRef]
  222. Innocenti, A.; Pazzi, V.; Napoli, M.; Ciampalini, R.; Orlandini, S.; Fanti, R. Electrical Resistivity Tomography: A Reliable Tool to Monitor the Efficiency of Different Irrigation Systems in Horticulture Field. J. Appl. Geophys. 2024, 230, 105527. [Google Scholar] [CrossRef]
  223. Sher, M.; Minallah, N.; Frnda, J.; Khan, W. Elevating Crop Classification Performance Through CNN-GRU Feature Fusion. IEEE Access 2024, 12, 141013–141025. [Google Scholar] [CrossRef]
  224. Karydas, C.; Chatziantoniou, M.; Stamkopoulos, K.; Iatrou, M.; Vassiliadis, V.; Mourelatos, S. Embedding a Precision Agriculture Service into a Farm Management Information System—Ifarma/PreFer. Smart Agric. Technol. 2023, 4, 100175. [Google Scholar] [CrossRef]
  225. Bhadra, S.; Sagan, V.; Skobalski, J.; Grignola, F.; Sarkar, S.; Vilbig, J. End-to-End 3D CNN for Plot-Scale Soybean Yield Prediction Using Multitemporal UAV-Based RGB Images. Precis. Agric. 2024, 25, 834–864. [Google Scholar] [CrossRef]
  226. Buayai, P.; Saikaew, K.R.; Mao, X. End-to-End Automatic Berry Counting for Table Grape Thinning. IEEE Access 2021, 9, 4829–4842. [Google Scholar] [CrossRef]
  227. Feng, J.; Ong, W.E.; Teh, W.C.; Zhang, R. Enhanced Crop Disease Detection With EfficientNet Convolutional Group-Wise Transformer. IEEE Access 2024, 12, 44147–44162. [Google Scholar] [CrossRef]
  228. Promwee, A.; Nijibulat, S.; Nguyen, H.H. Enhancing Chinese Cabbage Production and Quality through IoT-Based Smart Farming in NFT-Hydroponics. Agronomy 2024, 14, 579. [Google Scholar] [CrossRef]
  229. Pukrongta, N.; Taparugssanagorn, A.; Sangpradit, K. Enhancing Crop Yield Predictions with PEnsemble 4: IoT and ML-Driven for Precision Agriculture. Appl. Sci. 2024, 14, 3313. [Google Scholar] [CrossRef]
  230. Falcioni, R.; Gonçalves, J.V.F.; Oliveira, K.M.D.; Oliveira, C.A.D.; Demattê, J.A.M.; Antunes, W.C.; Nanni, M.R. Enhancing Pigment Phenotyping and Classification in Lettuce through the Integration of Reflectance Spectroscopy and AI Algorithms. Plants 2023, 12, 1333. [Google Scholar] [CrossRef]
  231. Addas, A.; Tahir, M.; Ismat, N. Enhancing Precision of Crop Farming towards Smart Cities: An Application of Artificial Intelligence. Sustainability 2023, 16, 355. [Google Scholar] [CrossRef]
  232. Martini, M.; Ambrosio, M.; Navone, A.; Tuberga, B.; Chiaberge, M. Enhancing Visual Autonomous Navigation in Row-Based Crops with Effective Synthetic Data Generation. Precis. Agric. 2024, 25, 2881–2902. [Google Scholar] [CrossRef]
  233. Zhai, W.; Li, C.; Cheng, Q.; Mao, B.; Li, Z.; Li, Y.; Ding, F.; Qin, S.; Fei, S.; Chen, Z. Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications. Remote Sens. 2023, 15, 3653. [Google Scholar] [CrossRef]
  234. Ashworth, A.J.; Putman, W.B.; Kharel, T.; Thoma, G.; Shew, A.; Popp, M.; Owens, P. Environmental Impact Assessment of Tractor Guidance Systems Based on Pasture Management Scenarios. J. ASABE 2022, 65, 645–653. [Google Scholar] [CrossRef]
  235. Graf, L.V.; Perich, G.; Aasen, H. EOdal: An Open-Source Python Package for Large-Scale Agroecological Research Using Earth Observation and Gridded Environmental Data. Comput. Electron. Agric. 2022, 203, 107487. [Google Scholar] [CrossRef]
  236. Tao, J.; Zhang, X.; Liu, Y.; Jiang, Q.; Zhou, Y. Estimating Agricultural Cropping Intensity Using a New Temporal Mixture Analysis Method from Time Series MODIS. Remote Sens. 2023, 15, 4712. [Google Scholar] [CrossRef]
  237. Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating Chlorophyll with Thermal and Broadband Multispectral High Resolution Imagery from an Unmanned Aerial System Using Relevance Vector Machines for Precision Agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
  238. Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different Irrigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2018, 9, 8. [Google Scholar] [CrossRef]
  239. Gao, Z.; Luo, N.; Yang, B.; Zhu, Y. Estimating Leaf Nitrogen Content in Wheat Using Multimodal Features Extracted from Canopy Spectra. Agronomy 2022, 12, 1915. [Google Scholar] [CrossRef]
  240. Li, Y.; Li, C.; Cheng, Q.; Duan, F.; Zhai, W.; Li, Z.; Mao, B.; Ding, F.; Kuang, X.; Chen, Z. Estimating Maize Crop Height and Aboveground Biomass Using Multi-Source Unmanned Aerial Vehicle Remote Sensing and Optuna-Optimized Ensemble Learning Algorithms. Remote Sens. 2024, 16, 3176. [Google Scholar] [CrossRef]
  241. Tilly, N.; Bareth, G. Estimating Nitrogen from Structural Crop Traits at Field Scale—A Novel Approach Versus Spectral Vegetation Indices. Remote Sens. 2019, 11, 2066. [Google Scholar] [CrossRef]
  242. Jiang, J.; Zhu, J.; Wang, X.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Yao, X. Estimating the Leaf Nitrogen Content with a New Feature Extracted from the Ultra-High Spectral and Spatial Resolution Images in Wheat. Remote Sens. 2021, 13, 739. [Google Scholar] [CrossRef]
  243. Ganji, E.; Grenzdörffer, G.; Andert, S. Estimating the Reduction in Cover Crop Vitality Followed by Pelargonic Acid Application Using Drone Imagery. Agronomy 2023, 13, 354. [Google Scholar] [CrossRef]
  244. Singh, P.; Sehgal, V.; Dhakar, R.; Neale, C.; Goncalves, I.; Rani, A.; Jha, P.; Das, D.; Mukherjee, J.; Khanna, M.; et al. Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model. Water 2024, 16, 422. [Google Scholar] [CrossRef]
  245. Elmetwalli, A.H.; Tyler, A.N. Estimation of Maize Properties and Differentiating Moisture and Nitrogen Deficiency Stress via Ground—Based Remotely Sensed Data. Agric. Water Manag. 2020, 242, 106413. [Google Scholar] [CrossRef]
  246. Lin, N.; Ma, X.; Jiang, R.; Wu, M.; Zhang, W. Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture 2024, 14, 711. [Google Scholar] [CrossRef]
  247. Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat. Sensors 2014, 14, 20347–20359. [Google Scholar] [CrossRef]
  248. Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Song, X.; Yang, H.; Yang, G. Estimation of Potato Above-Ground Biomass Based on Vegetation Indices and Green-Edge Parameters Obtained from UAVs. Remote Sens. 2022, 14, 5323. [Google Scholar] [CrossRef]
  249. Fan, Y.; Feng, H.; Jin, X.; Yue, J.; Liu, Y.; Li, Z.; Feng, Z.; Song, X.; Yang, G. Estimation of the Nitrogen Content of Potato Plants Based on Morphological Parameters and Visible Light Vegetation Indices. Front. Plant Sci. 2022, 13, 1012070. [Google Scholar] [CrossRef]
  250. López-Calderón, M.J.; Estrada-Ávalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
  251. Biffi, L.J.; Mitishita, E.A.; Liesenberg, V.; Centeno, J.A.S.; Schimalski, M.B.; Rufato, L. Evaluating the Performance of a Semi-Automatic Apple Fruit Detection in a High-Density Orchard System Using Low-Cost Digital RGB Imaging Sensor. Bol. Ciênc. Geod. 2021, 27, e2021014. [Google Scholar] [CrossRef]
  252. Lambert, J.P.T.; Hicks, H.L.; Childs, D.Z.; Freckleton, R.P. Evaluating the Potential of Unmanned Aerial Systems for Mapping Weeds at Field Scales: A Case Study with Alopecurus myosuroides. Weed Res. 2018, 58, 35–45. [Google Scholar] [CrossRef]
  253. Farooque, A.A.; Zare, M.; Abbas, F.; Zaman, Q.; Bos, M.; Esau, T.; Acharya, B.; Schumann, A.W. Evaluation of DualEM-II Sensor for Soil Moisture Content Estimation in the Potato Fields of Atlantic Canada. Plant Soil Environ. 2019, 65, 290–297. [Google Scholar] [CrossRef]
  254. Dutta, M.; Gupta, D.; Sahu, S.; Limkar, S.; Singh, P.; Mishra, A.; Kumar, M.; Mutlu, R. Evaluation of Growth Responses of Lettuce and Energy Efficiency of the Substrate and Smart Hydroponics Cropping System. Sensors 2023, 23, 1875. [Google Scholar] [CrossRef]
  255. Kumar, S.V.; Singh, C.D.; Rao, K.V.R.; Kumar, M.; Rajwade, Y.A.; Babu, B.; Singh, K. Evaluation of IoT Based Smart Drip Irrigation and ETc Based System for Sweet Corn. Smart Agric. Technol. 2023, 5, 100248. [Google Scholar] [CrossRef]
  256. Hieu Luu, T.; Thanh Tam, N.; Nguyen Ky Phuc, P.; Cuong Nguyen, H.; Van Le, L.; Hieu Ngo, Q. Evaluation of Land Roughness and Weather Effects on Paddy Field Using Cameras Mounted on Drone: A Comprehensive Analysis from Early to Mid-Growth Stages. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 101853. [Google Scholar] [CrossRef]
  257. Dhillon, M.S.; Kübert-Flock, C.; Dahms, T.; Rummler, T.; Arnault, J.; Steffan-Dewenter, I.; Ullmann, T. Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sens. 2023, 15, 1830. [Google Scholar] [CrossRef]
  258. Catania, P.; Roma, E.; Orlando, S.; Vallone, M. Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard. Horticulturae 2023, 9, 133. [Google Scholar] [CrossRef]
  259. Yu, J.; Wang, J.; Leblon, B. Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn. Remote Sens. 2021, 13, 3105. [Google Scholar] [CrossRef]
  260. Santos, S.A.D.; Ferraz, G.A.E.S.; Figueiredo, V.C.; Volpato, M.M.L.; Machado, M.L.; Silva, V.A. Evaluation of the Water Conditions in Coffee Plantations Using RPA. AgriEngineering 2022, 5, 65–84. [Google Scholar] [CrossRef]
  261. Wang, Y.; Yuan, Y.; Yuan, F.; Ata-UI-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Evaluation of Variable Application Rate of Fertilizers Based on Site-Specific Management Zones for Winter Wheat in Small-Scale Farming. Agronomy 2023, 13, 2812. [Google Scholar] [CrossRef]
  262. Novielli, P.; Romano, D.; Pavan, S.; Losciale, P.; Stellacci, A.M.; Diacono, D.; Bellotti, R.; Tangaro, S. Explainable Artificial Intelligence for Genotype-to-Phenotype Prediction in Plant Breeding: A Case Study with a Dataset from an Almond Germplasm Collection. Front. Plant Sci. 2024, 15, 1434229. [Google Scholar] [CrossRef]
  263. Rallo, P.; De Castro, A.I.; López-Granados, F.; Morales-Sillero, A.; Torres-Sánchez, J.; Jiménez, M.R.; Jiménez-Brenes, F.M.; Casanova, L.; Suárez, M.P. Exploring UAV-Imagery to Support Genotype Selection in Olive Breeding Programs. Sci. Hortic. 2020, 273, 109615. [Google Scholar] [CrossRef]
  264. Shi, Y.; Hu, Z.; Wang, X.; Odhiambo, M.O.; Sun, G. Fertilization Strategy and Application Model Using a Centrifugal Variable-Rate Fertilizer Spreader. Int. J. Agric. Biol. Eng. 2018, 11, 41–48. [Google Scholar] [CrossRef]
  265. Grella, M.; Gioelli, F.; Marucco, P.; Zwertvaegher, I.; Mozzanini, E.; Mylonas, N.; Nuyttens, D.; Balsari, P. Field Assessment of a Pulse Width Modulation (PWM) Spray System Applying Different Spray Volumes: Duty Cycle and Forward Speed Effects on Vines Spray Coverage. Precis. Agric. 2022, 23, 219–252. [Google Scholar] [CrossRef]
  266. Reznick, J.P.K.; Pauletti, V.; Barth, G. Field Estimate with NDVI of Grain Yield and Quality of Wheat Flour. Rev. Bras. Eng. Agríc. E Ambient. 2021, 25, 801–806. [Google Scholar] [CrossRef]
  267. Ravensbergen, A.P.P.; Van Ittersum, M.K.; Hijbeek, R.; Kempenaar, C.; Reidsma, P. Field Monitoring Reveals Scope to Reduce Environmental Impact of Ware Potato Cultivation in the Netherlands without Compromising Yield. Agric. Syst. 2024, 220, 104091. [Google Scholar] [CrossRef]
  268. Vurro, F.; Croci, M.; Impollonia, G.; Marchetti, E.; Gracia-Romero, A.; Bettelli, M.; Araus, J.L.; Amaducci, S.; Janni, M. Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato. Plants 2023, 12, 3851. [Google Scholar] [CrossRef]
  269. Gené-Mola, J.; Sanz-Cortiella, R.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Vilaplana, V.; Gregorio, E. Fruit Detection and 3D Location Using Instance Segmentation Neural Networks and Structure-from-Motion Photogrammetry. Comput. Electron. Agric. 2020, 169, 105165. [Google Scholar] [CrossRef]
  270. Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A Global Dataset of 30 m Cropping Intensity Using Multisource Remote Sensing Imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
  271. Nanavati, R.V.; Meng, Y.; Coombes, M.; Liu, C. Generalized Data-Driven Optimal Path Planning Framework for Uniform Coverage Missions Using Crop Spraying UAVs. Precis. Agric. 2023, 24, 1497–1525. [Google Scholar] [CrossRef]
  272. Leroux, C.; Jones, H.; Pichon, L.; Guillaume, S.; Lamour, J.; Taylor, J.; Naud, O.; Crestey, T.; Lablee, J.-L.; Tisseyre, B. GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data. Agriculture 2018, 8, 73. [Google Scholar] [CrossRef]
  273. Sosa-Herrera, J.A.; Vallejo-Pérez, M.R.; Álvarez-Jarquín, N.; Cid-García, N.M.; López-Araujo, D.J. Geographic Object-Based Analysis of Airborne Multispectral Images for Health Assessment of Capsicum annuum L. Crops. Sensors 2019, 19, 4817. [Google Scholar] [CrossRef]
  274. Wang, T.; Mei, X.; Alex Thomasson, J.; Yang, C.; Han, X.; Yadav, P.K.; Shi, Y. GIS-Based Volunteer Cotton Habitat Prediction and Plant-Level Detection with UAV Remote Sensing. Comput. Electron. Agric. 2022, 193, 106629. [Google Scholar] [CrossRef]
  275. Lapidus, D.; Salem, M.E.; Beach, R.H.; Zayed, S.; Ortiz-Monasterio, I. Greenhouse Gas Mitigation Benefits and Profitability of the GreenSeeker Handheld NDVI Sensor: Evidence from Mexico. Precis. Agric. 2022, 23, 2388–2406. [Google Scholar] [CrossRef]
  276. Hennessy, P.J.; Esau, T.J.; Farooque, A.A.; Schumann, A.W.; Zaman, Q.U.; Corscadden, K.W. Hair Fescue and Sheep Sorrel Identification Using Deep Learning in Wild Blueberry Production. Remote Sens. 2021, 13, 943. [Google Scholar] [CrossRef]
  277. Jiménez-Buendía, M.; Soto-Valles, F.; Blaya-Ros, P.J.; Toledo-Moreo, A.; Domingo-Miguel, R.; Torres-Sánchez, R. High-Density Wi-Fi Based Sensor Network for Efficient Irrigation Management in Precision Agriculture. Appl. Sci. 2021, 11, 1628. [Google Scholar] [CrossRef]
  278. Wang, Y.; Chen, Z.; Jiang, Y.; Liu, T. High-Order Neural-Network-Based Multi-Model Nonlinear Adaptive Decoupling Control for Microclimate Environment of Plant Factory. Sensors 2023, 23, 8323. [Google Scholar] [CrossRef] [PubMed]
  279. Huang, C.; You, S.; Liu, A.; Li, P.; Zhang, J.; Deng, J. High-Resolution National-Scale Mapping of Paddy Rice Based on Sentinel-1/2 Data. Remote Sens. 2023, 15, 4055. [Google Scholar] [CrossRef]
  280. Yang, L.; Wang, L.; Abubakar, G.A.; Huang, J. High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images. Remote Sens. 2021, 13, 1148. [Google Scholar] [CrossRef]
  281. Prey, L.; Hu, Y.; Schmidhalter, U. High-Throughput Field Phenotyping Traits of Grain Yield Formation and Nitrogen Use Efficiency: Optimizing the Selection of Vegetation Indices and Growth Stages. Front. Plant Sci. 2020, 10, 1672. [Google Scholar] [CrossRef]
  282. Ezzy, H.; Charter, M.; Bonfante, A.; Brook, A. How the Small Object Detection via Machine Learning and UAS-Based Remote-Sensing Imagery Can Support the Achievement of SDG2: A Case Study of Vole Burrows. Remote Sens. 2021, 13, 3191. [Google Scholar] [CrossRef]
  283. Seol, J.; Park, Y.; Pak, J.; Jo, Y.; Lee, G.; Kim, Y.; Ju, C.; Hong, A.; Son, H.I. Human-Centered Robotic System for Agricultural Applications: Design, Development, and Field Evaluation. Agriculture 2024, 14, 1985. [Google Scholar] [CrossRef]
  284. Al-Badri, A.H.; Ismail, N.A.; Al-Dulaimi, K.; Rehman, A.; Abunadi, I.; Bahaj, S.A. Hybrid CNN Model for Classification of Rumex Obtusifolius in Grassland. IEEE Access 2022, 10, 90940–90957. [Google Scholar] [CrossRef]
  285. Chang, C.-H.; Lin, J.; Chang, J.-W.; Huang, Y.-S.; Lai, M.-H.; Chang, Y.-J. Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data. Agriculture 2024, 14, 513. [Google Scholar] [CrossRef]
  286. De Queiroz Otone, J.D.; Theodoro, G.D.F.; Santana, D.C.; Teodoro, L.P.R.; De Oliveira, J.T.; De Oliveira, I.C.; Da Silva Junior, C.A.; Teodoro, P.E.; Baio, F.H.R. Hyperspectral Response of the Soybean Crop as a Function of Target Spot (Corynespora Cassiicola) Using Machine Learning to Classify Severity Levels. AgriEngineering 2024, 6, 330–343. [Google Scholar] [CrossRef]
  287. Liang, T.; Duan, B.; Luo, X.; Ma, Y.; Yuan, Z.; Zhu, R.; Peng, Y.; Gong, Y.; Fang, S.; Wu, X. Identification of High Nitrogen Use Efficiency Phenotype in Rice (Oryza sativa L.) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral Imagery. Front. Plant Sci. 2021, 12, 740414. [Google Scholar] [CrossRef]
  288. Silva, J.E.; Da Silva, W.H.B.; Ferraz, M.A.J.; Menezes, E.A.S.; Da Costa, O.P.; Inácio, F.D.; Barboza, T.O.C.; Melo, C.A.D.; Carvalho, G.R.; Santos, A.F.D. Impact of Spray Volume and Flight Speed on the Efficiency of Drone Applications in Coffee Plants of Different Ages. Smart Agric. Technol. 2024, 9, 100694. [Google Scholar] [CrossRef]
  289. Daccache, A.; Knox, J.W.; Weatherhead, E.K.; Daneshkhah, A.; Hess, T.M. Implementing Precision Irrigation in a Humid Climate—Recent Experiences and on-Going Challenges. Agric. Water Manag. 2015, 147, 135–143. [Google Scholar] [CrossRef]
  290. Cao, M.; Tang, F.; Ji, P.; Ma, F. Improved Real-Time Semantic Segmentation Network Model for Crop Vision Navigation Line Detection. Front. Plant Sci. 2022, 13, 898131. [Google Scholar] [CrossRef]
  291. Xu, B.; Meng, R.; Chen, G.; Liang, L.; Lv, Z.; Zhou, L.; Sun, R.; Zhao, F.; Yang, W. Improved Weed Mapping in Corn Fields by Combining UAV-based Spectral, Textural, Structural, and Thermal Measurements. Pest Manag. Sci. 2023, 79, 2591–2602. [Google Scholar] [CrossRef]
  292. Li, Y.; Miao, Y.; Zhang, J.; Cammarano, D.; Li, S.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving Estimation of Winter Wheat Nitrogen Status Using Random Forest by Integrating Multi-Source Data Across Different Agro-Ecological Zones. Front. Plant Sci. 2022, 13, 890892. [Google Scholar] [CrossRef]
  293. Schmidt, J.; Beegle, D.; Zhu, Q.; Sripada, R. Improving In-Season Nitrogen Recommendations for Maize Using an Active Sensor. Field Crops Res. 2011, 120, 94–101. [Google Scholar] [CrossRef]
  294. Li, Y.L.; Yi, S.P. Improving the Efficiency of Spatially Selective Operations for Agricultural Robotics in Cropping Field. Span. J. Agric. Res. 2013, 11, 56–64. [Google Scholar] [CrossRef]
  295. Vurro, F.; Manfredi, R.; Bettelli, M.; Bocci, G.; Cologni, A.L.; Cornali, S.; Reggiani, R.; Marchetti, E.; Coppedè, N.; Caselli, S.; et al. In Vivo Sensing to Monitor Tomato Plants in Field Conditions and Optimize Crop Water Management. Precis. Agric. 2023, 24, 2479–2499. [Google Scholar] [CrossRef]
  296. Devanna, R.P.; Milella, A.; Marani, R.; Garofalo, S.P.; Vivaldi, G.A.; Pascuzzi, S.; Galati, R.; Reina, G. In-Field Automatic Identification of Pomegranates Using a Farmer Robot. Sensors 2022, 22, 5821. [Google Scholar] [CrossRef]
  297. Milella, A.; Marani, R.; Petitti, A.; Reina, G. In-Field High Throughput Grapevine Phenotyping with a Consumer-Grade Depth Camera. Comput. Electron. Agric. 2019, 156, 293–306. [Google Scholar] [CrossRef]
  298. Sun, S.; Li, C.; Paterson, A. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR. Remote Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
  299. Niu, H.; Peddagudreddygari, J.R.; Bhandari, M.; Landivar, J.A.; Bednarz, C.W.; Duffield, N. In-Season Cotton Yield Prediction with Scale-Aware Convolutional Neural Network Models and Unmanned Aerial Vehicle RGB Imagery. Sensors 2024, 24, 2432. [Google Scholar] [CrossRef]
  300. Hu, C.; Sapkota, B.B.; Thomasson, J.A.; Bagavathiannan, M.V. Influence of Image Quality and Light Consistency on the Performance of Convolutional Neural Networks for Weed Mapping. Remote Sens. 2021, 13, 2140. [Google Scholar] [CrossRef]
  301. Falco, N.; Wainwright, H.M.; Dafflon, B.; Ulrich, C.; Soom, F.; Peterson, J.E.; Brown, J.B.; Schaettle, K.B.; Williamson, M.; Cothren, J.D.; et al. Influence of Soil Heterogeneity on Soybean Plant Development and Crop Yield Evaluated Using Time-Series of UAV and Ground-Based Geophysical Imagery. Sci. Rep. 2021, 11, 7046. [Google Scholar] [CrossRef]
  302. Domingues, T.; Brandão, T.; Ribeiro, R.; Ferreira, J.C. Insect Detection in Sticky Trap Images of Tomato Crops Using Machine Learning. Agriculture 2022, 12, 1967. [Google Scholar] [CrossRef]
  303. Champ, J.; Mora-Fallas, A.; Goëau, H.; Mata-Montero, E.; Bonnet, P.; Joly, A. Instance Segmentation for the Fine Detection of Crop and Weed Plants by Precision Agricultural Robots. Appl. Plant Sci. 2020, 8, e11373. [Google Scholar] [CrossRef]
  304. Xu, B.; Fan, J.; Chao, J.; Arsenijevic, N.; Werle, R.; Zhang, Z. Instance Segmentation Method for Weed Detection Using UAV Imagery in Soybean Fields. Comput. Electron. Agric. 2023, 211, 107994. [Google Scholar] [CrossRef]
  305. Vélez, S.; Mier, G.; Ariza-Sentís, M.; Valente, J. Integrated Framework for Multipurpose UAV Path Planning in Hedgerow Systems Considering the Biophysical Environment. Crop Prot. 2025, 187, 106992. [Google Scholar] [CrossRef]
  306. Ortiz-Torres, G.; Zurita-Gil, M.A.; Rumbo-Morales, J.Y.; Sorcia-Vázquez, F.D.J.; Gascon Avalos, J.J.; Pérez-Vidal, A.F.; Ramos-Martinez, M.B.; Martínez Pascual, E.; Juárez, M.A. Integrating Actuator Fault-Tolerant Control and Deep-Learning-Based NDVI Estimation for Precision Agriculture with a Hexacopter UAV. AgriEngineering 2024, 6, 2768–2794. [Google Scholar] [CrossRef]
  307. Silvestri, N.; Ercolini, L.; Grossi, N.; Ruggeri, M. Integrating NDVI and Agronomic Data to Optimize the Variable-Rate Nitrogen Fertilization. Precis. Agric. 2024, 25, 2554–2572. [Google Scholar] [CrossRef]
  308. Emmi, L.; Gonzalez-de-Soto, M.; Pajares, G.; Gonzalez-de-Santos, P. Integrating Sensory/Actuation Systems in Agricultural Vehicles. Sensors 2014, 14, 4014–4049. [Google Scholar] [CrossRef]
  309. Aurasopon, A.; Thongleam, T.; Kuankid, S. Integration of IoT Technology in Hydroponic Systems for Enhanced Efficiency and Productivity in Small-Scale Farming. Acta Technol. Agric. 2024, 27, 203–211. [Google Scholar] [CrossRef]
  310. Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of Remote-weed Mapping and an Autonomous Spraying Unmanned Aerial Vehicle for Site-specific Weed Management. Pest Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef]
  311. Wang, P.; Chen, Y.; Xu, B.; Wu, A.; Fu, J.; Chen, M.; Ma, B. Intelligent Algorithm Optimization of Liquid Manure Spreading Control. Agriculture 2023, 13, 278. [Google Scholar] [CrossRef]
  312. Ke, S.; Dai, G.; Pan, H.; Jin, B. Intelligent Vineyard Blade Density Measurement Method Incorporating a Lightweight Vision Transformer. Egypt. Inform. J. 2024, 26, 100456. [Google Scholar] [CrossRef]
  313. Morales, A.S.; D’Aquino, C.D.A.; Klaus, R.B.P.; Vargas, G.D.S.; Giassi, M.A.M.; Ourique, F.D.O. Internet of Things Experimental Platform for Real-Time Water Monitoring: A Case Study of the Araranguá River Estuary. Acta Sci. Technol. 2023, 45, e63130. [Google Scholar] [CrossRef]
  314. Ziliani, M.G.; Parkes, S.D.; Hoteit, I.; McCabe, M.F. Intra-Season Crop Height Variability at Commercial Farm Scales Using a Fixed-Wing UAV. Remote Sens. 2018, 10, 2007. [Google Scholar] [CrossRef]
  315. Lu, X.; Li, W.; Xiao, J.; Zhu, H.; Yang, D.; Yang, J.; Xu, X.; Lan, Y.; Zhang, Y. Inversion of Leaf Area Index in Citrus Trees Based on Multi-Modal Data Fusion from UAV Platform. Remote Sens. 2023, 15, 3523. [Google Scholar] [CrossRef]
  316. Li, X.; Wu, J.; Yu, J.; Zhou, Z.; Wang, Q.; Zhao, W.; Hu, L. Inversion of Soil Moisture Content in Cotton Fields Using GBR-RF Algorithm Combined with Sentinel-2 Satellite Spectral Data. Agronomy 2024, 14, 784. [Google Scholar] [CrossRef]
  317. Zu, J.; Yang, H.; Wang, J.; Cai, W.; Yang, Y. Inversion of Winter Wheat Leaf Area Index from UAV Multispectral Images: Classical vs. Deep Learning Approaches. Front. Plant Sci. 2024, 15, 1367828. [Google Scholar] [CrossRef] [PubMed]
  318. Jenal, A.; Lussem, U.; Bolten, A.; Gnyp, M.L.; Schellberg, J.; Jasper, J.; Bongartz, J.; Bareth, G. Investigating the Potential of a Newly Developed UAV-Based VNIR/SWIR Imaging System for Forage Mass Monitoring. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 493–507. [Google Scholar] [CrossRef]
  319. Morchid, A.; Jebabra, R.; Khalid, H.M.; El Alami, R.; Qjidaa, H.; Ouazzani Jamil, M. IoT-Based Smart Irrigation Management System to Enhance Agricultural Water Security Using Embedded Systems, Telemetry Data, and Cloud Computing. Results Eng. 2024, 23, 102829. [Google Scholar] [CrossRef]
  320. Atalla, S.; Tarapiah, S.; Gawanmeh, A.; Daradkeh, M.; Mukhtar, H.; Himeur, Y.; Mansoor, W.; Hashim, K.F.B.; Daadoo, M. IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management. Information 2023, 14, 205. [Google Scholar] [CrossRef]
  321. Săcăleanu, D.-I.; Matache, M.-G.; Roșu, Ș.-G.; Florea, B.-C.; Manciu, I.-P.; Perișoară, L.-A. IoT-Enhanced Decision Support System for Real-Time Greenhouse Microclimate Monitoring and Control. Technologies 2024, 12, 230. [Google Scholar] [CrossRef]
  322. Forcén-Muñoz, M.; Pavón-Pulido, N.; López-Riquelme, J.A.; Temnani-Rajjaf, A.; Berríos, P.; Morais, R.; Pérez-Pastor, A. Irriman Platform: Enhancing Farming Sustainability through Cloud Computing Techniques for Irrigation Management. Sensors 2021, 22, 228. [Google Scholar] [CrossRef]
  323. Rosell-Polo, J.R.; Gregorio, E.; Gene, J.; Llorens, J.; Torrent, X.; Arno, J.; Escola, A. Kinect v2 Sensor-Based Mobile Terrestrial Laser Scanner for Agricultural Outdoor Applications. IEEEASME Trans. Mechatron. 2017, 22, 2420–2427. [Google Scholar] [CrossRef]
  324. Wibowo, H.; Sitanggang, I.S.; Mushthofa, M.; Adrianto, H.A. Large-Scale Oil Palm Trees Detection from High-Resolution Remote Sensing Images Using Deep Learning. Big Data Cogn. Comput. 2022, 6, 89. [Google Scholar] [CrossRef]
  325. Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
  326. Puntel, L.A.; Thompson, L.J.; Mieno, T. Leveraging Digital Agriculture for On-Farm Testing of Technologies. Front. Agron. 2024, 6, 1234232. [Google Scholar] [CrossRef]
  327. Xue, W.; Jeong, S.; Ko, J.; Tenhunen, J. Linking Canopy Reflectance to Crop Structure and Photosynthesis to Capture and Interpret Spatiotemporal Dimensions of Per-Field Photosynthetic Productivity. Biogeosciences 2017, 14, 1315–1332. [Google Scholar] [CrossRef]
  328. Pineda-Castro, D.; Diaz, H.; Soto, J.; Urban, M.O. LysipheN: A Gravimetric IoT Device for near Real-Time High-Frequency Crop Phenotyping: A Case Study on Common Beans. Plant Methods 2024, 20, 39. [Google Scholar] [CrossRef]
  329. Pathak, H.; Igathinathane, C.; Howatt, K.; Zhang, Z. Machine Learning and Handcrafted Image Processing Methods for Classifying Common Weeds in Corn Field. Smart Agric. Technol. 2023, 5, 100249. [Google Scholar] [CrossRef]
  330. Oliveira, R.A.; Näsi, R.; Niemeläinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L.; et al. Machine Learning Estimators for the Quantity and Quality of Grass Swards Used for Silage Production Using Drone-Based Imaging Spectrometry and Photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
  331. Yeasin, M.; Haldar, D.; Kumar, S.; Paul, R.K.; Ghosh, S. Machine Learning Techniques for Phenology Assessment of Sugarcane Using Conjunctive SAR and Optical Data. Remote Sens. 2022, 14, 3249. [Google Scholar] [CrossRef]
  332. Serrano, J.; Shahidian, S.; Marques Da Silva, J.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Garcia, S.; Palha, J.; Noéme, J. Mapping Management Zones Based on Soil Apparent Electrical Conductivity and Remote Sensing for Implementation of Variable Rate Irrigation—Case Study of Corn under a Center Pivot. Water 2020, 12, 3427. [Google Scholar] [CrossRef]
  333. Guo, H.; Zhang, R.; Dai, W.; Zhou, X.; Zhang, D.; Yang, Y.; Cui, J. Mapping Soil Organic Matter Content Based on Feature Band Selection with ZY1-02D Hyperspectral Satellite Data in the Agricultural Region. Agronomy 2022, 12, 2111. [Google Scholar] [CrossRef]
  334. Tilse, M.J.; Bishop, T.F.A.; Triantafilis, J.; Filippi, P. Mapping the Impact of Subsoil Constraints on Soil Available Water Capacity and Potential Crop Yield. Crop Pasture Sci. 2022, 73, 636–651. [Google Scholar] [CrossRef]
  335. Machefer, M.; Lemarchand, F.; Bonnefond, V.; Hitchins, A.; Sidiropoulos, P. Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery. Remote Sens. 2020, 12, 3015. [Google Scholar] [CrossRef]
  336. Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May Smart Technologies Reduce the Environmental Impact of Nitrogen Fertilization? A Case Study for Paddy Rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef] [PubMed]
  337. Hassanijalilian, O.; Igathinathane, C.; Day, S.; Bajwa, S.; Nowatzki, J. Measuring Soybean Iron Deficiency Chlorosis Progression and Yield Prediction with Unmanned Aerial Vehicle. Smart Agric. Technol. 2023, 4, 100204. [Google Scholar] [CrossRef]
  338. Parasca, S.C.; Spaeth, M.; Rusu, T.; Bogdan, I. Mechanical Weed Control: Sensor-Based Inter-Row Hoeing in Sugar Beet (Beta vulgaris L.) in the Transylvanian Depression. Agronomy 2024, 14, 176. [Google Scholar] [CrossRef]
  339. Giupponi, C.; Zen, M. Methods and Tools for Developing Virtual Territories for Scenario Analysis of Agro-Ecosystems. Ital. J. Agron. 2016, 11, 743. [Google Scholar] [CrossRef]
  340. Kalamatianos, R.; Karydis, I.; Avlonitis, M. Methods for the Identification of Microclimates for Olive Fruit Fly. Agronomy 2019, 9, 337. [Google Scholar] [CrossRef]
  341. Yan, X.; Zhou, Y.; Liu, X.; Yang, D.; Yuan, H. Minimizing Occupational Exposure to Pesticide and Increasing Control Efficacy of Pests by Unmanned Aerial Vehicle Application on Cowpea. Appl. Sci. 2021, 11, 9579. [Google Scholar] [CrossRef]
  342. Zhang, B.; Hastings, A.; Clifton-Brown, J.C.; Jiang, D.; Faaij, A.P.C. Modeled Spatial Assessment of Biomass Productivity and Technical Potential of Miscanthus × Giganteus, Panicum Virgatum L., and Jatropha on Marginal Land in China. GCB Bioenergy 2020, 12, 328–345. [Google Scholar] [CrossRef]
  343. Lv, Z.; Meng, R.; Man, J.; Zeng, L.; Wang, M.; Xu, B.; Gao, R.; Sun, R.; Zhao, F. Modeling of Winter Wheat fAPAR by Integrating Unmanned Aircraft Vehicle-Based Optical, Structural and Thermal Measurement. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102407. [Google Scholar] [CrossRef]
  344. Pádua, L.; Marques, P.; Martins, L.; Sousa, A.; Peres, E.; Sousa, J.J. Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sens. 2020, 12, 3032. [Google Scholar] [CrossRef]
  345. Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-Camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef]
  346. Chedid, V.; Cortez, J.W.; Arcoverde, S.N.S. Monitoring the Vegetative State of Coffee Using Vegetation Indices. Eng. Agríc. 2024, 44, e20220212. [Google Scholar] [CrossRef]
  347. Niu, S.; Nie, Z.; Li, G.; Zhu, W. Multi-Altitude Corn Tassel Detection and Counting Based on UAV RGB Imagery and Deep Learning. Drones 2024, 8, 198. [Google Scholar] [CrossRef]
  348. Wang, P. Multi-Node Temperature Monitoring Method for Digital Agricultural Planting Based on Wireless Sensor Network. Turk. J. Agric. For. 2024, 48, 212–225. [Google Scholar] [CrossRef]
  349. Dunnett, A.; Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.; Joshi, P.K.; Pal, B.D.; Khatri-Chhetri, A.; Ghosh, J. Multi-Objective Land Use Allocation Modelling for Prioritizing Climate-Smart Agricultural Interventions. Ecol. Model. 2018, 381, 23–35. [Google Scholar] [CrossRef]
  350. Rodrigues, F.A.; Blasch, G.; Defourny, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sens. 2018, 10, 930. [Google Scholar] [CrossRef]
  351. Gallardo-Romero, D.J.; Apolo-Apolo, O.E.; Martínez-Guanter, J.; Pérez-Ruiz, M. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sens. 2023, 15, 3131. [Google Scholar] [CrossRef]
  352. Da Silva, P.C.; Ribeiro Junior, W.Q.; Ramos, M.L.G.; Lopes, M.F.; Santana, C.C.; Casari, R.A.D.C.N.; Brasileiro, L.D.O.; Veiga, A.D.; Rocha, O.C.; Malaquias, J.V.; et al. Multispectral Images for Drought Stress Evaluation of Arabica Coffee Genotypes Under Different Irrigation Regimes. Sensors 2024, 24, 7271. [Google Scholar] [CrossRef]
  353. Silva, B.C.D.; Prado, R.D.M.; Baio, F.H.R.; Campos, C.N.S.; Teodoro, L.P.R.; Teodoro, P.E.; Santana, D.C.; Fernandes, T.F.S.; Silva Junior, C.A.D.; Loureiro, E.D.S. New Approach for Predicting Nitrogen and Pigments in Maize from Hyperspectral Data and Machine Learning Models. Remote Sens. Appl. Soc. Environ. 2024, 33, 101110. [Google Scholar] [CrossRef]
  354. Barbosa, J.D.A.; Faria, R.T.D.; Coelho, A.P.; Dalri, A.B.; Palaretti, L.F. Nitrogen Fertilization Management in White Oat Using Spectral Indices. Pesqui. Agropecuária Trop. 2020, 50, e64924. [Google Scholar] [CrossRef]
  355. Alejandrino, J.D.; Concepcion Ii, R.S.; Bandala, A.A.; Sybingco, E.; Vicerra, R.R.P.; Dadios, E.P. Non-Invasive Plant Root Tomography Through Optimized Sonar Array Transducer Antenna Design Using Genetic Swarm Metaheuristic. J. Adv. Comput. Intell. Intell. Inform. 2024, 28, 59–66. [Google Scholar] [CrossRef]
  356. Tanveer, M.U.; Munir, K.; Raza, A.; Almutairi, M.S. Novel Artificial Intelligence Assisted Landsat-8 Imagery Analysis for Mango Orchard Detection and Area Mapping. PLoS ONE 2024, 19, e0304450. [Google Scholar] [CrossRef] [PubMed]
  357. Teimouri, N.; Jørgensen, R.N.; Green, O. Novel Assessment of Region-Based CNNs for Detecting Monocot/Dicot Weeds in Dense Field Environments. Agronomy 2022, 12, 1167. [Google Scholar] [CrossRef]
  358. Vahdanjoo, M.; Sorensen, C.G. Novel Route Planning Method to Improve the Operational Efficiency of Capacitated Operations. Case: Application of Organic Fertilizer. AgriEngineering 2021, 3, 458–477. [Google Scholar] [CrossRef]
  359. Videgain, M.; Martínez-Casasnovas, J.A.; Vigo-Morancho, A.; Vidal, M.; García-Ramos, F.J. On-Farm Experimentation of Precision Agriculture for Differential Seed and Fertilizer Management in Semi-Arid Rainfed Zones. Precis. Agric. 2024, 25, 3048–3069. [Google Scholar] [CrossRef]
  360. Bragagnolo, J.; Amado, T.J.C.; Nicoloso, R.D.S.; Jasper, J.; Kunz, J.; Teixeira, T.D.G. Optical Crop Sensor for Variable-Rate Nitrogen Fertilization in Corn: I—Plant Nutrition and Dry Matter Production. Rev. Bras. Ciênc. Solo 2013, 37, 1288–1298. [Google Scholar] [CrossRef]
  361. Singh, N.; Ajaykumar, K.; Dhruw, L.K.; Choudhury, B.U. Optimization of Irrigation Timing for Sprinkler Irrigation System Using Convolutional Neural Network-Based Mobile Application for Sustainable Agriculture. Smart Agric. Technol. 2023, 5, 100305. [Google Scholar] [CrossRef]
  362. Loewen, S.; Maxwell, B.D. Optimizing Crop Seeding Rates on Organic Grain Farms Using on Farm Precision Experimentation. Field Crops Res. 2024, 318, 109593. [Google Scholar] [CrossRef]
  363. Meloni, R.; Cordero, E.; Capo, L.; Reyneri, A.; Sacco, D.; Blandino, M. Optimizing Nitrogen Rates for Winter Wheat Using In-Season Crop N Status Indicators. Field Crops Res. 2024, 318, 109545. [Google Scholar] [CrossRef]
  364. Zhao, Z.; Mao, Y.; Gao, S.; Lu, C.; Pan, C.; Li, X. Organic Carbon Accumulation and Aggregate Formation in Soils under Organic and Inorganic Fertilizer Management Practices in a Rice–Wheat Cropping System. Sci. Rep. 2023, 13, 3665. [Google Scholar] [CrossRef]
  365. López-Martínez, M.D.J.; Díaz-Flórez, G.; Villagrana-Barraza, S.; Castañeda-Miranda, C.L.; Solís-Sánchez, L.O.; Ortíz-Esquivel, D.I.; De La Rosa-Vargas, J.I.; Olvera-Olvera, C.A. Pattern Classification of an Onion Crop (Allium Cepa) Field Using Convolutional Neural Network Models. Agronomy 2024, 14, 1206. [Google Scholar] [CrossRef]
  366. Wen, S.; Zhou, J.; Hu, G.; Zhang, H.; Tao, S.; Wang, Z.; Chen, J. PcMNet: An Efficient Lightweight Apple Detection Algorithm in Natural Orchards. Smart Agric. Technol. 2024, 9, 100623. [Google Scholar] [CrossRef]
  367. Li, T.; Chen, Q.; Zhang, X.; Ding, S.; Wang, X.; Mu, J. PeachYOLO: A Lightweight Algorithm for Peach Detection in Complex Orchard Environments. IEEE Access 2024, 12, 96220–96230. [Google Scholar] [CrossRef]
  368. Yamamoto, A.; Kusudo, T.; Kimura, M.; Matsuno, Y. Performance Assessment of Farm Machinery for Persimmon Fruit Cultivation in a Japanese Mountainous Area. AgriEngineering 2022, 4, 17–31. [Google Scholar] [CrossRef]
  369. Ajayi, O.G.; Ashi, J.; Guda, B. Performance Evaluation of YOLO v5 Model for Automatic Crop and Weed Classification on UAV Images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
  370. Argyriou, A.V.; Tektonidis, N.; Alevizos, E.; Ferentinos, K.P.; Kourgialas, N.N.; Mathioudakis, M.M. Precision Farming Multimodal Technologies Using Optical Sensors for the Detection of Citrus Tristeza Virus Endemics. Sustainability 2024, 16, 5748. [Google Scholar] [CrossRef]
  371. Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef]
  372. Garofalo, S.P.; Giannico, V.; Lorente, B.; García, A.J.G.; Vivaldi, G.A.; Thameur, A.; Salcedo, F.P. Predicting Carob Tree Physiological Parameters under Different Irrigation Systems Using Random Forest and Planet Satellite Images. Front. Plant Sci. 2024, 15, 1302435. [Google Scholar] [CrossRef]
  373. Teodoro, P.E.; Teodoro, L.P.R.; Baio, F.H.R.; Da Silva Junior, C.A.; Dos Santos, R.G.; Ramos, A.P.M.; Pinheiro, M.M.F.; Osco, L.P.; Gonçalves, W.N.; Carneiro, A.M.; et al. Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sens. 2021, 13, 4632. [Google Scholar] [CrossRef]
  374. Traore, A.; Ata-Ul-Karim, S.T.; Duan, A.; Soothar, M.K.; Traore, S.; Zhao, B. Predicting Equivalent Water Thickness in Wheat Using UAV Mounted Multispectral Sensor through Deep Learning Techniques. Remote Sens. 2021, 13, 4476. [Google Scholar] [CrossRef]
  375. Grüner, E.; Astor, T.; Wachendorf, M. Prediction of Biomass and N Fixation of Legume–Grass Mixtures Using Sensor Fusion. Front. Plant Sci. 2021, 11, 603921. [Google Scholar] [CrossRef] [PubMed]
  376. García-Vázquez, F.; Ponce-González, J.R.; Guerrero-Osuna, H.A.; Carrasco-Navarro, R.; Luque-Vega, L.F.; Mata-Romero, M.E.; Martínez-Blanco, M.D.R.; Castañeda-Miranda, C.L.; Díaz-Flórez, G. Prediction of Internal Temperature in Greenhouses Using the Supervised Learning Techniques: Linear and Support Vector Regressions. Appl. Sci. 2023, 13, 8531. [Google Scholar] [CrossRef]
  377. Marković, D.; Vujičić, D.; Tanasković, S.; Đorđević, B.; Ranđić, S.; Stamenković, Z. Prediction of Pest Insect Appearance Using Sensors and Machine Learning. Sensors 2021, 21, 4846. [Google Scholar] [CrossRef]
  378. Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon Based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
  379. Marcu, I.; Drăgulinescu, A.-M.; Oprea, C.; Suciu, G.; Bălăceanu, C. Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform. Sustainability 2022, 14, 11487. [Google Scholar] [CrossRef]
  380. Rosso, P.; Nendel, C.; Gilardi, N.; Udroiu, C.; Chlebowski, F. Processing of Remote Sensing Information to Retrieve Leaf Area Index in Barley: A Comparison of Methods. Precis. Agric. 2022, 23, 1449–1472. [Google Scholar] [CrossRef]
  381. Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sens. 2016, 8, 55. [Google Scholar] [CrossRef]
  382. Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Dias, S.H.B.; Cunha, F.F.D.; Venancio, L.P. Productivity and Water Demand of Maize Estimated by the Modified Satellite Priestley-Taylor Algorithm. Semina Ciênc. Agrár. 2019, 40, 2991. [Google Scholar] [CrossRef]
  383. Bhadra, S.; Sagan, V.; Sarkar, S.; Braud, M.; Mockler, T.C.; Eveland, A.L. PROSAIL-Net: A Transfer Learning-Based Dual Stream Neural Network to Estimate Leaf Chlorophyll and Leaf Angle of Crops from UAV Hyperspectral Images. ISPRS J. Photogramm. Remote Sens. 2024, 210, 1–24. [Google Scholar] [CrossRef]
  384. Jiménez-Brenes, F.M.; López-Granados, F.; De Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M. Quantifying Pruning Impacts on Olive Tree Architecture and Annual Canopy Growth by Using UAV-Based 3D Modelling. Plant Methods 2017, 13, 55. [Google Scholar] [CrossRef]
  385. Boonupara, T.; Udomkun, P.; Kajitvichyanukul, P. Quantitative Analysis of Atrazine Impact on UAV-Derived Multispectral Indices and Correlated Plant Pigment Alterations: A Heatmap Approach. Agronomy 2024, 14, 814. [Google Scholar] [CrossRef]
  386. Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D.; et al. Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
  387. Tonnang, H.E.Z.; Balemi, T.; Masuki, K.F.; Mohammed, I.; Adewopo, J.; Adnan, A.A.; Mudereri, B.T.; Vanlauwe, B.; Craufurd, P. Rapid Acquisition, Management, and Analysis of Spatial Maize (Zea mays L.) Phenological Data—Towards ‘Big Data’ for Agronomy Transformation in Africa. Agronomy 2020, 10, 1363. [Google Scholar] [CrossRef]
  388. Han, N.; Zhang, B.; Liu, Y.; Peng, Z.; Zhou, Q.; Wei, Z. Rapid Diagnosis of Nitrogen Nutrition Status in Summer Maize over Its Life Cycle by a Multi-Index Synergy Model Using Ground Hyperspectral and UAV Multispectral Sensor Data. Atmosphere 2022, 13, 122. [Google Scholar] [CrossRef]
  389. Li, N.; Zhang, X.; Zhang, C.; Guo, H.; Sun, Z.; Wu, X. Real-Time Crop Recognition in Transplanted Fields With Prominent Weed Growth: A Visual-Attention-Based Approach. IEEE Access 2019, 7, 185310–185321. [Google Scholar] [CrossRef]
  390. Zong, Z.; Liu, G.; Zhao, S. Real-Time Localization Approach for Maize Cores at Seedling Stage Based on Machine Vision. Agronomy 2020, 10, 470. [Google Scholar] [CrossRef]
  391. He, J.; Jia, Y.; Li, Y.; Biswas, A.; Feng, H.; Yu, Q.; Wu, S.; Yang, G.; Siddique, H.H.M. Regional-Scale Precision Mapping of Cotton Suitability Using UAV and Satellite Data in Arid Environments. Agric. Water Manag. 2025, 307, 109215. [Google Scholar] [CrossRef]
  392. Caruso, G.; Palai, G.; Gucci, R.; Priori, S. Remote and Proximal Sensing Techniques for Site-Specific Irrigation Management in the Olive Orchard. Appl. Sci. 2022, 12, 1309. [Google Scholar] [CrossRef]
  393. Na, I.S.; Lee, S.; Alamri, A.M.; AlQahtani, S.A. Remote Sensing and AI-Based Monitoring of Legume Crop Health and Growth. LEGUME Res.—Int. J. 2024, 47, 1179–1184. [Google Scholar] [CrossRef]
  394. Solgi, S.; Ahmadi, S.H.; Seidel, S.J. Remote Sensing of Canopy Water Status of the Irrigated Winter Wheat Fields and the Paired Anomaly Analyses on the Spectral Vegetation Indices and Grain Yields. Agric. Water Manag. 2023, 280, 108226. [Google Scholar] [CrossRef]
  395. Shao, H.; Tang, R.; Lei, Y.; Mu, J.; Guan, Y.; Xiang, Y. Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset. Plants 2021, 10, 1625. [Google Scholar] [CrossRef]
  396. Jiang, X.; Fang, S.; Huang, X.; Liu, Y.; Guo, L. Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images and Red-Edge Bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
  397. Tseng, H.-H.; Yang, M.-D.; Saminathan, R.; Hsu, Y.-C.; Yang, C.-Y.; Wu, D.-H. Rice Seedling Detection in UAV Images Using Transfer Learning and Machine Learning. Remote Sens. 2022, 14, 2837. [Google Scholar] [CrossRef]
  398. Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic In-Row Weed Control in Vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [Google Scholar] [CrossRef]
  399. Rodriguez-Gallo, Y.; Escobar-Benitez, B.; Rodriguez-Lainez, J. Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery. AgriEngineering 2023, 5, 1415–1431. [Google Scholar] [CrossRef]
  400. Bai, X.; Gu, S.; Liu, P.; Yang, A.; Cai, Z.; Wang, J.; Yao, J. RPNet: Rice Plant Counting after Tillering Stage Based on Plant Attention and Multiple Supervision Network. Crop J. 2023, 11, 1586–1594. [Google Scholar] [CrossRef]
  401. Tarariko, O.; Ilienko, T.; Kuchma, T.; Novakovska, I. Satellite Agroecological Monitoring within the System of Sustainable Environmental Management. Agric. Sci. Pract. 2019, 6, 18–27. [Google Scholar] [CrossRef]
  402. Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
  403. Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.M. Segmentation of Apples in Aerial Images under Sixteen Different Lighting Conditions Using Color and Texture for Optimal Irrigation. Water 2018, 10, 1634. [Google Scholar] [CrossRef]
  404. Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. Selecting Patterns and Features for Between- and within- Crop-Row Weed Mapping Using UAV-Imagery. Expert Syst. Appl. 2016, 47, 85–94. [Google Scholar] [CrossRef]
  405. Rovira-Más, F.; Saiz-Rubio, V.; Cuenca-Cuenca, A. Sensing Architecture for Terrestrial Crop Monitoring: Harvesting Data as an Asset. Sensors 2021, 21, 3114. [Google Scholar] [CrossRef]
  406. Prey, L.; Schmidhalter, U. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat. Sensors 2019, 19, 3712. [Google Scholar] [CrossRef] [PubMed]
  407. Sachin, K.S.; Dass, A.; Dhar, S.; Rajanna, G.A.; Singh, T.; Sudhishri, S.; Sannagoudar, M.S.; Choudhary, A.K.; Kushwaha, H.L.; Praveen, B.R.; et al. Sensor-Based Precision Nutrient and Irrigation Management Enhances the Physiological Performance, Water Productivity, and Yield of Soybean under System of Crop Intensification. Front. Plant Sci. 2023, 14, 1282217. [Google Scholar] [CrossRef] [PubMed]
  408. Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef]
  409. Santaga, F.S.; Benincasa, P.; Toscano, P.; Antognelli, S.; Ranieri, E.; Vizzari, M. Simplified and Advanced Sentinel-2-Based Precision Nitrogen Management of Wheat. Agronomy 2021, 11, 1156. [Google Scholar] [CrossRef]
  410. Lee, C.-J.; Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Sung, Y.; Chen, W.-L. Single-Plant Broccoli Growth Monitoring Using Deep Learning with UAV Imagery. Comput. Electron. Agric. 2023, 207, 107739. [Google Scholar] [CrossRef]
  411. Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-Specific Nitrogen Management in Winter Wheat Supported by Low-Altitude Remote Sensing and Soil Data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
  412. Ali, T.; Rehman, S.U.; Ali, S.; Mahmood, K.; Obregon, S.A.; Iglesias, R.C.; Khurshaid, T.; Ashraf, I. Smart Agriculture: Utilizing Machine Learning and Deep Learning for Drought Stress Identification in Crops. Sci. Rep. 2024, 14, 30062. [Google Scholar] [CrossRef]
  413. Ghanimi, H.M.A.; R, S.; Jeyaraj, J.P.G.; K, S.; Rangasamy, R.; Sengan, S. Smart Fertilizing Using IoT Multi-Sensor and Variable Rate Sprayer Integrated UAV. Scalable Comput. Pract. Exp. 2024, 25, 3766–3777. [Google Scholar] [CrossRef]
  414. Esmail Karar, M.; Abdel-Aty, A.-H.; Algarni, F.; Fadzil Hassan, M.; Abdou, M.A.; Reyad, O. Smart IoT-Based System for Detecting RPW Larvae in Date Palms Using Mixed Depthwise Convolutional Networks. Alex. Eng. J. 2022, 61, 5309–5319. [Google Scholar] [CrossRef]
  415. Cruz, M.; Mafra, S.; Teixeira, E.; Figueiredo, F. Smart Strawberry Farming Using Edge Computing and IoT. Sensors 2022, 22, 5866. [Google Scholar] [CrossRef]
  416. Asiimwe, G.; Jaafar, H.; Haidar, M.; Mourad, R. Soil Moisture or ET-Based Smart Irrigation Scheduling: A Comparison for Sweet Corn with Sap Flow Measurements. J. Irrig. Drain. Eng. 2022, 148, 04022017. [Google Scholar] [CrossRef]
  417. Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH Mapping with an On-The-Go Sensor. Sensors 2011, 11, 573–598. [Google Scholar] [CrossRef] [PubMed]
  418. Sarkar, S.; Sagan, V.; Bhadra, S.; Rhodes, K.; Pokharel, M.; Fritschi, F.B. Soybean Seed Composition Prediction from Standing Crops Using PlanetScope Satellite Imagery and Machine Learning. ISPRS J. Photogramm. Remote Sens. 2023, 204, 257–274. [Google Scholar] [CrossRef]
  419. Kerry, R.; Ingram, B.; Hammond, K.; Shumate, S.R.; Gunther, D.; Jensen, R.R.; Schill, S.; Hansen, N.C.; Hopkins, B.G. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation Management. Agronomy 2023, 13, 1267. [Google Scholar] [CrossRef]
  420. Gargiulo, J.; Clark, C.; Lyons, N.; De Veyrac, G.; Beale, P.; Garcia, S. Spatial and Temporal Pasture Biomass Estimation Integrating Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data. Remote Sens. 2020, 12, 3222. [Google Scholar] [CrossRef]
  421. Cordero, E.; Longchamps, L.; Khosla, R.; Sacco, D. Spatial Management Strategies for Nitrogen in Maize Production Based on Soil and Crop Data. Sci. Total Environ. 2019, 697, 133854. [Google Scholar] [CrossRef]
  422. Stumpf, F.; Schneider, M.K.; Keller, A.; Mayr, A.; Rentschler, T.; Meuli, R.G.; Schaepman, M.; Liebisch, F. Spatial Monitoring of Grassland Management Using Multi-Temporal Satellite Imagery. Ecol. Indic. 2020, 113, 106201. [Google Scholar] [CrossRef]
  423. Mousavi, S.R.; Jahandideh Mahjenabadi, V.A.; Khoshru, B.; Rezaei, M. Spatial Prediction of Winter Wheat Yield Gap: Agro-Climatic Model and Machine Learning Approaches. Front. Plant Sci. 2024, 14, 1309171. [Google Scholar] [CrossRef]
  424. Borra-Serrano, I.; Peña, J.; Torres-Sánchez, J.; Mesas-Carrascosa, F.; López-Granados, F. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688–19708. [Google Scholar] [CrossRef]
  425. Lourenço, V.R.; Montenegro, A.A.D.A.; Carvalho, A.A.D.; Sousa, L.D.B.D.; Almeida, T.A.B.; Almeida, T.F.S.D.; Vilar, B.P. Spatial Variability of Biophysical Multispectral Indexes under Heterogeneity and Anisotropy for Precision Monitoring. Rev. Bras. Eng. Agríc. E Ambient. 2023, 27, 848–857. [Google Scholar] [CrossRef]
  426. Jiang, S.; Wu, J.; Wang, Z.; He, Z.; Wang, M.; Yao, W.; Feng, Y. Spatiotemporal Variations of Cropland Carbon Sequestration and Water Loss across China. Agric. Water Manag. 2023, 287, 108427. [Google Scholar] [CrossRef]
  427. Heinemann, P.; Schmidhalter, U. Spectral Assessments of N-Related Maize Traits: Evaluating and Defining Agronomic Relevant Detection Limits. Field Crops Res. 2022, 289, 108710. [Google Scholar] [CrossRef]
  428. Bazame, H.C.; Pinto, F.A.C.; Queiroz, D.S.; Queiroz, D.M.D.; Althoff, D. Spectral Sensors Prove Beneficial in Determining Nitrogen Fertilizer Needs of Urochloa Brizantha Cv. Xaraés Grass in Brazil. Trop. Grassl.-Forrajes Trop. 2020, 8, 60–71. [Google Scholar] [CrossRef]
  429. Chen, H.; Qiu, Y.; Yin, D.; Chen, J.; Chen, X.; Liu, S.; Liu, L. Stacked Spectral Feature Space Patch: An Advanced Spectral Representation for Precise Crop Classification Based on Convolutional Neural Network. Crop J. 2022, 10, 1460–1469. [Google Scholar] [CrossRef]
  430. Lombardi, F.; Lualdi, M. Step-Frequency Ground Penetrating Radar for Agricultural Soil Morphology Characterisation. Remote Sens. 2019, 11, 1075. [Google Scholar] [CrossRef]
  431. Mattupalli, C.; Moffet, C.A.; Shah, K.N.; Young, C.A. Supervised Classification of RGB Aerial Imagery to Evaluate the Impact of a Root Rot Disease. Remote Sens. 2018, 10, 917. [Google Scholar] [CrossRef]
  432. Al-Naeem, M.; Hafizur Rahman, M.M.; Banerjee, A.; Sufian, A. Support Vector Machine-Based Energy Efficient Management of UAV Locations for Aerial Monitoring of Crops over Large Agriculture Lands. Sustainability 2023, 15, 6421. [Google Scholar] [CrossRef]
  433. Kim, D.-W.; Min, T.-S.; Kim, Y.; Silva, R.R.; Hyun, H.-N.; Kim, J.-S.; Kim, K.-H.; Kim, H.-J.; Chung, Y.S. Sustainable Agriculture by Increasing Nitrogen Fertilizer Efficiency Using Low-Resolution Camera Mounted on Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health 2019, 16, 3893. [Google Scholar] [CrossRef] [PubMed]
  434. Sulaiman, A.; Anand, V.; Gupta, S.; Alshahrani, H.; Reshan, M.S.A.; Rajab, A.; Shaikh, A.; Azar, A.T. Sustainable Apple Disease Management Using an Intelligent Fine-Tuned Transfer Learning-Based Model. Sustainability 2023, 15, 13228. [Google Scholar] [CrossRef]
  435. Abuova, A.B.; Tulkubayeva, S.A.; Tulayev, Y.V.; Somova, S.V.; Kizatova, M.Z. Sustainable Development of Crop Production with Elements of Precision Agriculture in Northern Kazakhstan. Entrep. Sustain. Issues 2020, 7, 3200–3214. [Google Scholar] [CrossRef]
  436. Qadir, A.; Mondal, P. Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India. Remote Sens. 2020, 12, 522. [Google Scholar] [CrossRef]
  437. Wu, C.; Tang, X.; Xu, X. System Design, Analysis, and Control of an Intelligent Vehicle for Transportation in Greenhouse. Agriculture 2023, 13, 1020. [Google Scholar] [CrossRef]
  438. Khan, R.; Ali, I.; Zakarya, M.; Ahmad, M.; Imran, M.; Shoaib, M. Technology-Assisted Decision Support System for Efficient Water Utilization: A Real-Time Testbed for Irrigation Using Wireless Sensor Networks. IEEE Access 2018, 6, 25686–25697. [Google Scholar] [CrossRef]
  439. Lyle, G.; Lewis, M.; Ostendorf, B. Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale. Remote Sens. 2013, 5, 1549–1567. [Google Scholar] [CrossRef]
  440. Lucena, F.; Breunig, F.M.; Kux, H. The Combined Use of UAV-Based RGB and DEM Images for the Detection and Delineation of Orange Tree Crowns with Mask R-CNN: An Approach of Labeling and Unified Framework. Future Internet 2022, 14, 275. [Google Scholar] [CrossRef]
  441. Kazlauskas, M.; Šarauskis, E.; Lekavičienė, K.; Naujokienė, V.; Romaneckas, K.; Bručienė, I.; Buragienė, S.; Steponavičius, D. The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes 2022, 10, 2717. [Google Scholar] [CrossRef]
  442. Calvet-Mir, L.; Benyei, P.; Aceituno-Mata, L.; Pardo-de-Santayana, M.; López-García, D.; Carrascosa-García, M.; Perdomo-Molina, A.; Reyes-García, V. The Contribution of Traditional Agroecological Knowledge as a Digital Commons to Agroecological Transitions: The Case of the CONECT-e Platform. Sustainability 2018, 10, 3214. [Google Scholar] [CrossRef]
  443. Schillings, J.; Holohan, C.; Lively, F.; Arnott, G.; Russell, T. The Potential of Virtual Fencing Technology to Facilitate Sustainable Livestock Grazing Management. Animal 2024, 18, 101231. [Google Scholar] [CrossRef]
  444. Sanyaolu, M.; Sadowski, A. The Role of Precision Agriculture Technologies in Enhancing Sustainable Agriculture. Sustainability 2024, 16, 6668. [Google Scholar] [CrossRef]
  445. Keshet, D.; Brook, A.; Malkinson, D.; Izhaki, I.; Charter, M. The Use of Drones to Determine Rodent Location and Damage in Agricultural Crops. Drones 2022, 6, 396. [Google Scholar] [CrossRef]
  446. Iatrou, M.; Karydas, C.; Iatrou, G.; Pitsiorlas, I.; Aschonitis, V.; Raptis, I.; Mpetas, S.; Kravvas, K.; Mourelatos, S. Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture 2021, 11, 312. [Google Scholar] [CrossRef]
  447. Rebouh, N.Y.; Mohamed, E.S.; Polityko, P.M.; Dokukin, P.A.; Kucher, D.E.; Latati, M.; Okeke, S.E.; Ali, M.A. Towards Improving the Precision Agriculture Management of the Wheat Crop Using Remote Sensing: A Case Study in Central Non-Black Earth Region of Russia. Egypt. J. Remote Sens. Space Sci. 2023, 26, 505–517. [Google Scholar] [CrossRef]
  448. Pandey, D.K.; Mishra, R. Towards Sustainable Agriculture: Harnessing AI for Global Food Security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
  449. Řezník, T.; Herman, L.; Klocová, M.; Leitner, F.; Pavelka, T.; Leitgeb, Š.; Trojanová, K.; Štampach, R.; Moshou, D.; Mouazen, A.M.; et al. Towards the Development and Verification of a 3D-Based Advanced Optimized Farm Machinery Trajectory Algorithm. Sensors 2021, 21, 2980. [Google Scholar] [CrossRef]
  450. Yao, J.; Wang, Y.; Xiang, Y.; Yang, J.; Zhu, Y.; Li, X.; Li, S.; Zhang, J.; Gong, G. Two-Stage Detection Algorithm for Kiwifruit Leaf Diseases Based on Deep Learning. Plants 2022, 11, 768. [Google Scholar] [CrossRef]
  451. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef]
  452. Hütt, C.; Bolten, A.; Hüging, H.; Bareth, G. UAV LiDAR Metrics for Monitoring Crop Height, Biomass and Nitrogen Uptake: A Case Study on a Winter Wheat Field Trial. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 65–76. [Google Scholar] [CrossRef]
  453. Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technol. 2018, 32, 2–6. [Google Scholar] [CrossRef]
  454. Bukowiecki, J.; Rose, T.; Holzhauser, K.; Rothardt, S.; Rose, M.; Komainda, M.; Herrmann, A.; Kage, H. UAV-Based Canopy Monitoring: Calibration of a Multispectral Sensor for Green Area Index and Nitrogen Uptake across Several Crops. Precis. Agric. 2024, 25, 1556–1580. [Google Scholar] [CrossRef]
  455. Khose, S.B.; Mailapalli, D.R. UAV-Based Multispectral Image Analytics and Machine Learning for Predicting Crop Nitrogen in Rice. Geocarto Int. 2024, 39, 2373867. [Google Scholar] [CrossRef]
  456. Chivasa, W.; Mutanga, O.; Biradar, C. UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improvement under Changing Climate Conditions. Remote Sens. 2020, 12, 2445. [Google Scholar] [CrossRef]
  457. Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L.E.; Guglieri, G.; et al. UAV-Spray Application in Vineyards: Flight Modes and Spray System Adjustment Effects on Canopy Deposit, Coverage, and off-Target Losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef]
  458. Higuti, V.A.H.; Velasquez, A.E.B.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under Canopy Light Detection and Ranging-based Autonomous Navigation. J. Field Robot. 2019, 36, 547–567. [Google Scholar] [CrossRef]
  459. Ragiman, R.; Babu Talluri, K.; Nrg, V.; Sagar, B.V. Unmanned Aerial Vehicle (UAV)-Assisted Pesticide Application for Pest and Disease Management in Rice. Int. J. Agric. Biol. Eng. 2024, 17, 88–95. [Google Scholar] [CrossRef]
  460. Chang, A.; Jung, J.; Yeom, J.; Maeda, M.M.; Landivar, J.A.; Enciso, J.M.; Avila, C.A.; Anciso, J.R. Unmanned Aircraft System-(UAS-)Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation. J. Sens. 2021, 2021, 8875606. [Google Scholar] [CrossRef]
  461. Siqueira, R.; Longchamps, L.; Dahal, S.; Khosla, R. Use of Fluorescence Sensing to Detect Nitrogen and Potassium Variability in Maize. Remote Sens. 2020, 12, 1752. [Google Scholar] [CrossRef]
  462. Altieri, G.; Maffia, A.; Pastore, V.; Amato, M.; Celano, G. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in Corylus avellana L. Tree Orchard. Sensors 2022, 22, 7103. [Google Scholar] [CrossRef]
  463. Aliabad, F.A.; Shojaei, S.; Mortaz, M.; Ferreira, C.S.S.; Kalantari, Z. Use of Landsat 8 and UAV Images to Assess Changes in Temperature and Evapotranspiration by Economic Trees Following Foliar Spraying with Light-Reflecting Compounds. Remote Sens. 2022, 14, 6153. [Google Scholar] [CrossRef]
  464. Khun, K.; Tremblay, N.; Panneton, B.; Vigneault, P.; Lord, E.; Cavayas, F.; Codjia, C. Use of Oblique RGB Imagery and Apparent Surface Area of Plants for Early Estimation of Above-Ground Corn Biomass. Remote Sens. 2021, 13, 4032. [Google Scholar] [CrossRef]
  465. Hank, T.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef]
  466. Beese, L.; Dalponte, M.; Asner, G.P.; Coomes, D.A.; Jucker, T. Using Repeat Airborne LiDAR to Map the Growth of Individual Oil Palms in Malaysian Borneo during the 2015–16 El Niño. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103117. [Google Scholar] [CrossRef]
  467. Sharifi, A. Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
  468. Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
  469. Manu, A.; McDanel, J.; Brummel, D.; Avornyo, V.K.; Lawler, T. Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture. Drones 2024, 8, 633. [Google Scholar] [CrossRef]
  470. Li, D.; Hu, Q.; Ruan, S.; Liu, J.; Zhang, J.; Hu, C.; Liu, Y.; Dian, Y.; Zhou, J. Utilizing Hyperspectral Reflectance and Machine Learning Algorithms for Non-Destructive Estimation of Chlorophyll Content in Citrus Leaves. Remote Sens. 2023, 15, 4934. [Google Scholar] [CrossRef]
  471. Dahal, S.; Phillippi, E.; Longchamps, L.; Khosla, R.; Andales, A. Variable Rate Nitrogen and Water Management for Irrigated Maize in the Western US. Agronomy 2020, 10, 1533. [Google Scholar] [CrossRef]
  472. Nackley, L.L.; Warneke, B.; Fessler, L.; Pscheidt, J.W.; Lockwood, D.; Wright, W.C.; Sun, X.; Fulcher, A. Variable-Rate Spray Technology Optimizes Pesticide Application by Adjusting for Seasonal Shifts in Deciduous Perennial Crops. HortTechnology 2021, 31, 479–489. [Google Scholar] [CrossRef]
  473. De Oliveira Maia, F.C.; Bufon, V.B.; Leão, T.P. Vegetation Indices as a Tool for Mapping Sugarcane Management Zones. Precis. Agric. 2023, 24, 213–234. [Google Scholar] [CrossRef]
  474. Kerkech, M.; Hafiane, A.; Canals, R. Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation Approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
  475. Karakizi, C.; Oikonomou, M.; Karantzalos, K. Vineyard Detection and Vine Variety Discrimination from Very High Resolution Satellite Data. Remote Sens. 2016, 8, 235. [Google Scholar] [CrossRef]
  476. Gavrilović, M.; Jovanović, D.; Božović, P.; Benka, P.; Govedarica, M. Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery. Remote Sens. 2024, 16, 584. [Google Scholar] [CrossRef]
  477. Mohamed, E.S.; Baroudy, A.A.E.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali, A.M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
  478. Gu, H.; Mills, C.; Ritchie, G.L.; Guo, W. Water Stress Assessment of Cotton Cultivars Using Unmanned Aerial System Images. Remote Sens. 2024, 16, 2609. [Google Scholar] [CrossRef]
  479. Zhao, J.; Tian, G.; Qiu, C.; Gu, B.; Zheng, K.; Liu, Q. Weed Detection in Potato Fields Based on Improved YOLOv4: Optimal Speed and Accuracy of Weed Detection in Potato Fields. Electronics 2022, 11, 3709. [Google Scholar] [CrossRef]
  480. Castellano, G.; De Marinis, P.; Vessio, G. Weed Mapping in Multispectral Drone Imagery Using Lightweight Vision Transformers. Neurocomputing 2023, 562, 126914. [Google Scholar] [CrossRef]
  481. Jiang, Y.; Yang, Z.; Xu, X.; Shen, D.; Jiang, T.; Xie, B.; Duan, J. Wetting and Deposition Characteristics of Air-Assisted Spray Droplet on Large Broad-Leaved Crop Canopy. Front. Plant Sci. 2023, 14, 1079703. [Google Scholar] [CrossRef]
  482. Sousa, D.; Small, C. Which Vegetation Index? Benchmarking Multispectral Metrics to Hyperspectral Mixture Models in Diverse Cropland. Remote Sens. 2023, 15, 971. [Google Scholar] [CrossRef]
  483. Scudiero, E.; Teatini, P.; Manoli, G.; Braga, F.; Skaggs, T.H.; Morari, F. Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data. Agronomy 2018, 8, 253. [Google Scholar] [CrossRef]
  484. Osman, Y.; Dennis, R.; Elgazzar, K. Yield Estimation and Visualization Solution for Precision Agriculture. Sensors 2021, 21, 6657. [Google Scholar] [CrossRef] [PubMed]
  485. Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L.; Agurto-Piñarreta, A.I. Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering 2024, 6, 2955–2969. [Google Scholar] [CrossRef]
  486. Jia, W.; Liu, M.; Luo, R.; Wang, C.; Pan, N.; Yang, X.; Ge, X. YOLOF-Snake: An Efficient Segmentation Model for Green Object Fruit. Front. Plant Sci. 2022, 13, 765523. [Google Scholar] [CrossRef] [PubMed]
  487. Liu, J.; Wang, C.; Xing, J. YOLOv5-ACS: Improved Model for Apple Detection and Positioning in Apple Forests in Complex Scenes. Forests 2023, 14, 2304. [Google Scholar] [CrossRef]
  488. Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Ramzan Khan, M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant Sci. 2022, 13, 92753. [Google Scholar] [CrossRef]
  489. Zurek, M.; Hebinck, A.; Selomane, O. Climate Change and the Urgency to Transform Food Systems. Science 2022, 376, 1416–1421. [Google Scholar] [CrossRef]
  490. Amoak, D.; Luginaah, I.; McBean, G. Climate Change, Food Security, and Health: Harnessing Agroecology to Build Climate-Resilient Communities. Sustainability 2022, 14, 13954. [Google Scholar] [CrossRef]
  491. Bezner Kerr, R.; Postigo, J.C.; Smith, P.; Cowie, A.; Singh, P.K.; Rivera-Ferre, M.; Tirado-von der Pahlen, M.C.; Campbell, D.; Neufeldt, H. Agroecology as a Transformative Approach to Tackle Climatic, Food, and Ecosystemic Crises. Curr. Opin. Environ. Sustain. 2023, 62, 101275. [Google Scholar] [CrossRef]
  492. Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
  493. Viera-Arroyo, W.; Binego, L.; Ryans, F.; López, D.; Moya, M.; Vera, L.; Caicedo, C. Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability 2025, 17, 6053. [Google Scholar] [CrossRef]
  494. Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can Agroecology Improve Food Security and Nutrition? A Review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
  495. Sullivan, S. Ag-Tech, Agroecology, and the Politics of Alternative Farming Futures: The Challenges of Bringing Together Diverse Agricultural Epistemologies. Agric. Hum. Values 2023, 40, 913–928. [Google Scholar] [CrossRef]
  496. Némethová, J.; Svobodová, H.; Věžník, A. Changes in Spatial Distribution of Arable Land, Crop Production and Yield of Selected Crops in the EU Countries after 2004. Agriculture 2022, 12, 1697. [Google Scholar] [CrossRef]
  497. Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
  498. Zandberg, J.D.; Fernandez, C.T.; Danilevicz, M.F.; Thomas, W.J.W.; Edwards, D.; Batley, J. The Global Assessment of Oilseed Brassica Crop Species Yield, Yield Stability and the Underlying Genetics. Plants 2022, 11, 2740. [Google Scholar] [CrossRef]
  499. Attia, Z.; Pogoda, C.S.; Reinert, S.; Kane, N.C.; Hulke, B.S. Breeding for Sustainable Oilseed Crop Yield and Quality in a Changing Climate. Theor. Appl. Genet. 2021, 134, 1817–1827. [Google Scholar] [CrossRef]
  500. Abobatta, W.F.; Hegab, R.H.; El-Hashash, E.F. Challenges and Opportunities for the Global Cultivation and Adaptation of Legumes B. Opportunities for Increasing Legumes Production and Availability. Ann. Agric. Crop Sci. 2022, 7, 1107. [Google Scholar] [CrossRef]
  501. Lieder, S.; Schröter-Schlaack, C. Smart Farming Technologies in Arable Farming: Towards a Holistic Assessment of Opportunities and Risks. Sustainability 2021, 13, 6783. [Google Scholar] [CrossRef]
  502. El-Ansary, D.O. Smart Farming and Orchard Management: Insights and Innovations. Curr. Food Sci. Technol. Rep. 2025, 3, 10. [Google Scholar] [CrossRef]
  503. Wang, Z.; Xun, Y.; Wang, Y.; Yang, Q. Review of smart robots for fruit and vegetable picking in agriculture. Int. J. Agric. Biol. Eng. 2022, 15, 33–54. [Google Scholar] [CrossRef]
  504. Canicattì, M.; Vallone, M. Drones in Vegetable Crops: A Systematic Literature Review. Smart Agric. Technol. 2024, 7, 100396. [Google Scholar] [CrossRef]
  505. Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
  506. Rafique, R.; Ahmad, T.; Kalsoom, T.; Khan, M.A.; Ahmed, M. Climatic Challenge for Global Viticulture and Adaptation Strategies. In Global Agricultural Production: Resilience to Climate Change; Ahmed, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 611–634. ISBN 978-3-031-14973-3. [Google Scholar]
  507. Darra, N.; Anastasiou, E.; Kriezi, O.; Lazarou, E.; Kalivas, D.; Fountas, S. Can Yield Prediction Be Fully Digitilized? A Systematic Review. Agronomy 2023, 13, 2441. [Google Scholar] [CrossRef]
  508. Chamara, N.; Islam, M.D.; Bai, G.; Shi, Y.; Ge, Y. Ag-IoT for Crop and Environment Monitoring: Past, Present, and Future. Agric. Syst. 2022, 203, 103497. [Google Scholar] [CrossRef]
  509. Preti, M.; Verheggen, F.; Angeli, S. Insect Pest Monitoring with Camera-Equipped Traps: Strengths and Limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
  510. Xing, Y.; Wang, X. Precise Application of Water and Fertilizer to Crops: Challenges and Opportunities. Front. Plant Sci. 2024, 15, 1444560. [Google Scholar] [CrossRef]
  511. Cruz Ulloa, C.; Krus, A.; Barrientos, A.; Del Cerro, J.; Valero, C. Trend Technologies for Robotic Fertilization Process in Row Crops. Front. Robot. AI 2022, 9, 808484. [Google Scholar] [CrossRef]
  512. Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.; Cercas, F. IoT-Based Systems for Soil Nutrients Assessment in Horticulture. Sensors 2023, 23, 403. [Google Scholar] [CrossRef]
  513. Longchamps, L.; Tisseyre, B.; Taylor, J.; Sagoo, L.; Momin, A.; Fountas, S.; Manfrini, L.; Ampatzidis, Y.; Schueller, J.K.; Khosla, R. Yield Sensing Technologies for Perennial and Annual Horticultural Crops: A Review. Precis. Agric. 2022, 23, 2407–2448. [Google Scholar] [CrossRef]
  514. Violino, S.; Figorilli, S.; Ferrigno, M.; Manganiello, V.; Pallottino, F.; Costa, C.; Menesatti, P. A Data-Driven Bibliometric Review on Precision Irrigation. Smart Agric. Technol. 2023, 5, 100320. [Google Scholar] [CrossRef]
  515. Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in Site-Specific Weed Management in Agriculture—A Review. Weed Res. 2022, 62, 123–133. [Google Scholar] [CrossRef]
  516. Šarauskis, E.; Sokas, S.; Rukaitė, J. Variable Depth Tillage: Importance, Applicability, and Impact—An Overview. AgriEngineering 2024, 6, 1870–1885. [Google Scholar] [CrossRef]
  517. Ma, Z.; Rayhana, R.; Feng, K.; Liu, Z.; Xiao, G.; Ruan, Y.; Sangha, J.S. A Review on Sensing Technologies for High-Throughput Plant Phenotyping. IEEE Open J. Instrum. Meas. 2022, 1, 1–21. [Google Scholar] [CrossRef]
  518. Sridhar, A.; Balakrishnan, A.; Jacob, M.M.; Sillanpää, M.; Dayanandan, N. Global Impact of COVID-19 on Agriculture: Role of Sustainable Agriculture and Digital Farming. Environ. Sci. Pollut. Res. 2023, 30, 42509–42525. [Google Scholar] [CrossRef]
  519. Ravi, S.; Rajasekaran, S.R.C. A Perspective of Digital Marketing in Rural Areas: A Literature Review. Int. J. Prof. Bus. Rev. 2023, 8, 26. [Google Scholar] [CrossRef]
  520. Fieldsend, A.F.; Cronin, E.; Varga, E.; Biró, S.; Rogge, E. ‘Sharing the Space’ in the Agricultural Knowledge and Innovation System: Multi-Actor Innovation Partnerships with Farmers and Foresters in Europe. J. Agric. Educ. Ext. 2021, 27, 423–442. [Google Scholar] [CrossRef]
  521. Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
  522. Sabbir Hossain, M.; Rahman, M.; Rahman, A.; Mohsin Kabir, M.; Mridha, M.F.; Huang, J.; Shin, J. Automatic Navigation and Self-Driving Technology in Agricultural Machinery: A State-of-the-Art Systematic Review. IEEE Access 2025, 13, 94370–94401. [Google Scholar] [CrossRef]
  523. Hassan, S.I.; Alam, M.M.; Illahi, U.; Al Ghamdi, M.A.; Almotiri, S.H.; Su’ud, M.M. A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. IEEE Access 2021, 9, 32517–32548. [Google Scholar] [CrossRef]
  524. Wilson, A.N.; Gupta, K.A.; Koduru, B.H.; Kumar, A.; Jha, A.; Cenkeramaddi, L.R. Recent Advances in Thermal Imaging and Its Applications Using Machine Learning: A Review. IEEE Sens. J. 2023, 23, 3395–3407. [Google Scholar] [CrossRef]
  525. Brenner, M.; Reyes, N.H.; Susnjak, T.; Barczak, A.L.C. RGB-D and Thermal Sensor Fusion: A Systematic Literature Review. IEEE Access 2023, 11, 82410–82442. [Google Scholar] [CrossRef]
  526. Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
  527. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
  528. Benelli, A.; Cevoli, C.; Fabbri, A. In-Field Hyperspectral Imaging: An Overview on the Ground-Based Applications in Agriculture. J. Agric. Eng. 2020, 51, 129–139. [Google Scholar] [CrossRef]
  529. Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
  530. Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef]
  531. Laveglia, S.; Altieri, G.; Genovese, F.; Matera, A.; Di Renzo, G.C. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering 2024, 6, 3084–3120. [Google Scholar] [CrossRef]
  532. Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
  533. Gómez-Chabla, R.; Real-Avilés, K.; Morán, C.; Grijalva, P.; Recalde, T. IoT Applications in Agriculture: A Systematic Literature Review. In ICT for Agriculture and Environment; Valencia-García, R., Alcaraz-Mármol, G., Cioppo-Morstadt, J.d., Vera-Lucio, N., Bucaram-Leverone, M., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 901, pp. 68–76. ISBN 978-3-030-10727-7. [Google Scholar]
  534. Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From Satellite to UAV-Based Remote Sensing: A Review on Precision Agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
  535. Barbosa, M.R., Jr.; Santos, R.G.d.; Sales, L.d.A.; Oliveira, L.P. de Advancements in Agricultural Ground Robots for Specialty Crops: An Overview of Innovations, Challenges, and Prospects. Plants 2024, 13, 3372. [Google Scholar] [CrossRef]
  536. Vasquez, S.; Ibba, P.; Gullino, M.; Ciccone, G.; Rasheed, A.; Allarà, C.; Lugli, P.; Petti, L. Plant Wearables: Bridging Technology and Sustainability in Precision Agriculture. Appl. Phys. Lett. 2025, 127, 050501. [Google Scholar] [CrossRef]
  537. Lamanna, M.; Bovo, M.; Cavallini, D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals 2025, 15, 458. [Google Scholar] [CrossRef]
  538. Fountas, S.; Sorensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Liakos, V.; Gemtos, T. Farm Machinery Management Information System. Comput. Electron. Agric. 2015, 110, 131–138. [Google Scholar] [CrossRef]
  539. Poppe, K.; Vrolijk, H.; Bosloper, I. Integration of Farm Financial Accounting and Farm Management Information Systems for Better Sustainability Reporting. Electronics 2023, 12, 1485. [Google Scholar] [CrossRef]
  540. Melzer, M.; Bellingrath-Kimura, S.; Gandorfer, M. Commercial Farm Management Information Systems—A Demand-Oriented Analysis of Functions in Practical Use. Smart Agric. Technol. 2023, 4, 100203. [Google Scholar] [CrossRef]
  541. Mushi, G.E.; Di Marzo Serugendo, G.; Burgi, P.-Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
  542. Tombe, R.; Smuts, H. Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Appl. Sci. 2023, 13, 6382. [Google Scholar] [CrossRef]
  543. Bhaskara, S.; Bawa, K.S. Societal Digital Platforms for Sustainability: Agriculture. Sustainability 2021, 13, 5048. [Google Scholar] [CrossRef]
  544. Schoemaker, E.; Talhouk, R.; Kamanu, C.; McDonaugh, E.; McDonaugh, C.; Casey, E.; Wills, A.; Richardson, F.; Donner, J. Social Agriculture: Examining the Affordances of Social Media for Agricultural Practices. In Proceedings of the ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS), Toronto, ON, Canada, 22–25 July 2025; ACM: Seattle, WA, USA, 2022; pp. 476–489. [Google Scholar]
  545. Singh, N.; Dey, K. A Typology of Agricultural Market Information Systems and Its Dimensions: Case Studies of Digital Platforms. Electron. Mark. 2023, 33, 42. [Google Scholar] [CrossRef]
  546. Abdalla, Z.; El-Ramady, H. Applications and Challenges of Smart Farming for Developing Sustainable Agriculture. Environ. Biodivers. Soil Secur. 2022, 6, 81–90. [Google Scholar] [CrossRef]
  547. Gorai, T.; Yadav, P.K.; Choudhary, G.L.; Kumar, A. Site-Specific Crop Nutrient Management for Precision Agriculture—A Review. Curr. J. Appl. Sci. Technol. 2021, 40, 37–52. [Google Scholar] [CrossRef]
  548. Concepcion, R.; Esguerra, B.J.; Mendigoria, C.H.; Aquino, H.; Alajas, O.J.; Francisco, K.; Montañez, J.J.; Bandala, A.; Dadios, E. Intelligent Permaculture: A Sustainable and Profitable Practice for Tropical and Maritime Climate Urban and Peri-Urban Agricultural Ecosystems. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar]
  549. Subedi, Y.R.; Godde, C.; Korale-Gedara, P.; Farr, J.; Fyfe, S. Exploring the Complexity of Food Systems Assessments: A Systematic Literature Review of Frameworks and Indicators. Glob. Food Secur. 2025, 46, 100881. [Google Scholar] [CrossRef]
  550. Vercher, N.; Bosworth, G.; Esparcia, J. Developing a Framework for Radical and Incremental Social Innovation in Rural Areas. J. Rural Stud. 2023, 99, 233–242. [Google Scholar] [CrossRef]
  551. Orjuela-Garzon, W.A.; Sandoval-Aldana, A.; Mendez-Arteaga, J.J. Systematic Literature Review of Barriers and Enablers to Implementing Food Informatics Technologies: Unlocking Agri-Food Chain Innovation. Foods 2024, 13, 3349. [Google Scholar] [CrossRef]
  552. Musa, S.F.P.D.; Basir, K.H. Smart Farming: Towards a Sustainable Agri-Food System. Br. Food J. 2021, 123, 3085–3099. [Google Scholar] [CrossRef]
  553. Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
  554. Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
  555. Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
  556. Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
  557. Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
  558. Rachakonda, L. Transforming Agriculture: A Mini-Review of IoT Innovations and Their Impact. In Proceedings of the 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-SoC), Tanger, Morocco, 6–9 October 2024; pp. 1–6. [Google Scholar]
  559. Nandini, Y.; Shrivastava, A.K. A Review on Different Types of Autonomous Agriculture Machines. Pharma Innov. J. 2021, SP-10, 880–884. [Google Scholar]
  560. Thongnim, P.; Duangkaew, P.; Srinil, P. Smart Farming and Agricultural Safety through TechnologicalAdvancement in Drone Spraying. JMCER 2024, 2024, 82–92. [Google Scholar]
  561. Liu, Y.; Swinton, S.M.; Miller, N.R. Is Site-Specific Yield Response Consistent over Time? Does It Pay? Am. J. Agric. Econ. 2006, 88, 471–483. [Google Scholar] [CrossRef]
  562. Meesala, H.; Brunori, G. Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach. Agriculture 2025, 15, 1636. [Google Scholar] [CrossRef]
  563. Ellahi, R.M.; Wood, L.C.; Bekhit, A.E.-D.A. Blockchain-Driven Food Supply Chains: A Systematic Review for Unexplored Opportunities. Appl. Sci. 2024, 14, 8944. [Google Scholar] [CrossRef]
  564. Høye, T.T.; Montagna, M.; Oteman, B.; Roy, D.B. Emerging Technologies for Pollinator Monitoring. Curr. Opin. Insect Sci. 2025, 69, 101367. [Google Scholar] [CrossRef]
  565. Sobhy, D.M.; Anandhi, A. Soil Nutrient Monitoring Technologies for Sustainable Agriculture: A Systematic Review. Sustainability 2025, 17, 8477. [Google Scholar] [CrossRef]
  566. Liu, Q.; Sun, X.; Wu, W.; Liu, Z.; Fang, G.; Yang, P. Agroecosystem Services: A Review of Concepts, Indicators, Assessment Methods and Future Research Perspectives. Ecol. Indic. 2022, 142, 109218. [Google Scholar] [CrossRef]
  567. Gkisakis, V.D.; Damianakis, K. Digital Innovations for the Agroecological Transition: A User Innovation and Commons-Based Approach. Landbauforsch. J. Sustain. Org. Agric. Syst. 2020, 70, 1–4. [Google Scholar] [CrossRef]
  568. Curry, G.N.; Nake, S.; Koczberski, G.; Oswald, M.; Rafflegeau, S.; Lummani, J.; Peter, E.; Nailina, R. Disruptive Innovation in Agriculture: Socio-Cultural Factors in Technology Adoption in the Developing World. J. Rural Stud. 2021, 88, 422–431. [Google Scholar] [CrossRef]
  569. Ferrari, A.; Bacco, M.; Gaber, K.; Jedlitschka, A.; Hess, S.; Kaipainen, J.; Koltsida, P.; Toli, E.; Brunori, G. Drivers, Barriers and Impacts of Digitalisation in Rural Areas from the Viewpoint of Experts. Inf. Softw. Technol. 2022, 145, 106816. [Google Scholar] [CrossRef]
  570. Walker, E.; Hernandez, A.V.; Kattan, M.W. Meta-Analysis: Its Strengths and Limitations. Cleve. Clin. J. Med. 2008, 75, 431–439. [Google Scholar] [CrossRef] [PubMed]
  571. Fan, D.; Breslin, D.; Callahan, J.L.; Iszatt-White, M. Advancing Literature Review Methodology through Rigour, Generativity, Scope and Transparency. Int. J. Manag. Rev. 2022, 24, 171–180. [Google Scholar] [CrossRef]
  572. Mehdic, A.; Gunton, T.; Rutherford, M. Assessing the Role of Subjective Judgment and Science in Environmental Impact Assessment: Implications and Options for Reform. J. Environ. Plan. Manag. 2020, 63, 1771–1790. [Google Scholar] [CrossRef]
Figure 1. The PRISMA workflow diagram of the research articles search.
Figure 1. The PRISMA workflow diagram of the research articles search.
Agronomy 15 02600 g001
Figure 2. Number of articles per year (the 2025 bar represents articles that were accepted in 2024, published in 2025, and subsequently included in the database).
Figure 2. Number of articles per year (the 2025 bar represents articles that were accepted in 2024, published in 2025, and subsequently included in the database).
Agronomy 15 02600 g002
Figure 3. Percentage of relevant articles per system.
Figure 3. Percentage of relevant articles per system.
Agronomy 15 02600 g003
Figure 4. Percentage of relevant articles per crop type.
Figure 4. Percentage of relevant articles per crop type.
Agronomy 15 02600 g004
Figure 5. Percentage of relevant articles per operation type.
Figure 5. Percentage of relevant articles per operation type.
Agronomy 15 02600 g005
Figure 6. Percentage of relevant articles per application type.
Figure 6. Percentage of relevant articles per application type.
Agronomy 15 02600 g006
Figure 7. Percentage of relevant articles per sensor type.
Figure 7. Percentage of relevant articles per sensor type.
Agronomy 15 02600 g007
Figure 8. Percentage of relevant articles per platform type.
Figure 8. Percentage of relevant articles per platform type.
Agronomy 15 02600 g008
Figure 9. Percentage of relevant articles per software type.
Figure 9. Percentage of relevant articles per software type.
Agronomy 15 02600 g009
Figure 10. Percentage of relevant articles per tier of agroecology.
Figure 10. Percentage of relevant articles per tier of agroecology.
Agronomy 15 02600 g010
Figure 11. Distribution of perceived societal, environmental, and economic impact levels of digital tools adoption in agriculture.
Figure 11. Distribution of perceived societal, environmental, and economic impact levels of digital tools adoption in agriculture.
Agronomy 15 02600 g011
Figure 12. Distribution of perceived impact levels (low, medium, high) of digital tools in crop production across social, environmental, and economic dimensions.
Figure 12. Distribution of perceived impact levels (low, medium, high) of digital tools in crop production across social, environmental, and economic dimensions.
Agronomy 15 02600 g012
Table 1. Query used in the Web of Science database to identify relevant publications [28].
Table 1. Query used in the Web of Science database to identify relevant publications [28].
Web of Science Database Query
(TS=(“Internet of Things”) OR TS=(“cloud computing”) OR TS=(“big data”) OR TS=(“artificial intelligence”) OR TS=(“machine learning”) OR TS=(“simulation”) OR TS=(“augmented reality”) OR TS=(“additive manufacturing”) OR TS=(“horizontal and vertical system integration”) OR TS=(“autonomous robo*”) OR TS=(“cybersecurity”) OR TS=(“DSS”) OR TS=(“decision support”) OR TS=(“sens*”) OR TS=(“databas*”) OR TS=(“ICT”) OR TS=(“robo*”) OR TS=(“GPS”) OR TS=(“GNSS”) OR TS=(“information syste*”) OR TS=(“image analys?s”) OR TS=(“image processing”) OR TS=(“camera*”) OR TS=(“video”) OR TS=(“RFID”) OR TS=(“eID”) OR TS=(“ruminal bolus”) OR TS=(“drafting”) OR TS=(“walk over weight”) OR TS=(“thermistore*”) OR TS=(“smart trap*”) OR TS=(“e?trap*”) OR TS=(“insect trap*”) OR TS=(“UAV*”) OR TS=(“UAS*”) OR TS=(“accelerometer*”) OR TS=(“pedometer*”) OR TS=(“virtual fencing”) OR TS=(“RGB”) OR TS=(“multispectral”) OR TS=(“hyperspectral”) OR TS=(“thermal”) OR TS=(“LIDAR”) OR TS=(“RADAR”) OR TS=(“EMI”) OR TS=(“satellite”) OR TS=(“UGV*”) OR TS=(“recording”) OR TS=(“guidance”) OR TS=(“steering”) OR TS=(“reacting”) OR TS=(“variable rate”) OR TS=(“monitoring”) OR TS=(“social network*”) OR TS=(“social platform*”) OR TS=(“social media”) OR TS=(“platform*”) OR TS=(“aerial”) OR TS=(“proximal”) OR TS=(“ground”) OR TS=(“FMIS”) OR TS=(“farm management information syste*”) OR TS=(“blockchain”) OR TS=(“marketplace*”) OR TS=(“load cell*”) OR TS=(“flow meter*”) OR TS=(“microphone*”) OR TS=(“feeder*”) OR TS=(“drinker*”) OR TS=(“body temperature device”) OR TS=(“photoelectric sensor”) OR TS=(“scale”) OR TS=(“force plat*”)) AND (TS=(“diversit*”) OR TS=(“knowledge AND (co-creat* OR shar*)”) OR TS=(“synerg*”) OR TS=(“efficien*”) OR TS=(“recycl*”) OR TS=(“value* AND (human OR social)”) OR TS=(“cultur*”) OR TS=(“food AND tradition*”) OR TS=(“responsib* AND govern*”) OR TS=(“economy AND (circular OR solidarity)”)) AND (TS=(“digital agriculture”) OR TS=(“digital farming”) OR TS=(“agroecolog*”) OR TS=(“agro-ecolog*”) OR TS=(“sustainable agriculture”) OR TS=(“precision agriculture”) OR TS=(“smart farming”) OR TS=(“smart agriculture”) OR TS=(“precision livestock farming”)) AND (TS=(“crop*”) OR TS=(“vineyard*”) OR TS=(“vegetable*”) OR TS=(“orchard*”) OR TS=(“arable”) OR TS=(“livestock”) OR TS=(“poultry”) OR TS=(“chicken”) OR TS=(“hen”) OR TS=(“ruminant*”) OR TS=(“pig*”) OR TS=(“goat*”) OR TS=(“sheep”) OR TS=(“lamb*”) OR TS=(“cow*”) OR TS=(“cattle”))
Table 2. Technical aspect keywords used in the literature review.
Table 2. Technical aspect keywords used in the literature review.
ClassesOptions
Crop-related characteristics and applications
Farming TypeArable Crops; Vegetable Crops; Orchard Crops; Vineyards
Farming System TypeConventional; Organic; Integrated Management
Operation TypeLand Preparation; Irrigation; Fertilisation; Pest Control; Weeding; Harvest; Monitoring; Marketing; Breeding
Characteristics and use of digital tools on crops
Application TypeGuidance/Steering; Recording/Monitoring/Mapping; Reacting/VRA (Variable Rate Application)/Control; Information/Knowledge Sharing
PlatformSatellite; UAV (Uncrewed Aerial Vehicle); UGV (Uncrewed Ground Vehicle); Crewed Ground Vehicles; Stationary; Wearable; Mobile Ground; Crewed Aerial Vehicles
SensorsHyperspectral; Multispectral; Thermal; RGB/RGB-D; LIDAR; Weather Station; Load Cell; Sound Sensor; Flow Meter; Temperature Sensor; Weight Sensor; Soil Sensor; Stem Water Potential Sensor; NIRS (Near- Infrared Spectroscopy; Smart Trap; Synthetic Aperture Radar; GNSS; Soil Electrical Conductivity Sensor; Canopy Sensor; Fluorescence; Water Quality Sensor; Ground-Penetrating Radar; Soil Cutting Resistance Sensor; Electronic Plate Meter; Force Plate; pH Sensor
SoftwareSoftware; FMIS (Farm Management Information System); DSS (Decision Support System); Social Platform; Digital Marketplace
Contribution to transition to agroecology
Tier of AgroecologyTier One: reduce inputs; Tier Two: substitute with sustainable inputs; Tier Three: redesign agricultural systems to incorporate biodiversity; Tier Four: reconnect producers and consumers; Tier Five: create a just and equitable global food system
Table 3. Impacts used for the assessment of the selected research articles [28].
Table 3. Impacts used for the assessment of the selected research articles [28].
Impact TypeImpact
Economic ImpactProductivity
Revenue, profit, farm income
Input costs
Shelf life of product
Product quality
Product wastage
Environmental ImpactAir protection
Soil protection
Water protection
Biodiversity protection
GHG emission
Social ImpactLabour time
Stress for farmer
Amount of heavy physical labour
Number and/or severity of personal injury accidents
Number and/or severity of accidents resulting in spills, property damage, incorrect application of inputs, etc.
Human exposure to chemicals
Table 4. Numeric values assigned per impact type [28].
Table 4. Numeric values assigned per impact type [28].
ImpactNumeric Value
Large DecreaseSmall DecreaseNo EffectSmall IncreaseLarge Increase
Economic Impacts
Productivity−2−10+1+2
Revenue, profit, farm income−2−10+1+2
Input costs+2+10−1−2
Shelf life of product−2−10+1+2
Product quality−2−10+1+2
Product wastage+2+10−1−2
Environmental Impacts
Air protection−2−101+2
Soil protection−2−101+2
Water protection−2−101+2
Biodiversity protection−2−10+1+2
GHG emission+2+10−1−2
Social Impacts
Labour time+2+10−1−2
Stress for farmer+2+10−1−2
Amount of heavy physical labour+2+10−1−2
Number and/or severity of personal injury accidents+2+10−1−2
Number and/or severity of accidents resulting in spills, property damage, incorrect application of inputs, etc.+2+10−1−2
Human exposure to chemicals+2+10−1−2
Table 5. Weights and categorisation rules per impact category [28].
Table 5. Weights and categorisation rules per impact category [28].
Impact TypeWeight for Each Impact TypeNumeric Values
Low ImpactMedium ImpactHigh Impact
Economic1<4≥4 and <8≥8
Environmental1<3≥3 and <7≥7
Social1<4≥4 and <8≥8
Economic and Environmental *0.5<4≥4 and <8≥8
Overall **0.33<4≥4 and <8≥8
* Each impact (economic and environmental) was assigned 0.5 to result in normalised values. ** Each impact (economic, environmental, and social) was assigned 0.33 to result in normalised values.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Anastasiou, E.; Kasimati, A.; Papadopoulos, G.; Vatsanidou, A.; Gemtou, M.; Kantelhardt, J.; Gabriel, A.; Schwierz, F.; Matavel, C.E.; Meyer-Aurich, A.; et al. Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy 2025, 15, 2600. https://doi.org/10.3390/agronomy15112600

AMA Style

Anastasiou E, Kasimati A, Papadopoulos G, Vatsanidou A, Gemtou M, Kantelhardt J, Gabriel A, Schwierz F, Matavel CE, Meyer-Aurich A, et al. Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy. 2025; 15(11):2600. https://doi.org/10.3390/agronomy15112600

Chicago/Turabian Style

Anastasiou, Evangelos, Aikaterini Kasimati, George Papadopoulos, Anna Vatsanidou, Marilena Gemtou, Jochen Kantelhardt, Andreas Gabriel, Friederike Schwierz, Custodio Efraim Matavel, Andreas Meyer-Aurich, and et al. 2025. "Review and Assessment of Crop-Related Digital Tools for Agroecology" Agronomy 15, no. 11: 2600. https://doi.org/10.3390/agronomy15112600

APA Style

Anastasiou, E., Kasimati, A., Papadopoulos, G., Vatsanidou, A., Gemtou, M., Kantelhardt, J., Gabriel, A., Schwierz, F., Matavel, C. E., Meyer-Aurich, A., Maritan, E., Behrendt, K., Moroder, A., Bellingrath-Kimura, S. D., Pedersen, S. M., Landi, A., Pesonen, L., Rojic, J., Kim, M., ... Fountas, S. (2025). Review and Assessment of Crop-Related Digital Tools for Agroecology. Agronomy, 15(11), 2600. https://doi.org/10.3390/agronomy15112600

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop