Sustainable Cultivation of Dragon Fruit: Integrated Nutrient and Pest Management Strategies for Enhanced Productivity and Environmental Stewardship
Abstract
1. Introduction
1.1. Importance of Dragon Fruit in Global Agriculture
1.2. Rising Demand, Production Trends, and Global Market
1.3. Need for Sustainable Cultivation Practices
1.4. Objectives and Scope of the Review
2. Botanical and Agronomic Overview
| Feature | H. undatus (White-Fleshed Dragon Fruit) | H. costaricensis (Red-Fleshed Dragon Fruit) | H. megalanthus (Yellow Dragon Fruit) | References |
|---|---|---|---|---|
| Fruit Appearance | Pink/Red Skin, white flesh | Red skin, red flesh | Yellow skin, white flesh | [23,41,42,43] |
| Flavor | Mild, slightly sweet | Rich, sweet flavor | Very sweet aromatic | [41,42,43] |
| Climate | Tropical and subtropical; warm and humid | Warm and humid | Warmer regions with low humidity | [44,45] |
| Temperature Range | 18–35 °C | 20–38 °C | 21–32 °C | [44,45] |
| Soil Conditions | Well-drained, sandy-loamy | Fertile, well-drained | Sandy, slightly acidic | [43,45,46] |
| Water Requirements | Moderate | Moderate to high | Low to moderate | [45,46] |
| Nutrient Requirements | Balanced NPK | High in organic matter | High nitrogen, high potassium | [46,47] |
| Pest and Disease Issues | Mealybugs, fruit rot | Anthracnose, stem rot | Nematodes, stem blight | [48,49,50] |
| Pollination | Cross/self-pollinated (insects) | Mostly cross-pollinated | Hand pollination | [51,52] |
3. Current Cultivation Practices
3.1. Conventional vs. Sustainable Practices
3.2. Global Cultivation Hotspots
3.3. Productivity Challenges in Different Regions
4. Nutrient Management in Dragon Fruit
4.1. Soil Fertility and Design Strategies
4.2. Organic Versus Synthetic Fertilization
4.3. Role of Biofertilizers and Compost
4.4. Case Studies on Nutrient Optimization
5. Pest and Disease Management
5.1. Major Pests and Their Life Cycles
5.2. Key Diseases Affecting Dragon Fruit
5.3. Chemical Control: Advantages, Limitations, Concerns, and Management Strategies
6. Sustainable Farming Practices for Dragon Fruit
6.1. Organic Farming Approaches
6.2. Drip Irrigation and Water Conservation
6.3. Crop Rotation and Intercropping
6.4. Soil Health Monitoring and Conservation
6.5. Climate-Smart Agriculture for Dragon Fruit
7. Technological Innovations
7.1. Use of Remote Sensing and GIS in Farm Management
7.2. Precision Agriculture Techniques
7.3. Smart Sensors for Nutrient and Pest Detection
7.4. Data-Driven Decision Support Tools
8. Socioeconomic and Environmental Considerations
8.1. Cost–Benefit Dynamics of Sustainable Farming
8.2. Farmers Through Knowledge and Training
8.3. Impact on Biodiversity and Ecosystem Services
8.4. The Power of Policy and Certification
9. Future Direction and Research Needs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arivalagan, M.; Karunakaran, G.; Roy, T.K.; Dinsha, M.; Sindhu, B.C.; Shilpashree, V.M.; Satisha, G.C.; Shivashankara, K.S. Biochemical and Nutritional Characterization of Dragon Fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef]
- Liaotrakoon, W. Characterization of Dragon Fruit (Hylocereus spp.) Components with Valorization Potential. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2013. Available online: https://biblio.ugent.be/publication/4093845 (accessed on 13 September 2025).
- Kumar, B.A.B.L.U. Study on Storage Stability of Dragon Fruit (Hylocereus polyrhizus) Juice and Concentrate. Master’s Thesis, Junagadh Agricultural University, Junagadh, India, 2021. [Google Scholar]
- Jalgaonkar, K.; Mahawar, M.K.; Bibwe, B.; Kannaujia, P. Postharvest Profile, Processing and Waste Utilization of Dragon Fruit (Hylocereus spp.): A Review. Food Rev. Int. 2020, 38, 733–759. [Google Scholar] [CrossRef]
- Britton, N.L.; Rose, J.N. Hylocereanae. The Cactaceae; Dover: New York, NY, USA, 1963; Volume II, pp. 183–212. [Google Scholar]
- Bauer, R. A Synopsis of the Tribe Hylocereeae. Cactaceae Syst. Initiat. 2003, 17, 3–63. [Google Scholar]
- Jana, H.; Basu, D. Dragon Fruit Cultivation: A Manageable and Profit Providing Agri-Enterprise in India. Int. J. Curr. Res. 2025, 17, 31115–31122. [Google Scholar]
- Mercado-Silva, E.M. Pitaya—Hylocereus undatus (Haw). Exot. Fruits 2018, 1, 339–349. [Google Scholar] [CrossRef]
- Mizrahi, Y. Vine-cacti pitayas: The new crops of the world. Rev. Bras. Frutic. 2014, 36, 124–138. [Google Scholar] [CrossRef]
- Pagliaccia, D.; Vidalakis, G.; Douhan, G.W.; Lobo, R.; Tanizaki, G. Genetic characterization of pitahaya accessions based on amplified fragment length polymorphism analysis. HortScience 2015, 50, 332–336. [Google Scholar] [CrossRef]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an attractive alternative crop for mediterranean region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Esquivel, P.; Stintzing, F.C.; Carle, R. Phenolic Compound Profiles and Their Corresponding Antioxidant Capacity of Purple Pitaya (Hylocereus sp.) Genotypes. Z. Naturforsch. C 2007, 62, 636–644. [Google Scholar] [CrossRef]
- Lagneaux, E.; Jansen, M.; Quaedvlieg, J.; Zuidema, P.A.; Anten, N.P.; García Roca, M.R.; Kettle, C.J. Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon. Sustainability 2021, 13, 4582. [Google Scholar] [CrossRef]
- Nerd, A.; Mizrahi, Y. The Effect of Ripening Stage on Fruit Quality after Storage of Yellow Pitaya. Postharvest Biol. Technol. 1999, 15, 99–105. [Google Scholar] [CrossRef]
- Sibut, H.C.P.; Faleiro, F.G.; Oliveira, J.D.S.; Luz, A.L.D.; Caliman, D.; Junqueira, N.T.V. Yield Capacity of Six Superior Pitaya Genotypes under Edaphoclimatic Conditions of the Federal District. Rev. Bras. Frutic. 2023, 45, e-025. [Google Scholar] [CrossRef]
- Krauser, L.E.; Stevens, F.R.; Gaughan, A.E.; Nghiem, S.V.; Thy, P.T.M.; Duy, P.T.N.; Chon, L.T. Shedding Light on Agricultural Transitions, Dragon Fruit Cultivation, and Electrification in Southern Vietnam Using Mixed Methods. Ann. Am. Assoc. Geogr. 2022, 112, 1139–1158. [Google Scholar] [CrossRef]
- Garcia, Y.; Valdez, D.; Ponce de Leon, D.; Urjilez, H.; Santos-Pinargote, J.; Mancero-Castillo, D. Beneficial Soil Fungi Isolated from Tropical Fruit Crop Systems for Enhancing Yield and Growth in Dragon Fruit in Ecuador. Int. J. Plant Biol. 2025, 16, 62. [Google Scholar] [CrossRef]
- Minh, N.D.; Son, N.H. The Role of Stakeholders and Their Relationships in the Export-Oriented Dragon Fruit Value Chain in Vietnam. Agriculture 2020, 10, 91–104. [Google Scholar]
- Villegas-Murillo, J.; Otárola, M.F. The Role of Nocturnal and Diurnal Pollinators in the Commercial Production of Dragon Fruit Crops in Costa Rica. Rev. Biol. Trop. 2025, 73, e64685. [Google Scholar] [CrossRef]
- Mehta, A.; Lamichhane, P.; Khatiwada, R.; Mandal, A.; Chaudhary, P.K.; Aryal, S. Dragon Fruit Cultivation, Profitability, and Production Efficiency in Southern Terai, Nepal. Int. J. Hortic. Sci. Technol. 2024, 11, 469–480. [Google Scholar]
- Selim, S.; San, B.T.; Koc-San, D.; Selim, C. A Two-Level Approach to Geospatial Identification of Optimal Pitaya Cultivation Sites Using Multi-Criteria Decision Analysis. J. Sci. Food Agric. 2025, 105, 5851–5862. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Garcia-Mier, L.; Ramirez-Gomez, X.S.; Aguirre-Becerra, H.; Escobar-Ortiz, A.; Contreras-Medina, L.M.; Garcia-Trejo, J.F.; Feregrino-Perez, A.A. Pitahaya peel: A by-product with great phytochemical potential, biological activity, and functional application. Molecules 2022, 27, 5339. [Google Scholar] [CrossRef]
- Shah, K.; Chen, J.; Chen, J.; Qin, Y. Pitaya Nutrition, Biology, and Biotechnology: A Review. Int. J. Mol. Sci. 2023, 24, 13986. [Google Scholar] [CrossRef]
- Chen, J.; Li, F.; Liu, J.; Mao, Y.; Gan, Z.; Hu, H.; Qin, Y. Gap-Free Genome and Efficient Transcript Purification System Reveal the Genome Diversity and Chlorophyll Degradation Mechanism in Pitaya. J. Integr. Plant Biol. 2025, 67, 1771–1786. [Google Scholar] [CrossRef]
- Tarte, I.; Singh, A.; Dar, A.H.; Sharma, A.; Altaf, A.; Sharma, P. Unfolding the potential of dragon fruit (Hylocereus spp.) for value addition: A review. eFood 2023, 4, e76. [Google Scholar] [CrossRef]
- Sharma, S.C.; Mittal, R.; Sharma, A.; Verma, V. Dragon fruit: A promising crop with a growing food market that can provide profitable returns to farmers. Int. J. Agric. Sci. Res 2021, 11, 1–14. [Google Scholar]
- Cypher Exim. Leading Dragon Fruit Exporters: Which Countries Dominate the Global Market? 2025. Available online: https://cypherexim.com/blogs/leading-dragon-fruit-exporters-which-countries-dominate-the-global-market (accessed on 24 April 2025).
- Nerd, A.; Tel-Zur, N.; Mizrahi, Y. Fruits of Vine and Columnar Cacti; University of California Press: Berkeley, CA, USA, 2002; pp. 185–197. [Google Scholar]
- Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Andreotti, M.; Spada, M.; Macchia, D.; Fais, S. Beneficial Effects of Fermented Papaya Preparation (FPP®) Supplementation on Redox Balance and Aging in a Mouse Model. Antioxidants 2020, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Belbase, P.; Jayachandran, K.; Bhaskar, M.S.B. Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated under High Tunnel Systems. Soil Syst. 2025, 9, 75. [Google Scholar] [CrossRef]
- Pierre, J.F.; Jacobsen, K.L.; Wszelaki, A.; Butler, D.; Velandia, M.; Woods, T.; Sideman, R.; Grossman, J.; Coolong, T.; Hoskins, B.; et al. Sustaining soil health in high tunnels: A paradigm shift toward soil-centered management. HortTechnology 2024, 34, 594–603. [Google Scholar] [CrossRef]
- Setyowati, A.; Sukaya, S.; Yuniastuti, E. Morphological and cytological analysis of yellow skin dragon fruit (Selenicereus megalanthus). Cell Biol. Dev. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Mizrahi, Y.; Nerd, A. Climbing and Columnar Cacti: New Arid Land Fruit Crops. In Perspectives on New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 1999; pp. 358–366. [Google Scholar]
- Weiss, J.; Nerd, A.; Mizrahi, Y. Flowering Behavior and Pollination Requirements in Climbing Cacti with Fruit Crop Potential. HortScience 1994, 29, 1487–1492. [Google Scholar] [CrossRef]
- Abirami, K.; Swain, S.; Baskaran, V.; Venkatesan, K.; Sakthivel, K.; Bommayasamy, N. Distinguishing Three Dragon Fruit (Hylocereus spp.) Species Grown in Andaman and Nicobar Islands of India Using Morphological, Biochemical and Molecular Traits. Sci. Rep. 2021, 11, 2894. [Google Scholar] [CrossRef]
- Hossain, F.M.; Numan, S.M.N.; Akhtar, S. Cultivation, Nutritional Value, and Health Benefits of Dragon Fruit (Hylocereus spp.): A Review. Int. J. Hortic. Sci. Technol. 2021, 8, 259–269. [Google Scholar]
- Nerd, A.; Mizrahi, Y. Effect of Low Winter Temperatures on Bud Break in Opuntia ficus-indica. Adv. Hortic. Sci. 1995, 9, 188–191. [Google Scholar]
- Le Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A New Fruit Crop, a Market with a Future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Tien, N.N.T.; Le, N.L.; Khoi, T.T.; Richel, A. Influence of Location, Weather Condition, Maturity, and Plant Disease on Chemical Profiles of Dragon Fruit (Hylocereus spp.) Branches Grown in Vietnam. Biomass Convers. Biorefin. 2022, 13, 16085–16097. [Google Scholar] [CrossRef]
- Tamby Chik, C.; Abu Bakar, F.; Chin, N.L.; Yusof, Y.A.; Rahman, R.A. Quality Characteristics of Three Pitaya Fruit Species (Hylocereus undatus, H. polyrhizus, and Selenicereus megalanthus) and Their Acceptability in Terms of Color, Taste and Texture. ASEAN Food J. 2011, 18, 245–251. [Google Scholar]
- Yasmin, A.; Ali, S.; Fayyaz, H.; Rauf, A.; Ullah, A.; Sohail, M.; Rasheed, A.; Saeed, F.; Hayat, R.; Khan, M. Comparative Analysis of Nutrient Composition and Antioxidant Activity of Three Dragon Fruit (Hylocereus spp.) Cultivars. PLoS ONE 2024, 19, e0302702. [Google Scholar]
- Das, U.; Hasan, B.; Hussain, T.; Rahman, A.; Mahmood, A.; Marma, S.; Fabia, N.S. Physicochemical, nutritional, and sensory attributes of high fiber fruit leather of red dragon fruit-peel and mango. J. Food Qual. Hazards Control 2025, 12, 27–36. [Google Scholar] [CrossRef]
- Oltehua-López, O.; Arteaga-Vázquez, M.A.; Sosa, V. Stem Transcriptome Screen for Selection in Wild and Cultivated Pitahaya (Selenicereus undatus): An Epiphytic Cactus with Edible Fruit. PeerJ 2023, 11, e14581. [Google Scholar] [CrossRef]
- Ben-Asher, J.; Nobel, P.S.; Yossov, E.; Mizrahi, Y. Net CO2 Uptake of Hylocereus undatus and Selenicereus megalanthus under Field Conditions in the Negev Desert of Israel. Photosynthetica 2006, 44, 181–186. [Google Scholar] [CrossRef]
- Alves, D.A.; Cruz, M.C.M.; Lima, J.E.; Santos, N.C.; Rabelo, J.M.; Barroso, F.L. Productive Potential and Quality of Pitaya with Nitrogen Fertilization. Pesqui. Agropecu. Bras. 2021, 56, e01882. [Google Scholar] [CrossRef]
- Fernandes, D.R.; Souza, H.A.; Chagas, E.A.; Pio, R.; Azevedo, A.M.; Carvalho, S.P. Potassium Fertilization Improves the Production and Quality of Pitaya. Acta Sci. Agron. 2018, 40, e35290. [Google Scholar] [CrossRef]
- Hong, C.-F.; Gazis, R.; Crane, J.H.; Zhang, S. Neoscytalidium dimidiatum Causing Stem and Fruit Canker on Pitahaya (Hylocereus spp.) in South Florida. Plant Dis. 2020, 104, 1433–1438. [Google Scholar] [CrossRef]
- Derviş, S.; Turan, H.; Çakır, E.; Soylu, E.M.; Soylu, S. Taxonomy, Pathogenicity, and Plant Associations of Neoscytalidium dimidiatum. Pathogens 2023, 12, 1532. [Google Scholar]
- Long, H.; Chen, Y.; Pei, Y.; Li, H.; Sun, Y.; Feng, T. Occurrence and Identification of Root-Knot Nematodes on Red Dragon Fruit (Hylocereus polyrhizus) in Hainan, China. Agronomy 2022, 12, 1064. [Google Scholar] [CrossRef]
- Lichtenzveig, J.; Abbo, S.; Nerd, A.; Tel-Zur, N.; Mizrahi, Y. Cytology and Mating Systems in the Climbing Cacti Hylocereus and Selenicereus. Am. J. Bot. 2000, 87, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Dag, A.; Mizrahi, Y. Effect of Pollination Method on Fruit Set and Fruit Characteristics in Yellow Pitaya (Selenicereus megalanthus). J. Hortic. Sci. Biotechnol. 2005, 80, 618–622. [Google Scholar] [CrossRef]
- Baruah, S.; Borgohain, S.; Sharma, J.B.; Mazumdar, H.; Bhagawati, M.; Saikia, S.; Neog, M.; Pathak, P.K. Effect of Various Doses of Inorganic Fertilizers on Growth and Yield of Dragon Fruit (Hylocereus polyrhizus L.) in Assam Condition. Ecol. Environ. Conserv. 2024, 7, S45. [Google Scholar] [CrossRef]
- Xu, C.L.; Zhao, C.B.; Ding, S.; Zhang, J.F.; Xie, H.; Huang, C.X. First Report of Root-Knot Nematode Meloidogyne arenaria Infesting Roots of Anubias barteri in Guangdong, China. Plant Dis. 2012, 96, 773. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, R.; Shen, J.; Chen, J. Soil Microbial Responses to the Use of Chemical Pesticides and Organic Amendments in Agricultural Soils. Environ. Sci. Pollut. Res. 2015, 22, 1793–1802. [Google Scholar]
- Pre Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef]
- Li, J.C.; Deng, J.W.; Shen, Y.B.; Zhang, R.; Sun, Q.M. Integrated metabolomic and transcriptomic analyses to elucidate mechanisms underlying the fruit quality losses of pitaya during storage. Sci. Hortic. 2024, 329, 112974. [Google Scholar] [CrossRef]
- Chen, S.Y.; Xu, C.Y.; Mazhar, M.S.; Naiker, M. Nutritional Value and Therapeutic Benefits of Dragon Fruit: A Comprehensive Review with Implications for Establishing Australian Industry Standards. Molecules 2024, 29, 5676. [Google Scholar] [CrossRef]
- Hosen, M.B.; Islam, M.R.; Tahera-Tun-Humayra, U.; Sharker, R.; Kader, Z.; Aziz, M.T.; Tofiquzzaman, M. Assessing Land Suitability for Dragon Fruit Cultivation in Bangladesh: A GIS-Based AHP Approach. Smart Agric. Technol. 2025, 16, 101241. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Reddy, K.S. Present Status, Scope, Marketing, Constraints and Policy Issues of Dragon Fruit Farming in India. In Climate Change & Abiotic Stresses Management Solutions for Enhancing Water Productivity, Production Quality and Doubling Farmers Income in Scarcity Zones; Academic Foundation: New Delhi, India, 2023; pp. 55–68. [Google Scholar]
- Chen, S.-Y.; Islam, M.A.; Johnson, J.B.; Xu, C.-Y.; Mazhar, M.S.; Naiker, M. Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions. Horticulturae 2024, 10, 1048. [Google Scholar] [CrossRef]
- Bruce, A. Entrance and Persistence in Alternative Agriculture: An American Case Study. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 2016. Available online: https://rucore.libraries.rutgers.edu/rutgers-lib/49919/PDF/1/play/ (accessed on 13 September 2025).
- Nerd, A.; Sitrit, Y.; Kaushik, R.A.; Mizrahi, Y. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Sci. Hortic. 2002, 96, 343–350. [Google Scholar] [CrossRef]
- de Oliveira, M.M.T.; Albano-Machado, F.G.; Penha, D.M.; Pinho, M.M.; Natale, W.; de Miranda, M.R.A.; de Medeiros Corrêa, M.C. Shade improves growth, photosynthetic performance, production, and postharvest quality in red pitahaya (Hylocereus costaricensis). Sci. Hortic. 2021, 286, 110217. [Google Scholar] [CrossRef]
- Kaman, H.; Gübbük, H.; Altinkaya, L.; Balkiç, R.; Ünlü, M. Prospects of training system and deficit irrigation for increasing yield and water use efficiency of pitaya (Hylocereus spp.) in the Mediterranean region. BMC Plant Biol. 2025, 25, 1431. [Google Scholar] [CrossRef] [PubMed]
- Yuqing, H.; Weiyuan, Y.; Ling, M.; Guangping, X.; Zhongfeng, Z.; Danjuan, Z.; Daxing, G. Physiological effect on Hylocereus undulatus and Hylocereus undatus under simulated karst soil water deficiency. J. Resour. Ecol. 2015, 6, 269–275. [Google Scholar]
- Rodríguez-Garrido, R.; Chiamolera, F.M.; Cuevas, J. Effects of pruning date on flowering, yield, and fruit quality of ‘Korean White’ pitaya (Selenicereus undatus [(Haw.) Britton and Rose]) cultivated in unheated greenhouses of southeast Spain. Horticulturae 2025, 11, 919. [Google Scholar] [CrossRef]
- Ador, K.; Gobilik, J.; Benedick, S. Flowering phenology and evaluation of pollination techniques to achieve acceptable fruit quality of red-fleshed pitaya (Hylocereus polyrhizus) in Sabah, East Malaysia. Pertanika J. Trop. Agric. Sci. 2024, 47, 319–333. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Kader, A.A. Increasing Food Availability by Reducing Postharvest Losses of Fresh Produce. Acta Hortic. 2004, 682, 2169–2176. [Google Scholar] [CrossRef]
- Nerd, A.; Mizrahi, Y. Reproductive Biology of Cactus Fruit Crops. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 37, Chapter 7. [Google Scholar] [CrossRef]
- Ortiz-Hernández, Y.D.; Carrillo-Salazar, J. Pitahaya (Hylocereus spp.): A Short Review. Comunicata Sci. 2012, 3, 220–237. [Google Scholar]
- Valero, D.; Erazo-Lara, A.; Pastor, M.E.; Padilla-González, P.; Agulló, V.; Badiche El Hilali, F.; Serrano, M. Yellow Pitahaya (Selenicereus megalanthus Haw.): The Less Known of the Pitahayas. Foods 2025, 14, 202. [Google Scholar] [CrossRef]
- Tel-Zur, N. Breeding an Underutilized Fruit Crop: A Long-Term Program for Hylocereus. Hortic. Res. 2022, 9, uhac078. [Google Scholar] [CrossRef]
- Wu, L.-C.; Hsu, H.-W.; Chen, Y.-C.; Chiu, C.-C.; Lin, Y.-I.; Ho, J.-A.A. Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Manthey, J.A.; Luzio, G.; Talcott, S.T.; Goodner, K.; Baldwin, E.A. Total Antioxidant Activity and Fiber Content of Select Florida-Grown Tropical Fruits. J. Agric. Food Chem. 2006, 54, 7355–7363. [Google Scholar] [CrossRef]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (Hylocereus polyrhizus) Extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Ganesan, K.; Sundram, R.; Rangarajan, V.; Rajendiran, S.; Manivannan, A.; Srivastava, A.K.; Gangadharappa, S.K.; Thimmarayappa, R. Optimization of fertilizer doses for increased fruit yield of dragon fruit adopting response surface methodology and Box-Behnken design. Front. Plant Sci. 2025, 16, 1661974. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.N.; Gupto, S.D.; Rahman, M.K. Assessment of soil fertility in relation to dragon fruit (Hylocereus costaricensis) cultivation in south-eastern region of Bangladesh. J. Biodivers. Conserv. Bioresour. Manag. 2024, 10, 87–96. [Google Scholar] [CrossRef]
- Lal, R. Soils and Food Sufficiency: A Review. Agron. Sustain. Dev. 2009, 29, 113–133. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Zingore, S.; Wendt, J. Integrated Soil Fertility Management in Sub-Saharan Africa: Unraveling Local Adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Belbase, P.; Bhaskar, M.S.B.; Jayachandran, K.; Bhat, M. Comparative Evaluation of Dragon Fruit Performance in High Tunnel and Field Environments in South Florida. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, St. Louis, MO, USA, 29 October–1 November 2023; ASA–CSSA–SSSA: Madison, WI, USA, 2023. Conference Abstract. [Google Scholar]
- De Jager, A.; Nandwa, S.M.; Okoth, P.F. Monitoring Nutrient Flows and Economic Performance in African Farming Systems (NUTMON): I. Concepts and Methodologies. Agric. Ecosyst. Environ. 1998, 71, 37–48. [Google Scholar] [CrossRef]
- Liu, Y.-T. Infectious Disease Genomics. In Genetics and Evolution of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- University of California Agriculture and Natural Resources (UC ANR)—UC Statewide IPM Program. Pest Notes: Sooty Mold. Publication 74108, Revised September 2020. Oakland, CA, USA. Available online: https://ipm.ucanr.edu/legacy_assets/pdf/pestnotes/pnsootymold (accessed on 15 September 2025).
- Envirevo Agritech. How to Remove Sooty Mold Disease: Symptoms & Treatment. 2024. Available online: https://envirevoagritech.com/how-to-remove-sooty-mold-disease/ (accessed on 15 September 2025).
- University of California Agriculture and Natural Resources (UC ANR). Pitahaya Pests in Florida. 2016. Available online: https://ucanr.edu/sites/default/files/2016-09/248990.pdf (accessed on 15 September 2025).
- Masyahit, M.; Sijam, K.; Awang, Y.; Satar, M.G.M. First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in Peninsular Malaysia. Int. J. Agric. Biol. 2009, 11, 659–666. [Google Scholar]
- Meetum, P.; Leksomboon, C.; Kanjanamaneesathian, M. First report of Colletotrichum aenigma and C. siamense, the causal agents of anthracnose disease of dragon fruit in Thailand. J. Plant Pathol. 2015, 97, 402. [Google Scholar]
- Wright, E.; Rivera, M.; Ghirlanda, A.; Lori, G. Basal rot of Hylocereus undatus caused by Fusarium oxysporum in Buenos Aires, Argentina. Plant Dis. 2007, 91, 323. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Chen, Y.; Zou, C.; Wang, X.; Wang, Z.; Liu, A.; Ahammed, G. First report of red dragon fruit (Hylocereus polyrhizus) anthracnose caused by Colletotrichum siamense in China. Plant Dis. 2018, 102, 1175. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Zhao, S.X.; Tan, Z.Q.; Zhu, C.H. First report of bacterial stem rot disease caused by Paenibacillus polymyxa on Hylocereus undatus in China. Plant Dis. 2017, 101, 1031. [Google Scholar] [CrossRef]
- Gazis, R.; Poudel, K.; Dey, K.; Zhang, S.; Palmateer, A.; Campoverde, E.; Baker, C.; Adkins, A. First report of Cactus virus X in Hylocereus undatus (dragon fruit) in Florida. Plant Dis. 2018, 102, 2666. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Huang, J.; Liu, Z. First report of a stunt nematode (Tylenchorhynchus agri) from pitaya (Hylocereus polyrhizus) in Guangxi Province of China. Plant Dis. 2018, 102, 2662. [Google Scholar] [CrossRef]
- Shahabi, S.; Kheiri, A.; Rakhshandehroo, F.; Jamali, S. Occurrence and distribution of nematodes in rice fields in Guilan Province, Iran and the first record of Mylonchulus polonicus (Stefański, 1915) Cobb, 1917 (Nematoda: Mononchina). J. Plant Prot. Res. 2016, 56, 420–429. [Google Scholar] [CrossRef]
- Vilaplana, R.; Alba, P.; Valencia-Chamorro, S. Sodium bicarbonate salts for the control of postharvest black rot disease in yellow pitahaya (Selenicereus megalanthus). Crop Prot. 2018, 114, 90–96. [Google Scholar] [CrossRef]
- Castro, J.C.; Endo, E.H.; de Souza, M.R.; Zanqueta, E.B.; Polonio, J.C.; Pamphile, J.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P.; de Abreu Filho, B.A. Bioactivity of essential oils in the control of Alternaria alternata in dragon fruit (Hylocereus undatus Haw.). Ind. Crops Prod. 2017, 97, 101–109. [Google Scholar] [CrossRef]
- Castro, J.C.; Avincola, A.S.; Endo, E.H.; Silva, M.V.; Dias Filho, B.P.; Machinski Junior, M.; Pilau, E.J.; Abreu, F. Mycotoxigenic potential of Alternaria alternata isolated from dragon fruit (Hylocereus undatus Haw.) using UHPLC–QTOF–MS. Postharvest Biol. Technol. 2018, 141, 71–76. [Google Scholar] [CrossRef]
- Liou, M.R.; Hung, C.L.; Liou, R.F. First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Dis. 2001, 85, 229. [Google Scholar] [CrossRef] [PubMed]
- Ratanaprom, S.; Nakkanong, K.; Nualsri, C.; Jiwanit, P.; Rongsawat, T.; Woraathasin, N. Overcoming encouragement of dragon fruit plant (Hylocereus undatus) against stem brown spot disease caused by Neoscytalidium dimidiatum using Bacillus subtilis combined with sodium bicarbonate. Plant Pathol. J. 2021, 37, 413. [Google Scholar] [CrossRef] [PubMed]
- Mondol, M.S.A.; Akbar, U.; Mandal, O.; Rani, A.; Dar, A.H.; Chatterjee, A.; Abdi, G. Advances in agronomic practices, postharvest technologies, and medicinal potential of dragon fruit (Hylocereus spp.): A comprehensive updated review. J. Agric. Food Res. 2025, 22, 102157. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; Oenema, O. Rapid soil tests for assessing soil health. Appl. Sci. 2025, 15, 8669. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, G.K.; Kumar, P.; Singh, S.K.; Singh, R. Effect of crop residues management on soil properties and crop productivity of rice–wheat system in Inceptisols of Seemanchal Region of Bihar. Curr. J. Appl. Sci. Technol. 2019, 37, 1–6. [Google Scholar] [CrossRef]
- Shaila Shams, I.; Bin Rakib, A.; Ahmed, H.K.; Rashed, K.; Thanet, K. Impacts of vermicompost and farmyard manure as organic fertilizer with biochar amendment on soil quality, growth and yield of sunflower. Indian J. Agric. Res. 2024, 58, 595–601. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Kumar, S.; Mane, P.; Suresh Kumar, P.; Rane, J.; Pathak, H. Long-Term Response of Dragon Fruit (Hylocereus undatus) to Transformed Rooting Zone of a Shallow Soil Improving Yield, Storage Quality and Profitability in a Drought-Prone Semi-Arid Agro-Ecosystem. Saudi J. Biol. Sci. 2023, 30, 103497. [Google Scholar] [CrossRef]
- He, X.-F.; Cao, H.; Li, F.-M. Econometric Analysis of the Determinants of Adoption of Rainwater Harvesting and Supplementary Irrigation Technology in the Semiarid Loess Plateau of China. Agric. Water Manag. 2007, 89, 243–250. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Mohammad Yusoff, M.; Halim, M.; Mohamed, M.; Rastan, S.; Meon, Z. Growth, Yield and Fruit Quality of Red Dragon (Hylocereus polyrhizus) as Affected by Plant Support System and Intercropping with Long Bean (Vigna sinensis). J. Food Agric. Environ. 2008, 6, 305–311. [Google Scholar]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; Van Dongen, J.T. Comparing Straw, Compost and Biochar Regarding Their Suitability as Agricultural Soil Amendments to Affect Soil Structure, Nutrient Leaching, Microbial Communities and the Fate of Pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Chauhan, P.; Kumar, A.; Tripathi, S.; Katiyar, H.; Kumar, A.; Verma, A.; Singh, S. Effect of Organic Manures and Bio-Fertilizers on Growth, Yield and Quality of Dragon Fruit (Hylocereus undatus L.) under Western Uttar Pradesh Conditions. J. Sci. Res. Rep. 2024, 30, 1106–1117. [Google Scholar] [CrossRef]
- Lal, R.; Eckert, D.; Fausey, N.; Edwards, W. Conservation Tillage in Sustainable Agriculture. In Sustainable Agricultural Systems; CRC Press: Boca Raton, FL, USA, 2020; Chapter 15. [Google Scholar] [CrossRef]
- Flores-Marquez, R.; Vera-Vílchez, J.; Verástegui-Martínez, P.; Lastra, S.; Solórzano-Acosta, R. An Evaluation of Dryland Ulluco Cultivation Yields in the Face of Climate Change Scenarios in the Central Andes of Peru by Using the AquaCrop Model. Sustainability 2024, 16, 5428. [Google Scholar] [CrossRef]
- Thorat, D.; Johar, V.; Singh, V.; Tanpure, P. Protected Cultivation of Fruit Crops: Opportunities and Challenges. Asian J. Microbiol. Biotechnol. Environ. Sci. 2023, 25, 173–178. [Google Scholar] [CrossRef]
- Peng, L.; Chen, W.; Li, M.; Bai, Y.; Pan, Y. GIS-Based Study of the Spatial Distribution Suitability of Livestock and Poultry Farming: The Case of Putian, Fujian, China. Comput. Electron. Agric. 2014, 108, 183–190. [Google Scholar] [CrossRef]
- Belbase, P.; Bhaskar, M.S.B. Investigating the Relationship between Soil MACRO Nutrient Concentrations Obtained by XRF and ICP-MS in Dragon Fruit Plants. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2024; Volume 2024, No. 7, GC21J-0007. [Google Scholar]
- Wen, Z.; Liu, G. Nighttime Light Data Capture Spatiotemporal Dynamics of Dragon Fruit Cultivation from 2014 to 2022 in China and Vietnam. Comput. Electron. Agric. 2024, 225, 109270. [Google Scholar] [CrossRef]
- Ngo, T.T.; Mathews, J.L.; Nghiem, S.V. Application of Sentinel-1 SAR and VIIRS NTL Data for Monitoring Rural–Urban Transformation in Dragon Fruit Growing Regions of Vietnam. Remote Sens. Appl. Soc. Environ. 2021, 22, 100550. [Google Scholar]
- Nguyen, Q.T.; Ngo, M.D.; Truong, T.H.; Nguyen, D.C.; Nguyen, M.C. Modified Compact Fluorescent Lamps Improve Light-Induced Off-Season Floral Stimulation in Dragon Fruit Farming. Food Sci. Nutr. 2021, 9, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- KU Leuven. Smart Farming Methodology for Efficient and Sustainable Cultivation of Dragon Fruit in Ecuador’s Amazon: Pilot Evaluation of the Impact of Technology on Poverty and Inequality Reduction. 2024. Available online: https://research.kuleuven.be/portal/en/project/3E230830 (accessed on 15 September 2025).
- Islam, M.S.; Rahman, M.M.; Rahman, M.S. Applications of Drones and Remote Sensing in Precision Agriculture: A Review. Comput. Electron. Agric. 2023, 206, 107642. [Google Scholar]
- Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of Site-Specific Variable Rate Sprinkler Irrigation Systems. Irrig. Sci. 2013, 31, 871–887. [Google Scholar] [CrossRef]
- Mottech Water Management. Control System for Watering Dragon Fruit in Ledong City, Hainan Province. Mottech Projects. 2023. Available online: https://mottech.com/project/control-system-for-watering-dragon-fruit/ (accessed on 13 September 2025).
- Sharma, A.; Patel, R.; Gupta, S. Dragon Fruit: E-Farming Based on Weather Forecasting Using IoT Sensors. Int. J. Novel Res. Dev. 2023, 8, 249–253. Available online: https://www.ijnrd.org/papers/IJNRD2304249.pdf (accessed on 13 September 2025).
- Cardim Ferreira Lima, M.; Damascena de Almeida Leandro, M.E.; Valero, C.; Pereira Coronel, L.C.; Gonçalves Bazzo, C.O. Automatic Detection and Monitoring of Insect Pests: A Review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Beriya, A.; Saroja, V.N. Data-Driven Decision Making for Smart Agriculture. In ICT India Working Paper; Columbia University, Earth Institute, Center for Sustainable Development (CSD): New York, NY, USA, 2019; No. 8. [Google Scholar]
- Kowalska, A.; Ashraf, H. Advances in Deep Learning Algorithms for Agricultural Monitoring and Management. Appl. Res. Artif. Intell. Cloud Comput. 2023, 6, 68–88. [Google Scholar]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision Support Systems and Models for Aiding Irrigation and Nutrient Management of Vegetable Crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Ningsih, K.; Sakdiyah, H.; Felani, H.; Dwiastuti, R.; Asmara, R. Driving Forces and Pressures on Organic Farming of Dragon Fruit: A Part of the DPSIR Analysis Framework. J. Phys. Conf. Ser. 2021, 1908, 012002. [Google Scholar] [CrossRef]
- Bett, E.K.; Ayieko, D.M. Economic Potential for Conversion to Organic Farming: A Net Present Value Analysis in the East Mau Catchment, Nakuru, Kenya. Environ. Dev. Sustain. 2017, 19, 1307–1325. [Google Scholar] [CrossRef]
- Jia, S.; Nghiem, S.V.; Kim, S.H.; Krauser, L.; Gaughan, A.E.; Stevens, F.R.; Kafatos, M.C.; Ngo, K.D. Extreme Development of Dragon Fruit Agriculture with Nighttime Lighting in Southern Vietnam. In Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries; Springer: Cham, Switzerland, 2022; pp. 553–571. [Google Scholar]
- Catanzaro, P.F.; Hamunen, K. Extension and Education Services: Applying Service-Dominant Logic through Peer-to-Peer Learning. In Services in Family Forestry; Springer International Publishing: Cham, Switzerland, 2019; pp. 227–250. [Google Scholar]
- United Nations Development Programme (UNDP). UNDP–MARD Drive Sustainable Dragon Fruit Farming. 29 January 2024. Available online: https://www.undp.org/vietnam/press-releases/undp-mard-drive-sustainable-dragon-fruit-farming (accessed on 15 September 2025).
- Desai, R.M.; Joshi, S. Collective Action and Community Development: Evidence from Self-Help Groups in Rural India. World Bank Econ. Rev. 2014, 28, 492–524. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with Legume for Agroecological Cropping Systems: Complementarity and Facilitation Processes and the Importance of Soil Microorganisms—A Review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture: A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Hooks, C.R.R.; Wang, K.H.; Ploeg, A.; McSorley, R. Using Marigold (Tagetes spp.) as a Cover Crop to Protect Crops from Plant-Parasitic Nematodes. Appl. Soil Ecol. 2010, 46, 307–320. [Google Scholar] [CrossRef]
- Bowen, J.L.R.; Meza, W.A.C. Projections Toward 2050: Severe Impact of Conversion to Pitahaya Crops (Hylocereus spp. and Selenicereus spp.) in the Xeric Forest. Vis. Sustain. 2024, 22, 409–429. [Google Scholar] [CrossRef]
- Sabir, N.; Singh, B.; Hasan, M.; Sumitha, R.; Deka, S.; Tanwar, R.K.; Ahuja, D.B.; Tomar, B.S.; Bambawale, O.; Khah, E.; et al. Good Agricultural Practices (GAP) for IPM in Protected Cultivation. Tech. Bull. 2010, 23, 1–14. [Google Scholar]
- Nain, M.S.; Singh, R.; Mishra, J. Relevance of Good Agricultural Practices in Organic Production Systems. J. Community Mobil. Sustain. Dev. 2020, 15, 306–314. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Organization for Economic Co-operation and Development (OECD). Policy Solutions for Sustainable Agriculture and Food Systems. In Making Better Policies for Food Systems; OECD Publishing: Paris, France, 2020; pp. 77–104. [Google Scholar] [CrossRef]
- Reddy, P. Climate Resilient Agriculture for Ensuring Food Security; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Khan, F.S.; Goher, F.; Zhang, D.; Shi, P.; Li, Z.; Htwe, Y.M.; Wang, Y. Is CRISPR/Cas9 a Way Forward to Fast-Track Genetic Improvement in Commercial Palms? Prospects and Limits. Front. Plant Sci. 2022, 13, 1042828. [Google Scholar] [CrossRef]
- Nie, H.; Yang, X.; Zheng, S.; Hou, L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. Horticulturae 2024, 10, 641. [Google Scholar] [CrossRef]
- Boopathi, N.M. Genetic Mapping and Marker Assisted Selection; Springer: New Delhi, India, 2013. [Google Scholar]
- Tyagi, A.; Mir, Z.A.; Almalki, M.A.; Deshmukh, R.; Ali, S. Genomics-Assisted Breeding: A Powerful Breeding Approach for Improving Plant Growth and Stress Resilience. Agronomy 2024, 14, 1128. [Google Scholar] [CrossRef]
- Nilay, N. Integration of AI in Identifying and Treating Stem Canker in Dragon Fruit Plants Caused by Neocytalidium Species. Libr. Prog.-Libr. Sci. Inf. Technol. Comput. 2024, 44, 1–46. Available online: https://bpasjournals.com/library-science/index.php/journal/article/view/17 (accessed on 15 September 2025).
- Quinlan, M.M.; Mengersen, K.; Mumford, J.; Leach, A.; Holt, J.; Murphy, R. (Eds.) Beyond Compliance: A Production Chain Framework for Plant Health Risk Management in Trade; Chartridge Books: Oxford, UK, 2016. [Google Scholar]
- Lindskog, E.; Dow, K.; Axberg, G.N.; Miller, F.; Hancock, A. When Rapid Changes in Environmental, Social and Economic Conditions Converge: Challenges to Sustainable Livelihoods in Dak Lak, Vietnam; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2005; pp. 1–70. [Google Scholar]

| Feature | H. undatus (White-Fleshed Dragon Fruit) | H. costaricensis (Red-Fleshed Dragon Fruit) | H. megalanthus (Yellow Dragon Fruit) | Key References |
|---|---|---|---|---|
| Time to Grow (from planting to fruiting) | 12–18 months | 12–18 months | 18–24 months | [72,73,74] |
| Where It Grows | Widely in Asia, Central America, Australia | Central & South America, Asia, Australia | South America, Subtropical/Tropical areas | [73,74,75,76] |
| Fruit Quality | White flesh, mildly sweet, crunchy seeds | Deep red flesh, sweeter, earthy flavor | Yellow skin, white flesh, very sweet, small seeds | [72,73,74,76] |
| Nutritional Value per 100 g | ~50 kcal, Vitamin C, fiber, antioxidants | ~60 kcal, Vitamin C, betalains, fiber | ~60 kcal, Vitamin C, fiber, carotenoids | [73,74,76,77,78] |
| Health Benefits | Antioxidant, digestive health, immune support | Antioxidant, anti-inflammatory, heart health | Antioxidant, immune support, gut health | [73,74,76,77,78] |
| Feature | H. undatus (White-Fleshed Dragon Fruit) | H. costaricensis (Red-Fleshed Dragon Fruit) | H. megalanthus (Yellow Dragon Fruit) |
|---|---|---|---|
| Soil pH | 6.0–7.0 | 6.0–7.0 | 5.5–6.5 |
| Organic Matter | High (>2%) | High (>2%) | >1.5% |
| Nitrogen (N) | 300–500 g/plant/year | 300–700 g/plant/year | 250–450 g/plant/year |
| Phosphorus (P) | 150–350 g/plant/year | 150–400 g/plant/year | 150–300 g/plant/year |
| Potassium (K) | 300–650 g/plant/year | 300–650 g/plant/year | 300–650 g/plant/year |
| Calcium (Ca) | 1000–2000 ppm | 1000–2000 ppm | 1000–2000 ppm |
| Magnesium (Mg) | 50–100 ppm | 50–100 ppm | 50–100 ppm |
| Sulfur (S) | 20–40 ppm | 20–40 ppm | 20–40 ppm |
| Micronutrients (Zn, Fe, Mn, B, Cu) | 25–100 ppm, 60–120 ppm, 25–200 ppm, 5–16 ppm, 5–16 ppm | 25–100 ppm, 60–120 ppm, 25–200 ppm, 5–16 ppm, 5–16 ppm | 25–100 ppm, 60–120 ppm, 25–200 ppm, 5–16 ppm (critical), 5–16 ppm |
| Fertilization Frequency | Every 2–3 months | Every 2–3 months | Every 2–4 months |
| Best Organic Amendments | Compost, chicken manure | Compost, cow manure | Well-rotted manure, green manure |
| Pathogen Type | Major Pathogens (Genus/Species) | Countries/Regions | Main Symptoms/ Impact | Key References |
|---|---|---|---|---|
| Fungal | Alternaria alternata, Aspergillus niger, Aureobasidium pullulans, Bipolaris cactivora, Botryosphaeria dothidea, Colletotrichum spp. (C. aenigma, C. gloeosporioides, C. siamense, C. truncatum), Diaporthe phaseolorum, Fusarium oxysporum, Lasiodiplodia theobromae, Neoscytalidium dimidiatum, Nigrospora sphaerica, Phytophthora nicotianae, Sclerotium rolfsii | Brazil, China, India, Israel, Korea, Malaysia, Mexico, Taiwan, Thailand, US | Lesions, rot, cankers, fruit spots, stem dieback, wilting, soft decay, vascular browning, sunken cankers, black or reddish-brown spots, mycelial mats, rapid fruit decay. | [85,89,90,91,92] |
| Bacterial | Dickeya dadantii, Enterobacter cloacae, Paenibacillus polymyxa | China, Malaysia | Soft rot, rapid tissue breakdown, water-soaked/mushy lesions, foul odor, yellow–brown stem discoloration, stem collapse within 24–48 h. | [89,93] |
| Viral | Cactus virus X (CVX), Dragon fruit virus X | US, Taiwan, Korea, China, Malaysia, Philippines | Chlorotic spots, mosaic patterns, red–brown margins, distorted spines, stunted growth, yellow mosaic, leaf distortion. | [94] |
| Nematode | Meloidogyne enterolobii, Helicotylenchus dihystera | US, Taiwan, China | Root galls, root discoloration, stunted growth, yellowing, reduced fruit yield, mild stunting. | [93,95,96] |
| Pathogen Type | Major Pathogens (Genus/ Species) | Countries/Regions | Main Symptoms/ Impact | Key References |
|---|---|---|---|---|
| Fungal | Colletotrichum gloeosporioides, Alternaria alternata | Brazil, China, Thailand, Malaysia | Anthracnose: dark, sunken spots with pinkish-orange spores; severe fruit rot. Postharvest rot: dark, sunken fruit lesions, rapid decay. | [89,97,98,99] |
| Bacterial | Enterobacter cloacae | Malaysia | Bacterial soft rot: water-soaked, mushy lesions; foul odor; rapid collapse of fruit and stems. | [89] |
| Viral | Cactus virus X (CVX) | US, Taiwan, Korea, China, Malaysia | Chlorotic spots, mosaic patterns, red–brown margins, distorted spines, stunted growth. | [94,100] |
| Nematode | Meloidogyne enterolobii | Brazil, US, Taiwan, China | Root-knot nematode: root galls, stunted growth, yellowing, reduced fruit yield. | [93,96] |
| Pathogen Type | Major Pathogens (Genus/ Species) | Countries/ Regions | Main Symptoms/Impact | Key References |
|---|---|---|---|---|
| Fungal | Neocosmospora rubicola, Phomopsis asparagi, Colletotrichum gloeosporioides, Pestalotiopsis clavispora | China | Stem rot/blight: reddish-brown stem lesions, internal necrosis, dieback (N. rubicola); fruit rot: soft, watery rot with white fungal growth (P. asparagi); anthracnose: dark, sunken spots, fruit rot (C. gloeosporioides); grayish stem lesions with black spore masses (P. clavispora). | [95,98,99] |
| Bacterial | No major confirmed bacterial pathogens specific to H. costaricensis in the current literature; generalists like Enterobacter cloacae may infect multiple Hylocereus spp. | Malaysia, China (general) | Soft rot: water-soaked, mushy lesions, rapid tissue collapse (if present). | [89] |
| Viral | Cactus virus X (CVX) | US, Taiwan, Korea, China | Chlorotic spots, mosaic, red–brown margins, stunted growth, distorted spines. | [94,100] |
| Nematode | Meloidogyne enterolobii, Rotylenchulus reniformis | US, Taiwan, China, Israel | Root-knot and reniform nematodes: root galls, stunted growth, yellowing, reduced fruit yield, root stunting. | [95,96] |
| Disease | Management Strategies | Key References |
|---|---|---|
| Fungal | Use healthy planting material; prune and remove infected tissues; maintain orchard sanitation; rotate and judiciously apply fungicides; employ biological controls such as Bacillus subtilis (especially in combination with sodium bicarbonate); apply elicitors like oligochitosan-nanosilica; optimize irrigation and airflow; disinfect tools. | [85,89,90,92,101] |
| Bacterial | Remove and destroy infected plants; improve drainage and avoid overhead irrigation; sanitize tools and equipment; use copper-based bactericides with caution; start with disease-free planting material; maintain field hygiene. | [88,89,101] |
| Viral | Use certified virus-free planting stock; control insect vectors (aphids, thrips); promptly rogue and destroy symptomatic plants; sanitize tools; avoid mechanical transmission; maintain field hygiene. | [94,101] |
| Nematode | Use nematode-free planting material; rotate crops with nonhosts; apply soil solarization and organic amendments; maintain weed control; use nematicides as a last resort; monitor roots regularly for galls. | [73,89,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belbase, P.; Balaji Bhaskar, M.S. Sustainable Cultivation of Dragon Fruit: Integrated Nutrient and Pest Management Strategies for Enhanced Productivity and Environmental Stewardship. Agronomy 2025, 15, 2514. https://doi.org/10.3390/agronomy15112514
Belbase P, Balaji Bhaskar MS. Sustainable Cultivation of Dragon Fruit: Integrated Nutrient and Pest Management Strategies for Enhanced Productivity and Environmental Stewardship. Agronomy. 2025; 15(11):2514. https://doi.org/10.3390/agronomy15112514
Chicago/Turabian StyleBelbase, Priyanka, and Maruthi Sridhar Balaji Bhaskar. 2025. "Sustainable Cultivation of Dragon Fruit: Integrated Nutrient and Pest Management Strategies for Enhanced Productivity and Environmental Stewardship" Agronomy 15, no. 11: 2514. https://doi.org/10.3390/agronomy15112514
APA StyleBelbase, P., & Balaji Bhaskar, M. S. (2025). Sustainable Cultivation of Dragon Fruit: Integrated Nutrient and Pest Management Strategies for Enhanced Productivity and Environmental Stewardship. Agronomy, 15(11), 2514. https://doi.org/10.3390/agronomy15112514

