Abstract
While the root architecture of potted crop seedlings directly determines subsequent crop productivity and adaptability, these root systems remain challenging to quantify using conventional methods due to their structural complexity. To investigate the microscopic characteristics of the root systems of pepper seedlings within pots, Micro-CT was employed to scan the seedling pots. After three-dimensional (3D) reconstruction was conducted on the data acquired from the pot scans, the 3D model of the root system was segmented and extracted using the watershed algorithm. Vertically, the three-dimensional root model was divided from top to bottom into four equally spaced regions (a, b, c, and d), showing the volumetric distribution characteristics of pepper seedling roots within the pots. The results showed that region a had the largest average root volume proportion (29.72%), primarily due to the substantial volume contribution of the taproot. Region d followed with an average proportion of 27.26%, resulting from root coiling and entanglement at the pot bottom caused by the spatial constraints of the seedling tray. The middle regions of the pot, b and c, showed average root volume proportions of 23.14% and 19.89%, respectively. To further investigate the influence of root system characteristics on root injury during seedling gripping, the seedlings were categorized into three types based on their taproot growth positions. A gripping experiment was conducted on these three seedling types using spatula-equipped needles. The results showed that the greatest root injury (12.67%) was observed in Type 1 seedlings, which had taproots located closest to the needle insertion point. In contrast, the least injury (4.09%) was found in Type 3 seedlings, characterized by centrally positioned taproots. Type 2 seedlings, with their taproots growing on the side (laterally away from the insertion point), sustained intermediate injury (5.45%). This was because their lateral positioning led to an uneven distribution of mechanical stress during gripping compared with Type 3 seedlings. A validation experiment conducted on an automated seedling retrieval platform confirmed the root injury analysis. The experimental results showed maximum root injury in Type 1 seedlings (14.16%), followed by Type 2 (6.03%) and Type 3 (4.82%) seedlings, with a successful retrieval rate of 95.29%. These findings were consistent with the Micro-CT analysis. This study could provide a theoretical foundation for low-injury seedling gripping in fully automated seedling transplanters.