Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
Abstract
1. Introduction
2. Design and Experiment
2.1. Solid Thruster Design
2.2. Experimental Techniques
3. Results and Discussion
3.1. 4 mm Shell Thickness Solid Thruster Ignition Experiment
3.2. 3 mm Shell Thickness Solid Thruster Ignition Experiment
3.3. 2.5 mm Shell Thickness Solid Thruster Ignition Experiment
3.4. PA6GF Composite Material Applicable Design Range
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA6GF | Short glass fiber reinforced polyamide 6 composites |
PA12GB | Nylon 12 reinforced whit glass bead reinforced composites |
FDM | 3D print technology, fused deposition modeling |
SLS | 3D print technology, selective laser sintering |
References
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Shkolnik, E.L. On the verge of an astronomy CubeSat revolution. Nat. Astron. 2018, 2, 374–378. [Google Scholar] [CrossRef]
- Krejci, D.; Lozano, P. Space propulsion technology for small spacecraft. Proc. IEEE 2018, 106, 362–378. [Google Scholar] [CrossRef]
- Holler, M. Coping with space environment: Testing solid propellants for in-orbit use. Int. J. Energetic Mater. Chem. Prop. 2023, 22, 45–66. [Google Scholar] [CrossRef]
- Liao, W.; Dai, N. Development and challenge of lightweight design and manufacturing technology for aerospace structures. J. Nanjing Univ. Aeronaut. Astronaut. 2023, 55, 347–360. [Google Scholar]
- Okninski, A. Solid rocket propulsion technology for de-orbiting spacecraft. Chin. J. Aeronaut. 2022, 35, 128–154. [Google Scholar] [CrossRef]
- Faber, D.; Overlack, A.; Welland, W.; van Vliet, L.; Wieling, W.; Tata Nardini, F. Nanosatellite Deorbit Motor. 2013. Available online: https://digitalcommons.usu.edu/smallsat/2013/all2013/51/ (accessed on 1 July 2025).
- Nowakowski, P.; Pakosz, M.; Okninski, A.; Rysak, D.; Kaniewski, D.; Marciniak, B.; Surmacz, P.; Kasztankiewicz, A.; Szczepanik, M.; Matlok, A. Design of a solid rocket motor for controlled deorbitation. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Bi, Y. Design and Research of Solid Thruster Array for Micro/Nano Satellite. Master’s Thesis, Nanjing University of Science & Technology, Nanjing, China, 2021. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Pant, M.; Pidge, P.; Nagdeve, L. A Review of Additive Manufacturing in Aerospace Application. J. Compos. Adv. Mater. Rev. Compos. Matériaux Avancés 2021, 31, 109. [Google Scholar] [CrossRef]
- Whitmore, S.A. Consumable spacecraft structures with integrated, 3-D printed ABS thrusters. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Whitmore, S.A. Additively manufactured acrylonitrile-butadiene-styrene–nitrous-oxide hybrid rocket motor with electrostatic igniter. J. Propuls. Power 2015, 31, 1217–1220. [Google Scholar] [CrossRef]
- Hui, W.; Hu, Y.; Liu, Y.; Cai, Q.; Zhao, W. Ablation characteristics research in solid rocket motor’s combustion chamber produced by 3D printing. Materials 2023, 16, 3021. [Google Scholar] [CrossRef]
- Hui, W.; Hu, Y.; Liu, Y.; Cai, Q.; Zhao, W. Development of thin-walled polymer glass beads reinforced 3D printed solid rocket motors. Mater. Lett. 2023, 347, 134558. [Google Scholar] [CrossRef]
- Morano, C.; Pagnotta, L. Additive manufactured parts produced using selective laser sintering technology: Comparison between porosity of pure and blended polymers. Polymers 2023, 15, 4446. [Google Scholar] [CrossRef]
- Zhou, C. Theory of Rocket and Missile Design, 1st ed.; Beijing Institute of Technology Press: Beijing, China, 2014. [Google Scholar]
Parameter Name | Value |
---|---|
Density (g/cm3) | 1.41 |
Tensile strength (MPa) | 67.5 |
Tensile modulus (MPa) | 5590 |
Thermal conductivity (W/m·K) | 0.56 |
Specific heat capacity (J/kg·K) | 1633 |
Melting point (°C) | 224 |
Parameter | LC4 | TC6 | 30CrMnSiA | PA6GF |
---|---|---|---|---|
Tensile ultimate strength (MPa) | 402 | >850 | >883 | 67.5 |
Calculated shell thickness (mm) | 0.3 | 0.135 | 0.131 | 1.83 |
Actual selected shell thickness (mm) | 2 | 0.8 | 1.5 | 2 |
Mass of cylinder section (g) | 20.6 | 12.7 | 42.18 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chen, Z.; Yang, X.; Xu, C.; Deng, H. Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide. Aerospace 2025, 12, 663. https://doi.org/10.3390/aerospace12080663
Yang H, Chen Z, Yang X, Xu C, Deng H. Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide. Aerospace. 2025; 12(8):663. https://doi.org/10.3390/aerospace12080663
Chicago/Turabian StyleYang, Haibo, Zhongcan Chen, Xudong Yang, Chang Xu, and Hanyu Deng. 2025. "Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide" Aerospace 12, no. 8: 663. https://doi.org/10.3390/aerospace12080663
APA StyleYang, H., Chen, Z., Yang, X., Xu, C., & Deng, H. (2025). Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide. Aerospace, 12(8), 663. https://doi.org/10.3390/aerospace12080663