Journal Description
Compounds
Compounds
is an international, peer-reviewed, open access journal on chemical compounds published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 32.5 days after submission; acceptance to publication is undertaken in 6.6 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Compounds is a companion journal of Metals.
Impact Factor:
2.3 (2024);
5-Year Impact Factor:
2.2 (2024)
Latest Articles
Critical Effect of Oxygen Concentration and Acidity on the Efficiency of Photodegradation of Levofloxacin with Solar UVB Light; Cytotoxicity on Mammalian Cells of the Photoproducts and Its Activity on Pathogenic Bacteria
Compounds 2025, 5(2), 23; https://doi.org/10.3390/compounds5020023 - 17 Jun 2025
Abstract
►
Show Figures
Levofloxacin is an antibiotic classified as an emerging contaminant. Its presence in aquatic environments represents potential risks to ecosystems and human health, making its removal during wastewater treatment of relevant importance. Here, we present a comprehensive kinetic analysis of levofloxacin photodegradation under UVB
[...] Read more.
Levofloxacin is an antibiotic classified as an emerging contaminant. Its presence in aquatic environments represents potential risks to ecosystems and human health, making its removal during wastewater treatment of relevant importance. Here, we present a comprehensive kinetic analysis of levofloxacin photodegradation under UVB solar irradiation, with emphasis on the influence of pH and dissolved oxygen, two conditions that can vary widely in wastewater and impact treatment efficiency. We also investigated the formation and role of reactive oxygen species in the degradation mechanism, as well as the cytotoxicity and antibacterial activity of photoproducts. Our findings reveal that the efficiency of levofloxacin photodegradation is highly dependent on environmental conditions; it requires neutral or slightly alkaline pH and a high concentration of dissolved oxygen, a situation not always observed in contaminated waters. Several reactive oxygen species are generated, with singlet oxygen being the most reactive with the antibiotic. We report for the first time the singlet oxygen quantum yield from levofloxacin. Bioassays demonstrated that photoproducts neither exhibit antibacterial activity nor induce significant cytotoxicity. Our study suggests that UVB treatment of contaminated effluent containing levofloxacin could be an effective and environmentally safe strategy for the antibiotic degradation under certain conditions of pH and dissolved oxygen.
Full article
Open AccessArticle
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by
Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Abstract
►▼
Show Figures
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or
[...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants.
Full article

Figure 1
Open AccessArticle
Synthesis and Optical Properties of Red Carbon@(NH4)3ZnCl5 Hybrid Heterostructures
by
Walker Vinícius Ferreira do Carmo Batista, Aniely Pereira de Souza, Tais dos Santos Cruz, Dilton Martins Pimentel, Danila Graziele Silva de Avelar, Sarah Karoline Natalino Oliveira, Wanessa Lima de Oliveira, Danilo Roberto Carvalho Ferreira, Márcio Cesar Pereira, Rondinele Alberto dos Reis Ferreira and João Paulo de Mesquita
Compounds 2025, 5(2), 21; https://doi.org/10.3390/compounds5020021 - 10 Jun 2025
Abstract
►▼
Show Figures
In this study, we report the synthesis and characterization of hybrid heterostructures composed of red carbon, an organic semiconductor polymer, and the perovskite (NH4)3ZnCl5. Red carbon was synthesized via the polymerization of carbon suboxide (C3O
[...] Read more.
In this study, we report the synthesis and characterization of hybrid heterostructures composed of red carbon, an organic semiconductor polymer, and the perovskite (NH4)3ZnCl5. Red carbon was synthesized via the polymerization of carbon suboxide (C3O2), exhibiting strong light absorption and distinctive optical properties. The hybrid material was obtained by crystallizing (NH4)3ZnCl5 in the presence of red carbon, leading to significant modifications in the optical characteristics of the perovskite. Comprehensive analyses, including X-ray diffraction, FTIR spectroscopy, UV-vis spectroscopy, and cyclic voltammetry, confirmed the formation of a type I heterostructure with enhanced luminescence and potential for advanced optical applications. The energy band alignment suggests that red carbon can function effectively as both a hole and electron transport medium. This work underscores the potential of (NH4)3ZnCl5@red carbon hybrid heterostructures in the development of next-generation optoelectronic devices, including sensors and LEDs.
Full article

Graphical abstract
Open AccessArticle
Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites
by
Victor C. Sousa, Bruno Dival and Willian X. C. Oliveira
Compounds 2025, 5(2), 20; https://doi.org/10.3390/compounds5020020 - 4 Jun 2025
Abstract
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr
[...] Read more.
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr6] (1), (H3DETA)2[AgBr4]Br3 (2), and (H3PMDTA)[BiBr6] (3), as well as the 1D/2D mixed perovskite with minimum formula (H3PMDTA)[Ag3Br6] (4), being the last three novel materials. Compounds 1 and 3 crystallize in the orthorhombic P212121 space group and are discrete [BiBr6]3− units with the cation surrounding them. In both compounds, the bismuth(III) metal ion is found in a distorted octahedral coordination geometry. Compound 2 crystallizes in the monoclinic P21/c space group, and it is a mixed salt consisting of (H3DETA)[AgBr4] and (H3DETA)Br3, whereas the silver(I) complexes are also isolated. Finally, compound 4, which crystallizes in the orthorhombic space group Pbcn, is a combination of a 2D and 1D silver–bromide perovskite, with the cations filling the voids. The 2D structure has the minimal formula [Ag4Br7]3−, with the 1D coordination polymer [Ag2Br5]3− being both built up by a combination of bromide ions acting as tetrahedra corner and edge-sharing bridging ligands. The silver(I) in 2 and 4 is found in a tetrahedral coordination geometry. All compounds were deposited on pristine FTO glass, resulting in an increase in the contact angle from 22° to 44°, 36°, 62°, and 54° for films of 1, 2, 3, and 4, respectively. Compounds 1 and 3 were also deposited onto Cs2AgBiBr6 film, and the contact angles were observed to be the same as when deposited directly onto the FTO cover glass.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Graphical abstract
Open AccessReview
Formation and Characterization of Aroma Compounds in Camembert Cheese
by
Bruna Fernanda Damasceno Ramirez, Gustavo Aparecido Martins, Juliano Lemos Bicas and Mário Roberto Maróstica Júnior
Compounds 2025, 5(2), 19; https://doi.org/10.3390/compounds5020019 - 23 May 2025
Abstract
The characterization of volatile compounds in cheese is crucial for understanding sensory properties and consumer acceptance. Camembert cheese, a surface-ripened variety, presents a complex aroma profile shaped by biochemical and microbial interactions. Despite advances in analytical methods such as gas chromatography–mass spectrometry (GC–MS)
[...] Read more.
The characterization of volatile compounds in cheese is crucial for understanding sensory properties and consumer acceptance. Camembert cheese, a surface-ripened variety, presents a complex aroma profile shaped by biochemical and microbial interactions. Despite advances in analytical methods such as gas chromatography–mass spectrometry (GC–MS) and gas chromatography–olfactometry (GC–O), the metabolic pathways and microbial interactions defining Camembert’s aroma remain incompletely understood. This review explores the synergistic roles of microbial communities, enzymatic activity, and environmental conditions in volatile compound formation. A systematic literature review was conducted using Scopus, Web of Science, and Google Scholar to analyze the classification of volatile compounds, biochemical pathways of aroma formation, and microbial contributions. The findings highlight the essential role of Penicillium camemberti and lactic acid bacteria in aroma modulation, particularly in sulfur compounds, esters, and short-chain fatty acids. Emerging technologies such as solid-phase microextraction (SPME) and metabolomics provide new insights into volatile compound dynamics. Understanding these mechanisms may enhance aroma control in cheese production through microbial engineering and biochemical monitoring. This review underscores the need for integrated approaches to optimize fermentation and ensure sensory standardization, contributing to improved quality and consumer acceptance of Camembert cheese.
Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Hydrolyzed Chitin and Chitosan Blends as Reversible and Biocompatible Sorbents for Carbon Dioxide Sorption
by
Preeti Sharma, Benjamin Barnes, Raekayla Johnson and Victoria V. Volkis
Compounds 2025, 5(2), 18; https://doi.org/10.3390/compounds5020018 - 15 May 2025
Abstract
One of the most pressing issues confronting modern society is carbon dioxide pollution (CO2). The reliance of social progress on CO2-producing technologies such as power generation, automobiles, and specialized industrial processes exacerbates the problem. Due to this reliance, it
[...] Read more.
One of the most pressing issues confronting modern society is carbon dioxide pollution (CO2). The reliance of social progress on CO2-producing technologies such as power generation, automobiles, and specialized industrial processes exacerbates the problem. Due to this reliance, it is critical to develop solutions to reduce CO2 emissions from these sources. One such solution is carbon capture and sequestration (CCS), which employs chemical methods to prevent CO2 emissions. The irreversibility of current CCS technology is its primary problem. Chitin, chitosan, and their derivatives, which were recovered from local seafood waste, are studied as reversible CO2 capture materials in this study in an effort to lessen this issue. Polysulfone (PSF) blends were employed to lessen chitosan edema, as chitosan’s hydrophilicity reduces its active sorption surface. Blends with only 20% chitosan have the same high sorption capacity as pure chitosan due to decreased swelling. Hydrolysis was used to boost the chitin sorption abilities. The CO2 sorption data were analyzed using an Intelligent Gravimetric Analyzer (IGA), Fourier-Transform Infrared (FTIR) spectroscopy, and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) spectroscopy. This study reveals that shrimp shells were the best source of chitin. This research led to the creation of eco-friendly, reversible, and reusable carbon sequestration sorbents.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Figure 1
Open AccessArticle
Laccase from Melanocarpus albomyces: Molecular Docking Analysis with First-Generation Tetracyclines Through a Mechanistic Approach
by
José Muñoz-Espinoza, Germán Barriga-González, Gino Corsini, Sebastián Lagos, Andrés Barriga González and Nadia Gavilán de Fátima
Compounds 2025, 5(2), 17; https://doi.org/10.3390/compounds5020017 - 1 May 2025
Abstract
►▼
Show Figures
Laccases are versatile enzymes capable of oxidizing a wide variety of antibiotics. In this study, the mechanism of catalytic oxidation of first-generation tetracyclines, namely, oxytetracycline, tetracycline, and chlortetracycline, by the Melanocarpus albomyces laccase enzyme was investigated using molecular docking and DFT calculations. Molecular
[...] Read more.
Laccases are versatile enzymes capable of oxidizing a wide variety of antibiotics. In this study, the mechanism of catalytic oxidation of first-generation tetracyclines, namely, oxytetracycline, tetracycline, and chlortetracycline, by the Melanocarpus albomyces laccase enzyme was investigated using molecular docking and DFT calculations. Molecular docking studies revealed that all three substrates exhibit negative interaction energies, indicating stable enzyme–substrate complexes, with tetracycline and chlortetracycline showing the highest binding affinities. Global reactivity indices obtained by DFT confirmed the high electrophilicity of the enzyme active site, particularly the aminoacidic residues Glu235 and His508, favoring electron transfer from the substrates. In addition, NBO analysis allowed quantification of the energy of hydrogen bonds in enzyme–substrate interactions, evidencing their key role in the stabilization of the complex. Proton transfer analysis suggested two possible mechanisms: (1) a direct concerted transfer and (2) a process mediated by water molecules. The results provide insights into the thermodynamics, electronic structure, and nature of intermolecular interactions governing the oxidation of tetracyclines by the enzyme, highlighting their potential in bioremediation strategies for antibiotic degradation.
Full article

Figure 1
Open AccessArticle
Synthesis, Structure, and Anticancer Activity of a Dinuclear Organoplatinum(IV) Complex Stabilized by Adenine
by
Alisha M. O’Brien, Kraig A. Wheeler and William A. Howard
Compounds 2025, 5(2), 16; https://doi.org/10.3390/compounds5020016 - 1 May 2025
Abstract
The dinuclear platinum(IV) compound {Pt(CH3)3}2(μ-I)2(μ-adenine) (abbreviated Pt2ad), obtained by treating cubic [PtIV(CH3)3(μ3-I)]4 with two equivalents of adenine, was isolated and structurally characterized by single
[...] Read more.
The dinuclear platinum(IV) compound {Pt(CH3)3}2(μ-I)2(μ-adenine) (abbreviated Pt2ad), obtained by treating cubic [PtIV(CH3)3(μ3-I)]4 with two equivalents of adenine, was isolated and structurally characterized by single crystal X-ray diffraction. The National Cancer Institute Developmental Therapeutics Program’s in vitro sulforhodamine B assays showed Pt2ad to be particularly cytotoxic against the central nervous system cancer cell line SF-539, and the human renal carcinoma cell line RXF-393. Furthermore, Pt2ad displayed some degree of cytotoxicity against non-small cell lung cancer (NCI-H522), colon cancer (HCC-2998, HCT-116, HT29, and SW-620), melanoma (LOX-IMVI, Malme-3M, M14, MDA-MB-435, SK-MEL-28, and UACC-62), ovarian cancer (OVCAR-5), renal carcinoma (A498), and triple negative breast cancer (BT-549, MDA-MB-231, and MDA-MB-468) cells. Although anticancer studies involving some adenine platinum(II) compounds have been reported, this study marks the first assessment of the anticancer activity of an adenine platinum(IV) complex.
Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
►▼
Show Figures

Figure 1
Open AccessArticle
Biogenic Synthesis of Copper and Zinc Oxide from Eucalyptus dunnii Leaves for Pinus elliottii Wood Preservation
by
Nathalia V. V. de Nunes, Sarah K. S. da Silva, Marlon B. B. Rodrigues, Nidria D. Cruz, Augusto S. do Nascimento, Ester S. M. Kegles, Rafael Beltrame, Darci A. Gatto, Rafael A. Delucis and André L. Missio
Compounds 2025, 5(2), 15; https://doi.org/10.3390/compounds5020015 - 1 May 2025
Abstract
The present study aims to evaluate the mechanical properties, colorimetric characteristics, and decay resistance of Pinus elliottii woods treated with oxides synthesized via green chemistry. For this purpose, an aqueous extract from Eucalyptus dunnii leaves was used to synthesize particles based on copper-
[...] Read more.
The present study aims to evaluate the mechanical properties, colorimetric characteristics, and decay resistance of Pinus elliottii woods treated with oxides synthesized via green chemistry. For this purpose, an aqueous extract from Eucalyptus dunnii leaves was used to synthesize particles based on copper- and zinc-based oxides, as well as a binary oxide system (CuO/ZnO). Sodium polyacrylate was employed as a dispersant, impregnating the oxides into the wood through a horizontal autoclave using a modified Bethell process, assisted by a compressor, applying a pressure of 0.8 MPa for 30 min. The exposure to weathering aging did not significantly alter the mechanical properties of the samples, but it caused the leaching of particles from the treated wood surface, as shown by colorimetric results. Regarding the decay resistance, the copper-based oxide proved to be the most effective treatment against Trametes versicolor (a white-rot fungus), reducing mass loss down to 1.2%. The CuO/ZnO formulation reduced the mass loss caused by Gloeophyllum trabeum to 1.1%, while the zinc oxide showed minimal efficacy. Thus, oxides synthesized via green chemistry using aqueous leaf extracts and mild thermal conditions for synthesis and calcination proved effective in enhancing the wood resistance against biotic deterioration agents.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Figure 1
Open AccessReview
Synthesis, Investigation, Biological Evaluation, and Application of Coordination Compounds with Schiff Base—A Review
by
Petya Emilova Marinova and Kristina Dimova Tamahkyarova
Compounds 2025, 5(2), 14; https://doi.org/10.3390/compounds5020014 - 26 Apr 2025
Abstract
Coordination compounds, characterized by the coordination of metal ions with ligands, represent a pivotal area of research in chemistry due to their diverse structures and versatile applications. This review delves into the synthesis, characterization, biological evaluation, and practical applications of these compounds. A
[...] Read more.
Coordination compounds, characterized by the coordination of metal ions with ligands, represent a pivotal area of research in chemistry due to their diverse structures and versatile applications. This review delves into the synthesis, characterization, biological evaluation, and practical applications of these compounds. A variety of synthetic methodologies (traditional solution-based techniques) are discussed to highlight advancements in the field. Investigations into the structural, electronic, and spectral properties of coordination compounds are emphasized to provide insights into their functional attributes. The biological evaluation section focuses on their roles in antimicrobial, anticancer, and enzyme-inhibitory activities, underscoring their potential in therapeutic development. Attention is paid to nanoparticles, which are increasingly used for the treatment of oncological diseases. The metal complexes have been shown to have antibacterial, antifungal, antiviral, antioxidant, and antiproliferative properties. Additionally, the review explores their applications across domains such as catalysis, illustrating their multifaceted utility. By synthesizing recent findings and trends, this article aims to bridge the gap between fundamental chemistry and applied sciences, paving the way for innovative uses of coordination compounds in both biological and industrial contexts.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Mechanical Response and Elastocaloric Performance of Ni-Ti Shape Memory Alloy Sheets Under Varying Strain Rates
by
Gianmarco Bizzarri, Girolamo Costanza, Ilaria Porroni and Maria Elisa Tata
Compounds 2025, 5(2), 13; https://doi.org/10.3390/compounds5020013 - 25 Apr 2025
Abstract
The optimization of elastocaloric cooling systems based on Shape Memory Alloys (SMAs) faces significant challenges in practical implementation. Despite promising thermomechanical properties, the development of efficient and compact cooling devices is hindered by incomplete understanding of strain rate effects on transformation behavior and
[...] Read more.
The optimization of elastocaloric cooling systems based on Shape Memory Alloys (SMAs) faces significant challenges in practical implementation. Despite promising thermomechanical properties, the development of efficient and compact cooling devices is hindered by incomplete understanding of strain rate effects on transformation behavior and energy conversion efficiency. While previous research has broadly characterized general SMAs’ thermomechanical behavior, the specific relationship between strain rate and elastocaloric performance in Ni-Ti sheets requires systematic investigation to overcome these barriers. This study investigates the strain rate dependence of Ni-Ti sheets’ properties through systematic mechanical characterization across strain rates ranging from to . Commercial Ni-Ti sheets underwent Shape Setting heat treatment and were characterized at eight different deformation levels using a universal testing machine equipped with a 50 kN load cell. Each deformation level was investigated through tests performed at four different crosshead speeds (1–24 mm/min), while monitoring stress-strain behavior and energy parameters. Results suggest distinct rate-dependent patterns in transformation stresses and energy dissipation characteristics across different strain rates. The analysis indicates that mechanical response and transformation behavior vary significantly between lower and higher strain rates, with implications for practical cooling applications. These findings aim to establish guidelines for optimizing elastocaloric performance by identifying suitable operating conditions for specific application requirements, considering factors such as energy conversion efficiency and cycling frequency.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Figure 1
Open AccessArticle
Bioencapsulation of Hesperidinase from Penicillium sp. Toward Biocompounds with Enhanced Bioactivity
by
Diogo F. Ribeiro, Ana Catarina Severo and Maria H. L. Ribeiro
Compounds 2025, 5(2), 12; https://doi.org/10.3390/compounds5020012 - 14 Apr 2025
Abstract
►▼
Show Figures
Natural polyphenols, especially the ones in their glycosylated form like hesperidin, rutin, and anthocyanins, are the most abundant phenolic compounds in citric fruits, apples, and red fruits, respectively. They stand out for their high nutraceutical potential, with various reported properties, like antioxidant, anti-inflammatory,
[...] Read more.
Natural polyphenols, especially the ones in their glycosylated form like hesperidin, rutin, and anthocyanins, are the most abundant phenolic compounds in citric fruits, apples, and red fruits, respectively. They stand out for their high nutraceutical potential, with various reported properties, like antioxidant, anti-inflammatory, anticarcinogenic, and cardioprotective. Nevertheless, these compounds have low bioavailability and are rapidly excreted and released by the organism. Therefore, the main goal of this work was to obtain polyphenols with increased bioactivity by functionalizing biocompounds in fruit juices, namely, orange, apple, and red fruits. This modification was achieved via hesperidinase, an enzyme that catalyzes the hydrolysis of several natural bioactive compounds. Hesperidinase was produced with Penicillium sp. The activity and stability of the produced enzyme, in its free and immobilized form, using the sol–gel method, were assessed, as well as the bioactivity of the bioprocessed juices. Moreover, after immobilizing hesperidinase in sol–gel lens-shaped particles, the activity and operational stability of the bioencapsulates were evaluated by measuring the residual activity over several runs. Using the specific substrate p-NPG, β-D-glucosidase retained 31% of its activity in the second run, 22.6% in the third, and 35% in the fourth. For α-L-rhamnosidase, using the substrate p-NPR, residual activity was 31.1% in both the fourth and fifth runs. In fruit juices, the bioencapsulates exhibited residual activities around 100% in the second run, approximately 81% in the third, and around 90% in the fourth. The antioxidant and anti-inflammatory activities of the bioprocessed juices were evaluated, and an increase in the anti-inflammatory activity was observed when compared with the non-processed juices.
Full article

Figure 1
Open AccessEditor’s ChoiceCommunication
Hybrid Crown Ether Ligands with Disiloxane Units and Their Complexes with Small s-Block Ions
by
Roman-Malte Richter, Daniel James Stauf, Anna Lena Rauchel, Lutz Ruppach, Kevin Bania, Annalena Duncker and Carsten von Hänisch
Compounds 2025, 5(2), 11; https://doi.org/10.3390/compounds5020011 - 11 Apr 2025
Abstract
Herein, we present hybrid crown ether ligands with siloxane and ethylene oxide units and their coordination with the cations Li+, Na+, Mg2+ and Ca2+. The compounds prepared are (SiMe2O)2(C2H4
[...] Read more.
Herein, we present hybrid crown ether ligands with siloxane and ethylene oxide units and their coordination with the cations Li+, Na+, Mg2+ and Ca2+. The compounds prepared are (SiMe2O)2(C2H4O)3 (1, TrEGDS = Triethylenglycoldisiloxane) and (SiMe2O)2(C2H4O)4 (2, TeEGDS = Tetraethylenglycoldisiloxane)), as well as the metal complexes [Li(TrEGDS][GaI4] (3), [Na(TeEGDS)][GaI4] (4), [Mg(TrEGDS)][GaI4]2 (5) and [Ca(TeEGDS)][GaI4]2 (6). Single-crystal X-ray diffraction was used to study the prepared complexes and coordination modes in the solid state.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Novel Alumina–Copper Electrode Composites: Toward Efficient Glutamate and H2O2 Detection
by
Tatjana Novaković, Dejan Pjević, Nadica Abazović and Zorica Mojović
Compounds 2025, 5(2), 10; https://doi.org/10.3390/compounds5020010 - 10 Apr 2025
Abstract
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of
[...] Read more.
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of alumina, anhydrous (A) and trihydrate (T) alumina, were modified by copper through an ion-exchange procedure. The samples were characterized by diffuse reflectance UV–Vis spectroscopy. The obtained samples were used as modifiers of carbon paste electrodes. The electrochemical characterization of the samples was performed using cyclic voltammetry and two redox probes. The electrochemical behavior of samples was investigated in the alkaline and neutral media. The electroanalytical performance of the synthesized composites was tested on glutamate and hydrogen peroxide by linear sweep voltammetry. The functionalization of alumina with copper by ion exchange offered a fast and cost-effective procedure for obtaining a composite with enhanced electrochemical properties for sensing biologically important analytes.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Identification of Constituents and Evaluation of Biological Activity of Piptadenia stipulacea (Benth.) Ducke Ethanol Extract
by
Stéphanie Aguiar de Negreiros Matos Silva, Ayslan Batista Barros, Jessica Maria Teles Souza, Rodrigo Ferreira Santiago, Evaldo dos Santos Monção Filho, Andréa Felinto Moura, Alyne Rodrigues de Araújo, Durcilene Alves da Silva, Mariana Helena Chaves, Ana Jérsia Araújo and José Delano Barreto Marinho Filho
Compounds 2025, 5(2), 9; https://doi.org/10.3390/compounds5020009 - 29 Mar 2025
Abstract
Secondary metabolites such as flavonoids bring a range of biological properties to natural products, making them potential candidates for the pharmaceutical industry. Piptadenia stipulacea (Benth.) Ducke is well known in Brazil as Jurema Branca, and yet few studies have investigated its biological and
[...] Read more.
Secondary metabolites such as flavonoids bring a range of biological properties to natural products, making them potential candidates for the pharmaceutical industry. Piptadenia stipulacea (Benth.) Ducke is well known in Brazil as Jurema Branca, and yet few studies have investigated its biological and phytochemical properties. This study aimed to characterize and evaluate the biological properties of ethanolic extract obtained from the bark of Jurema Branca. Characterization was performed by qualitative phytochemistry, HPLC, and mass spectroscopy. The antibacterial properties were investigated by microdilution method, cytotoxicity by MTT method, biocompatibility testing with human erythrocytes was performed, and antioxidant properties were investigated using DPPH and ABTS radical scavenging. The phytochemical tests demonstrated that rhamnetin and luteolin were the main constituents of the extract. This is the first report of these compounds in this species. The extract presented activity against Staphylococcus aureus (MIC = 500 µg/mL) and demonstrated activity against human colorectal adenocarcinoma (HCT-116), prostate adenocarcinoma (PC-3), and acute myeloid leukemia (HL-60) cell lines with IC50 of 37.96, 37.6, and 27.82 µg/mL, respectively, for this Piptadenia genus. Additionally, the extract presented excellent biocompatibility and antioxidant activity (IC50 = 956.7 and 147.2 µg/mL in DPPH and ABTS methods, respectively). These results are novel for the Piptadenia genus and pave the way for further evaluations regarding the biological importance of this species.
Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
►▼
Show Figures

Graphical abstract
Open AccessReview
Fructooligosaccharides (FOSs): A Condensed Overview
by
Pedro Fernandes
Compounds 2025, 5(2), 8; https://doi.org/10.3390/compounds5020008 - 26 Mar 2025
Abstract
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in
[...] Read more.
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in its production. The chemical structure of FOSs consists of an assembly of fructose residues combined with a glucose unit. The increasing consumer demand for healthy foods has driven the widespread use of FOSs in the functional food industry. Thus, FOSs have been incorporated into dairy products, beverages, snacks, and pet foods. Beyond food and feed applications, FOSs serve as a low-calorie sweetener for and are used in dietary supplements and pharmaceuticals. As a prebiotic, they enhance gut health by promoting the growth of beneficial bacteria, aid digestion, improve mineral absorption, and help regulate cholesterol and triglyceride levels. Generally recognized as safe (GRAS) and approved by global regulatory agencies, FOSs are a valuable ingredient for both food and health applications. This review provides an updated perspective on the natural sources and occurrence of FOSs, their structures, and physicochemical and physiological features, with some focus on and a critical assessment of their potential health benefits. Moreover, FOS production methods are concisely addressed, and forthcoming developments involving FOSs are suggested.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Figure 1
Open AccessArticle
Atomic Many-Body Selectivity in Cubic CsPbI3 Solar Cell Memristor
by
Luis Craco and Sabrina S. Carara
Compounds 2025, 5(1), 7; https://doi.org/10.3390/compounds5010007 - 19 Mar 2025
Abstract
Using DFT+DMFT, we show the importance of spin-orbit coupling together with multi-orbital interactions in prescribing the reconstructed electronic state of the cubic CsPbI3 crystal. Considering realistic Coulomb parameter values and Pb-spin-orbit interaction, we uncover relevant key features in the one-particle spectral functions
[...] Read more.
Using DFT+DMFT, we show the importance of spin-orbit coupling together with multi-orbital interactions in prescribing the reconstructed electronic state of the cubic CsPbI3 crystal. Considering realistic Coulomb parameter values and Pb-spin-orbit interaction, we uncover relevant key features in the one-particle spectral functions for the Pb-6p and I-5p orbitals of semiconducting CsPbI3 bulk crystal and the role played by p and n doping relevant for band-selective metallicity and current-voltage characteristics. The implication of our study for cubic CsPbI3 is expected to be an important step to understanding the electronic structure of pure and doped broadband solar cell-based memristor materials for neuromorphic computing.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
►▼
Show Figures

Figure 1
Open AccessEditor’s ChoiceArticle
Impact of Solvents on the Crystal Morphology of CL-20/TFAZ Cocrystals: A Predictive Study
by
Yuanyuan Sun, Le Yu, Yichen Wang and Nian-Tzu Suen
Compounds 2025, 5(1), 6; https://doi.org/10.3390/compounds5010006 - 20 Feb 2025
Abstract
►▼
Show Figures
The cocrystallization technique has been widely applied in the fields of energetic materials (EMs) to settle the inherent trade-off between high energy and low sensitivity in current high-energy molecules. Despite its widespread application, the mechanistic understanding of cocrystals growing from solutions remains largely
[...] Read more.
The cocrystallization technique has been widely applied in the fields of energetic materials (EMs) to settle the inherent trade-off between high energy and low sensitivity in current high-energy molecules. Despite its widespread application, the mechanistic understanding of cocrystals growing from solutions remains largely underexplored. This paper presents a mechanistic model grounded in the spiral growth mechanism to predict the crystal morphologies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 7H-trifurazano [3,4-b:3′,4′-f:3″,4″-d]azepine (TFAZ) cocrystals. In this model, it was assumed that CL-20 and TFAZ molecules incorporated into the crystal lattice simultaneously from solution as preformed growth units. The binding energies between the CL-20 molecule and TFAZ molecule were calculated to determine the most potential growth units. The predicted morphologies closely align with the experimental determinations supporting the model’s validity. Furthermore, the study found that the crystal habits were significantly influenced by the choice of solvents, due to variations in interfacial energetics affecting the growth process.
Full article

Graphical abstract
Open AccessEditorial
Compounds: Five Years of Serving the Dissemination of Chemistry
by
Juan C. Mejuto
Compounds 2025, 5(1), 5; https://doi.org/10.3390/compounds5010005 - 14 Feb 2025
Abstract
►▼
Show Figures
Compounds has existed as a scientific publication in the field of chemistry for five years now [...]
Full article

Figure 1
Open AccessReview
Natural Antioxidants: Advancing Stability and Performance in Sustainable Biobased and Biodegradable Plastics
by
Norma Mallegni, Francesca Cicogna, Elisa Passaglia, Vito Gigante, Maria-Beatrice Coltelli and Serena Coiai
Compounds 2025, 5(1), 4; https://doi.org/10.3390/compounds5010004 - 3 Feb 2025
Cited by 5
Abstract
The depletion of fossil fuels and environmental concerns have driven the development of sustainable materials, including bio-based and biodegradable plastics, as alternatives to conventional plastics. Although these plastics aid in waste management and climate change mitigation, their vulnerability to oxidative degradation impacts their
[...] Read more.
The depletion of fossil fuels and environmental concerns have driven the development of sustainable materials, including bio-based and biodegradable plastics, as alternatives to conventional plastics. Although these plastics aid in waste management and climate change mitigation, their vulnerability to oxidative degradation impacts their longevity, durability, and performance. Natural antioxidants such as tocopherols, flavonoids, and tannins, extracted from plants or agri-food waste, present a sustainable alternative to synthetic stabilizers by enhancing the oxidative thermal stability of polymers like poly(lactic acid) (PLA), poly(butylene succinate) (PBS), poly(butylene succinate-adipate) (PBSA), poly(butylene adipate-co-terephthalate) (PBAT), poly(hydroxyalkanoate) (PHA), and starch-based materials. This review highlights recent advances in bio-based plastics stabilized with natural antioxidants, their mechanisms of action, and their role in improving material properties for applications like packaging. Additionally, it explores their impact on recycling processes, advancements in composite production techniques, and future research directions. Bioplastics can achieve enhanced performance, reduce waste, and support a circular economy by incorporating natural antioxidants.
Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Compounds, Medicines, Molecules, Plants, Separations
Research on Natural Products of Medical Plants
Topic Editors: Cristiane Aguiar Da Costa, Graziele Freitas De BemDeadline: 30 November 2025

Conferences
Special Issues
Special Issue in
Compounds
Organic Compounds with Biological Activity
Guest Editors: Enrique Domínguez-Álvarez, Małgorzata Anna MarćDeadline: 30 September 2025
Special Issue in
Compounds
Fluorescence in Lanthanide Coordination Compounds
Guest Editor: Salah MassoudDeadline: 31 December 2025
Special Issue in
Compounds
Feature Papers in Compounds (2025)
Guest Editor: Juan C. MejutoDeadline: 31 December 2025
Special Issue in
Compounds
Compounds–Derived from Nature
Guest Editor: Victoria V. VolkisDeadline: 31 December 2025