Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study †
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extraction
2.3. Bioguided Isolation
2.4. Ultra Performance Liquid Chromatography (UPLC) Analysis
2.5. Microplate Assay for AChE and BuChE Inhibitory Activities
2.6. Molecular Docking Study
2.6.1. Automated Docking Setup
2.6.2. Molecular Dynamics Simulations
2.6.3. MM-GBSA Free Energy Decomposition
2.7. Preliminary Toxicological Assessment
2.8. Statistical Data Analysis
3. Results
3.1. UPLC-MS/MS Analysis
3.2. Cholinesterases Inhibitory Bioassay
3.3. In Silico Toxicological and ADME Profiling
3.4. Molecular Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hourfane, S.; Mechqoq, H.; Bekkali, A.Y.; Rocha, J.M.; El Aouad, N. A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants 2023, 12, 1245. [Google Scholar] [CrossRef]
- Gagné, V.; Merindol, N.; Boucher, R.; Boucher, N.; Desgagné-Penix, I. Rooted in therapeutics: Comprehensive analyses of Cannabis sativa root extracts reveal potent antioxidant, anti-inflammatory, and bactericidal properties. Front. Pharmacol. 2024, 15, 1465136. [Google Scholar] [CrossRef]
- Karimi, I.; Yousofvand, N.; Hussein, B.A. In vitro cholinesterase inhibitory action of Cannabis sativa L. Cannabaceae and in silico study of its selected phytocompounds. Silico Pharm. 2021, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Subbanna, S. Unveiling the potential of Phytocannabinoids: Exploring Marijuana’s lesser-known constituents for neurological disorders. Biomolecules 2024, 14, 1296. [Google Scholar] [CrossRef] [PubMed]
- Boucher, R.; Germain, H.; Desgagné-Penix, I. Exploring the Lesser-Known Bioactive Natural Products of Plant Species of the Genus Cannabis L.: Alkaloids, Phenolic Compounds, and Their Therapeutic Potential. Plants 2025, 14, 1372. [Google Scholar] [CrossRef] [PubMed]
- Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr. Neuropharmacol. 2020, 18, 87–96. [Google Scholar] [CrossRef]
- Siracusa, L.; Ruberto, G.; Cristino, L. Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018–2023). Molecules 2023, 28, 3387. [Google Scholar] [CrossRef]
- Fordjour, E.; Manful, C.F.; Sey, A.A.; Javed, R.; Pham, T.H.; Thomas, R.; Cheema, M. Cannabis: A multifaceted plant with endless potentials. Front. Pharmacol. 2023, 15, 1200269. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef]
- Lowe, H.; Steele, B.; Bryant, J.; Toyang, N.; Ngwa, W. Non-cannabinoid metabolites of Cannabis sativa L. with therapeutic potential. Plants 2021, 10, 400. [Google Scholar] [CrossRef]
- Ryz, N.R.; Remillard, D.J.; Russo, E.B. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain. Cannabis Cannabinoid Res. 2017, 2, 210–216. [Google Scholar] [CrossRef]
- Ferrini, F.; Donati Zeppa, S.; Fraternale, D.; Carrabs, V.; Annibalini, G.; Verardo, G.; Gorassini, A.; Albertini, M.C.; Ismail, T.; Fimognari, C.; et al. Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants 2022, 11, 860. [Google Scholar] [CrossRef]
- Fasakin, O.W.; Oboh, G.; Ademosun, A.O.; Lawal, A.O. The modulatory effects of alkaloid extract of Cannabis sativa, Datura stramonium, Nicotiana tabacum and male Carica papaya on neurotransmitter, neurotrophic and neuroinflammatory systems linked to anxiety and depression. Inflammopharmacology 2022, 30, 2447–2476. [Google Scholar] [CrossRef]
- Lotter, H.L.; Abraham, D.J.; Turner, C.E.; Knapp, J.E.; Schiff, P.L., Jr.; Slatkin, D.J. Cannabisativine, a new alkaloid from Cannabis sativa L. root. Tet. Lett. 1975, 16, 2815–2818. [Google Scholar] [CrossRef]
- Elsohly, M.A.; Turner, C.E.; Phoebe, C.H., Jr.; Knapp, J.E.; Schiff, P.L., Jr.; Slatkin, D.J. Anhydrocannabisativine, a new alkaloid from Cannabis sativa L. J. Pharm. Sci. 1978, 67, 124. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Yue, S.; Qin, R.; Du, X.; Wu, Y.; Zhangsun, D.; Luo, S. Recent Advances in Drug Development for Alzheimer’s Disease: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 3905. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 2014, 13, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Huang, S.; Tan, W.; Ban, Y.; Wang, K.; Fan, Y.; Chen, H.; Zhang, Q.; Liang, C.H.; MI, J.; et al. Discovery of novel butyrylcholinesterase inhibitors for treating Alzheimer’s disease. Acta Pharm. Sinica B 2025, 15, 2134–2155. [Google Scholar] [CrossRef]
- Reale, M.; Nicola, M.D.; Velluto, L.; D’Angelo, C.; Costantini, E.; Lahiri, D.K.; Kamal, M.A.; Yu, Q.-Y.; Greig, N.H. Selective acetyl-and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer’s disease subjects: Exploring the cholinergic anti-inflammatory pathway. Curr. Alzheimer Res. 2014, 11, 608–622. [Google Scholar] [CrossRef]
- Sun, T.; Zhen, T.; Harakandi, C.H.; Wang, L.; Guo, H.; Chen, Y.; Sun, H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Europ. J. Med. Chem. 2024, 275, 116569. [Google Scholar] [CrossRef]
- Mallick, R.; Basak, S.; Chowdhury, P.; Bhowmik, P.; Das, R.K.; Banerjee, A.; Paul, S.; Pathak, S.; Duttaroy, A.K. Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies. Pharmaceuticals 2025, 18, 104. [Google Scholar] [CrossRef] [PubMed]
- Raspudić, A.; Odak, I.; Mlakić, M.; Jelčić, A.; Bulava, K.; Karadža, K.; Milašinović, V.; Šagud, I.; Pongrac, P.; Štefok, D.; et al. Heterostilbene Carbamates with Selective and Remarkable Butyrylcholinesterase Inhibition: Computational Study and Physico-Chemical Properties. Biomolecules 2025, 15, 825. [Google Scholar] [CrossRef]
- Hasni, F.; Daoud, I.; Melkemi, N. Study of Acetylcholinesterase and Butyrylcholinesterase (AChE/BuChE) Inhibition Using Molecular Modelling Methods. Chem. Proc. 2023, 14, 77. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Pigni, N.B.; Andujar, S.A.; Roitman, G.; Suvire, F.D.; Enriz, R.D.; Tapia, A.; Bastida, J.; Feresin, G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016, 79, 1241–1248. [Google Scholar] [CrossRef]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, M.H.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber 2023 Reference Manual; University of California: San Francisco, CA, USA, 2023; Available online: https://ambermd.org/doc12/Amber23.pdf (accessed on 22 July 2025).
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001, 114, 2090. [Google Scholar] [CrossRef]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024, 52, 513–520. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Menezes, P.M.N.; Pereira, E.C.V.; Lima, K.S.B.; da Silva, B.A.O.; Brito, M.C.; de Lima Araújo, T.C.; Neto, J.A.; de Araujo Ribeiro, L.A.; Silva, F.S.; Rolim, L.A. Chemical analysis by LC-MS of Cannabis sativa root samples from Northeast Brazil and evaluation of antitussive and expectorant activities. Planta Med. 2022, 88, 1223–1232. [Google Scholar] [CrossRef]
- Menezes, P.M.N.; Araújo, T.C.L.; Pereira, E.C.V.; Neto, J.A.; Silva, D.S.; Brito, M.C.; Lima, K.S.B.; Monte, A.P.O.; Matos, M.H.T.; Lima, R.S.; et al. Investigation of antinociceptive, antipyretic, antiasthmatic, and spasmolytic activities of Brazilian Cannabis sativa L. roots in rodents. J. Ethnopharm. 2021, 278, 114259. [Google Scholar] [CrossRef]
- de Lima Araújo, T.C.; Menezes, P.M.N.; Ribeiro, T.F.; Macêdo, C.A.F.; de Souza, N.A.C.; Lima, K.S.B.; Figueredo, H.F.; Silva, F.S.; Rolim, L.A. Cannabis sativa L. roots from Northeast Brazil reduce abdominal contortions in a mouse model of primary dysmenorrhea. J. Ethnopharm. 2024, 318, 116891. [Google Scholar] [CrossRef]
- Turner, C.E.; Hsu, M.H.; Knapp, J.E. Isolation of Cannabisativine, an alkaloid from Cannabis sativa root. J. Pharm. Sc. 1976, 65, 1084–1085. [Google Scholar] [CrossRef] [PubMed]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Lima, K.S.B.; Silva, M.E.G.C.; Araújo, T.C.L.; Silva, C.P.F.; Santos, B.L.; Ribeiro, L.A.A.; Menezes, P.M.N.; Silva, M.G.; Lavor, E.M.; Silva, F.S.; et al. Cannabis roots: Pharmacological and toxicological studies in mice. J. Ethnopharmacol. 2021, 271, 113868. [Google Scholar] [CrossRef]
- Adarvez-Feresin, C.W.; Ortiz, J.E.; Piñeiro, M.D.; Parravicini, O.; Enriz, R.D.; Garro, A.D.; Feresin, G.E. Inhibitory effect of galantamine and donepezil combination against cholinesterase: An in silico and in vitro study. Arch. Der Pharm. 2024, 357, 2300581. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Valdés, A.; Gallego, R.; Suárez-Montenegro, Z.J.; Alarcón, M.; Ibañez, E.; Alvarez-Rivera, G.; Cifuentes, A. Blood–Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered from Plants and Agri-Food by-Products. Front. Nutr. 2022, 9, 924596. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Li, Q.; Xiong, B.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021, 41, 858–901. [Google Scholar] [CrossRef] [PubMed]
Samples | a IC50 [μg/mL] | b SI | |
---|---|---|---|
AChE | BuChE | ||
AAE | 311.24 ± 13.02 | 51.52 ± 2.90 | 6.04 |
F1 | >200 | >200 | - |
F2 | >200 | >200 | - |
F3 | >200 | 13.40 ± 1.04 | ≥14.92 |
a IC50 [μM] | |||
CS | >200 | 26.38 ± 0.95 | ≥7.58 |
ACS | >200 | 24.97 ± 1.08 | ≥8.00 |
c Gal | 0.97 ± 1.33 | 15.60 ± 1.25 | 0.062 |
c Don | 0.06 ± 0.01 | 4.71 ± 0.11 | 0.012 |
Descriptor | Cannabisativine | Anhydrocannabisativine |
---|---|---|
ProTox-3.0 | ||
LD50 (mg/kg−1) | 418 | 418 |
Toxicity class | 4 | 4 |
Neuro-toxicity (probability) | 0.62 | 0.73 |
Respiratory-toxicity (probability) | 0.78 | 0.72 |
Immunotoxicity (probability) | 0.54 | 0.56 |
Mutagenicity/Carcinogenicity | Inactive | Inactive |
Hepatotoxicity | Inactive | Inactive |
BBB permeation (probability) | 0.51 | 0.85 |
Acetylcholinesterase (AChE) | Inactive | Inactive |
SwissADME | ||
BBB permeation (qualitative) | No | Yes |
P-gp substrate | Yes | Yes |
GI absorption | High | High |
cLogP | 2.16 | 3.40 |
TPSA (Å2) | 84.8 | 61.4 |
H-bond donors / acceptors | 4/6 | 2/5 |
Bioavailability score | 0.55 | 0.55 |
CYP inhibition | None | CYP2D6 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, J.E.; Adarvez-Feresin, C.W.; Llalla-Cordova, O.; Cristos, D.; Garro, A.; Feresin, G.E. Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study. Compounds 2025, 5, 35. https://doi.org/10.3390/compounds5030035
Ortiz JE, Adarvez-Feresin CW, Llalla-Cordova O, Cristos D, Garro A, Feresin GE. Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study. Compounds. 2025; 5(3):35. https://doi.org/10.3390/compounds5030035
Chicago/Turabian StyleOrtiz, Javier E., Camila W. Adarvez-Feresin, Olimpia Llalla-Cordova, Diego Cristos, Adriana Garro, and Gabriela E. Feresin. 2025. "Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study" Compounds 5, no. 3: 35. https://doi.org/10.3390/compounds5030035
APA StyleOrtiz, J. E., Adarvez-Feresin, C. W., Llalla-Cordova, O., Cristos, D., Garro, A., & Feresin, G. E. (2025). Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study. Compounds, 5(3), 35. https://doi.org/10.3390/compounds5030035