Feature Papers in Compounds (2025)

A special issue of Compounds (ISSN 2673-6918).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1414

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense, Spain
Interests: physical organic and physical inorganic chemistry; reactivity mechanisms in homogeneous and microheterogeneous media; stability of self-assembly aggregates; supramolecular chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the Editor-in-Chief of Compounds, I am delighted to announce this new Special Issue on “Feature Papers in Compounds (2025)”. Compounds is an international, open-access, peer-reviewed journal dedicated to researching compounds.

This Special Issue will comprise high-quality papers selected by Editorial Board Members and will showcase the research of authors invited by the Editorial Office and the Editor-in-Chief. Both original research articles and comprehensive review papers are welcome. The papers in this Special Issue will be published via our open-access platform after a thorough peer review, a process which will benefit both our authors and readers.

You are welcome to send short proposals for feature papers to the Editorial Office (compounds@mdpi.com) before submission.

We look forward to receiving your excellent work.

Prof. Dr. Juan C. Mejuto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Compounds is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic/inorganic compounds
  • inorganic chemistry/organic chemistry
  • coordination chemistry
  • organometallic chemistry
  • solid-state chemistry
  • materials
  • catalysis
  • simulation and modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 5636 KiB  
Article
Biogenic Synthesis of Copper and Zinc Oxide from Eucalyptus dunnii Leaves for Pinus elliottii Wood Preservation
by Nathalia V. V. de Nunes, Sarah K. S. da Silva, Marlon B. B. Rodrigues, Nidria D. Cruz, Augusto S. do Nascimento, Ester S. M. Kegles, Rafael Beltrame, Darci A. Gatto, Rafael A. Delucis and André L. Missio
Compounds 2025, 5(2), 15; https://doi.org/10.3390/compounds5020015 - 1 May 2025
Viewed by 91
Abstract
The present study aims to evaluate the mechanical properties, colorimetric characteristics, and decay resistance of Pinus elliottii woods treated with oxides synthesized via green chemistry. For this purpose, an aqueous extract from Eucalyptus dunnii leaves was used to synthesize particles based on copper- [...] Read more.
The present study aims to evaluate the mechanical properties, colorimetric characteristics, and decay resistance of Pinus elliottii woods treated with oxides synthesized via green chemistry. For this purpose, an aqueous extract from Eucalyptus dunnii leaves was used to synthesize particles based on copper- and zinc-based oxides, as well as a binary oxide system (CuO/ZnO). Sodium polyacrylate was employed as a dispersant, impregnating the oxides into the wood through a horizontal autoclave using a modified Bethell process, assisted by a compressor, applying a pressure of 0.8 MPa for 30 min. The exposure to weathering aging did not significantly alter the mechanical properties of the samples, but it caused the leaching of particles from the treated wood surface, as shown by colorimetric results. Regarding the decay resistance, the copper-based oxide proved to be the most effective treatment against Trametes versicolor (a white-rot fungus), reducing mass loss down to 1.2%. The CuO/ZnO formulation reduced the mass loss caused by Gloeophyllum trabeum to 1.1%, while the zinc oxide showed minimal efficacy. Thus, oxides synthesized via green chemistry using aqueous leaf extracts and mild thermal conditions for synthesis and calcination proved effective in enhancing the wood resistance against biotic deterioration agents. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

22 pages, 2812 KiB  
Article
Mechanical Response and Elastocaloric Performance of Ni-Ti Shape Memory Alloy Sheets Under Varying Strain Rates
by Gianmarco Bizzarri, Girolamo Costanza, Ilaria Porroni and Maria Elisa Tata
Compounds 2025, 5(2), 13; https://doi.org/10.3390/compounds5020013 - 25 Apr 2025
Viewed by 151
Abstract
The optimization of elastocaloric cooling systems based on Shape Memory Alloys (SMAs) faces significant challenges in practical implementation. Despite promising thermomechanical properties, the development of efficient and compact cooling devices is hindered by incomplete understanding of strain rate effects on transformation behavior and [...] Read more.
The optimization of elastocaloric cooling systems based on Shape Memory Alloys (SMAs) faces significant challenges in practical implementation. Despite promising thermomechanical properties, the development of efficient and compact cooling devices is hindered by incomplete understanding of strain rate effects on transformation behavior and energy conversion efficiency. While previous research has broadly characterized general SMAs’ thermomechanical behavior, the specific relationship between strain rate and elastocaloric performance in Ni-Ti sheets requires systematic investigation to overcome these barriers. This study investigates the strain rate dependence of Ni-Ti sheets’ properties through systematic mechanical characterization across strain rates ranging from 2.56×104s1 to 6.15×103s1. Commercial Ni-Ti sheets underwent Shape Setting heat treatment and were characterized at eight different deformation levels using a universal testing machine equipped with a 50 kN load cell. Each deformation level was investigated through tests performed at four different crosshead speeds (1–24 mm/min), while monitoring stress-strain behavior and energy parameters. Results suggest distinct rate-dependent patterns in transformation stresses and energy dissipation characteristics across different strain rates. The analysis indicates that mechanical response and transformation behavior vary significantly between lower and higher strain rates, with implications for practical cooling applications. These findings aim to establish guidelines for optimizing elastocaloric performance by identifying suitable operating conditions for specific application requirements, considering factors such as energy conversion efficiency and cycling frequency. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

9 pages, 1898 KiB  
Communication
Hybrid Crown Ether Ligands with Disiloxane Units and Their Complexes with Small s-Block Ions
by Roman-Malte Richter, Daniel James Stauf, Anna Lena Rauchel, Lutz Ruppach, Kevin Bania, Annalena Duncker and Carsten von Hänisch
Compounds 2025, 5(2), 11; https://doi.org/10.3390/compounds5020011 - 11 Apr 2025
Viewed by 180
Abstract
Herein, we present hybrid crown ether ligands with siloxane and ethylene oxide units and their coordination with the cations Li+, Na+, Mg2+ and Ca2+. The compounds prepared are (SiMe2O)2(C2H4 [...] Read more.
Herein, we present hybrid crown ether ligands with siloxane and ethylene oxide units and their coordination with the cations Li+, Na+, Mg2+ and Ca2+. The compounds prepared are (SiMe2O)2(C2H4O)3 (1, TrEGDS = Triethylenglycoldisiloxane) and (SiMe2O)2(C2H4O)4 (2, TeEGDS = Tetraethylenglycoldisiloxane)), as well as the metal complexes [Li(TrEGDS][GaI4] (3), [Na(TeEGDS)][GaI4] (4), [Mg(TrEGDS)][GaI4]2 (5) and [Ca(TeEGDS)][GaI4]2 (6). Single-crystal X-ray diffraction was used to study the prepared complexes and coordination modes in the solid state. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

10 pages, 7461 KiB  
Article
Novel Alumina–Copper Electrode Composites: Toward Efficient Glutamate and H2O2 Detection
by Tatjana Novaković, Dejan Pjević, Nadica Abazović and Zorica Mojović
Compounds 2025, 5(2), 10; https://doi.org/10.3390/compounds5020010 - 10 Apr 2025
Viewed by 137
Abstract
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of [...] Read more.
Alumina is a well-known catalyst and catalyst support. The electrochemical properties of alumina have recently gained attention. The electrochemical response of alumina greatly depends on the type and number of surface groups present in different alumina types. The surfaces of two types of alumina, anhydrous (A) and trihydrate (T) alumina, were modified by copper through an ion-exchange procedure. The samples were characterized by diffuse reflectance UV–Vis spectroscopy. The obtained samples were used as modifiers of carbon paste electrodes. The electrochemical characterization of the samples was performed using cyclic voltammetry and two redox probes. The electrochemical behavior of samples was investigated in the alkaline and neutral media. The electroanalytical performance of the synthesized composites was tested on glutamate and hydrogen peroxide by linear sweep voltammetry. The functionalization of alumina with copper by ion exchange offered a fast and cost-effective procedure for obtaining a composite with enhanced electrochemical properties for sensing biologically important analytes. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

16 pages, 1113 KiB  
Article
Atomic Many-Body Selectivity in Cubic CsPbI3 Solar Cell Memristor
by Luis Craco and Sabrina S. Carara
Compounds 2025, 5(1), 7; https://doi.org/10.3390/compounds5010007 - 19 Mar 2025
Viewed by 196
Abstract
Using DFT+DMFT, we show the importance of spin-orbit coupling together with multi-orbital interactions in prescribing the reconstructed electronic state of the cubic CsPbI3 crystal. Considering realistic Coulomb parameter values and Pb-spin-orbit interaction, we uncover relevant key features in the one-particle spectral functions [...] Read more.
Using DFT+DMFT, we show the importance of spin-orbit coupling together with multi-orbital interactions in prescribing the reconstructed electronic state of the cubic CsPbI3 crystal. Considering realistic Coulomb parameter values and Pb-spin-orbit interaction, we uncover relevant key features in the one-particle spectral functions for the Pb-6p and I-5p orbitals of semiconducting CsPbI3 bulk crystal and the role played by p and n doping relevant for band-selective metallicity and current-voltage characteristics. The implication of our study for cubic CsPbI3 is expected to be an important step to understanding the electronic structure of pure and doped broadband solar cell-based memristor materials for neuromorphic computing. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 868 KiB  
Review
Fructooligosaccharides (FOSs): A Condensed Overview
by Pedro Fernandes
Compounds 2025, 5(2), 8; https://doi.org/10.3390/compounds5020008 - 26 Mar 2025
Viewed by 421
Abstract
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in [...] Read more.
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in its production. The chemical structure of FOSs consists of an assembly of fructose residues combined with a glucose unit. The increasing consumer demand for healthy foods has driven the widespread use of FOSs in the functional food industry. Thus, FOSs have been incorporated into dairy products, beverages, snacks, and pet foods. Beyond food and feed applications, FOSs serve as a low-calorie sweetener for and are used in dietary supplements and pharmaceuticals. As a prebiotic, they enhance gut health by promoting the growth of beneficial bacteria, aid digestion, improve mineral absorption, and help regulate cholesterol and triglyceride levels. Generally recognized as safe (GRAS) and approved by global regulatory agencies, FOSs are a valuable ingredient for both food and health applications. This review provides an updated perspective on the natural sources and occurrence of FOSs, their structures, and physicochemical and physiological features, with some focus on and a critical assessment of their potential health benefits. Moreover, FOS production methods are concisely addressed, and forthcoming developments involving FOSs are suggested. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

Back to TopTop